НАЦИОНАЛЬНОЕ АГЕНТСТВО ПО РЕГУЛИРОВАНИЮ В ЭНЕРГЕТИКЕ

ПОСТАНОВЛЕНИЕ

об утверждении Инструкции по расчету потерь активной и реактивной электрической энергии в элементах сети, находящихся на балансе потребителя

N 246 ot 02.05.2007

Мониторул Офичиал N 94-97/415 от 06.07.2007

* * *

В целях установления метода определения потерь активной и реактивной электрической энергии в элементах сети, находящихся на балансе потребителя и расположенных между точкой разграничения и точкой учета использованной электрической энергии, в случаях, предусмотренных Положением о поставке и использовании электрической энергии, утвержденным Постановлением Правительства № 1194 от 22.11.2005 г., Административный совет Национального агентства по регулированию в энергетике

ПОСТАНОВЛЯЕТ:

- 1. Утвердить Инструкцию по расчету потерь активной и реактивной электрической энергии в элементах сети, находящихся на балансе потребителя.
- **2.** Настоящая инструкция является обязательной для всех распределительных предприятий электрической энергии независимо от формы собственности, которые согласно законодательству регламентируются Национальным агентством по регулированию в энергетике (НАРЭ).
- **3.** Аннулировать Инструкцию по расчету потерь в силовых трансформаторах, состоящих на балансе потребителя, утвержденную Постановлением Административного совета НАРЭ № 51 от 14.03.2002 г., и Инструкцию по расчету потерь электроэнергии в линиях электропередачи, находящихся на балансе потребителя, утвержденную Постановлением Административного совета НАРЭ № 69 от 15.11.2002 г.

ГЕНЕРАЛЬНЫЙ ДИРЕКТОР НАРЭ

Виталие ЮРКУ

ДИРЕКТОР НАРЭ

Николае ТРИБОЙ

ДИРЕКТОР НАРЭ

Анатол БУРЛАКОВ

Кишинэу, 2 мая 2007 г. № 246.

Утверждено Постановлением Административного совета НАРЭ № 246 от 2 мая 2007 г.

ИНСТРУКЦИЯ

по расчету потерь активной и реактивной электрической энергии в элементах сети, находящихся на балансе потребителя

1. ЦЕЛЬ

Целью данной инструкции является установление метода определения технических потерь активной и реактивной электрической энергии в элементах сети, являющихся собственностью потребителя и находящихся между разграничительным пунктом и точкой учета потребленной электрической энергии.

2. ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящая инструкция применяется для определения технических потерь активной и реактивной электрической энергии в элементах сети, являющихся собственностью потребителя, в ситуациях, предусмотренных Положением о поставке и использовании электрической энергии, утвержденным Постановлением Правительства № 1194 от 22.11.2005 года, когда точка учета электрической энергии не совпадает с разграничительным пунктом.

3. ОПРЕДЕЛЕНИЯ И ОБОЗНАЧЕНИЯ

3.1. Определения

В понимании настоящей инструкции приведенные ниже понятия имеют следующее значение:

расчетный период - период, для которого осуществляется расчет потерь электрической энергии;

потери электрической (энергии) мощности - технологическое потребление электрической (энергии) мощности, относящееся к передаче электрической мощности (энергии) через элементы сети;

постоянные потери (энергии) мощности - потери (энергии) мощности:

в трансформаторе из-за намагничивания сердечника и вихревых токов, а также гистерезиса;

в линиях из-за эффекта короны и токов утечки через изоляторы;

переменные потери (энергии) мощности - потери (энергии) мощности в обмотках трансформатора и в проводах электрической линии при передаче электрической (энергии) мощности через них.

3.2. Обозначения

 ΔP - общие активные потери мощности в элементах сети, kW;

 ΔQ - общие реактивные потери мощности, kvar;

 ΔP_{θ} - постоянные активные потери мощности, kW;

 ΔQ_{θ} - постоянные реактивные потери мощности, kvar;

 ΔP_s - переменные активные потери мощности (нагрузочные потери), kW;

 ΔQ_s - переменные реактивные потери мощности (нагрузочные потери), kvar;

 ΔP_{sc} - активные потери короткого замыкания, kW;

 W_a - активная энергия, переданная через элементы сети в течение расчетного периода, kWh;

 W_r - реактивная энергия, переданная через элементы сети в течение расчетного периода, kvarh;

 ΔW_a - общие потери активной энергии в течение расчетного периода, kWh;

 ΔW_r - общие потери реактивной энергии в течение расчетного периода, kvarh;

 $\Delta W_{0,a}$ - постоянные потери активной энергии, kWh;

 $\Delta W_{0,r}$ - постоянные потери реактивной энергии, kvarh;

 $\Delta W_{s,a}$ - переменные потери активной энергии, kWh;

 $\Delta W_{s,r}$ - переменные потери реактивной энергии, kvarh;

 S_{max} - максимальная нагрузка, зарегистрированная в течение расчетного периода, kVA;

 S_{nom} - номинальная мощность трансформатора, kVA;

T - расчетный период, h;

 T_{M} - время использования максимальной нагрузки, h;

 T_{f} - продолжительность работы элементов сети в течение расчетного периода, h;

τ - время наибольших потерь, h;

 U_{nom} - номинальное (первичное) напряжение трансформатора, номинальное напряжение линии, kV;

 $\cos \varphi$ - коэффициент мощности;

 $tg \ \phi$ - коэффициент реактивной мощности;

 K_f - коэффициент формы графика нагрузки;

R - сопротивление линии, Ом;

L - протяженность линии, km;

q - сечение провода, мм²

4. МЕТОД РАСЧЕТА ТЕХНИЧЕСКИХ ПОТЕРЬ ЭЛЕКТРИЧЕСКОЙ ЭНЕРГИИ В ЭЛЕМЕНТАХ СЕТИ, ЯВЛЯЮЩИХСЯ СОБСТВЕННОСТЬЮ ПОТРЕБИТЕЛЯ

4.1. Гипотезы расчета

При расчете технических потерь электрической энергии в трансформаторе используются технические параметры (данные) трансформатора, приведенные в его техническом паспорте. В случае если у потребителя нет такого паспорта, тогда технические параметры трансформатора берутся из приложения N = 1 к настоящей инструкции.

В зависимости от характеристик средства учета, установленного у потребителя, определено три информационных случая, относительно которых рассчитываются технические потери электрической энергии в элементах сети.

Случай А. Известны все параметры, необходимые для расчета технических потерь электрической энергии в элементах сети, включая параметры режима потребления (W_a , W_r , часовой график нагрузки, $\cos \varphi$). Такой случай характерен для современных средств учета.

Случай В. Известно количество активной (W_a) и реактивной (W_r) энергии, переданное через элементы сети и зарегистрированное средством учета в течение расчетного периода. Средство учета не имеет возможность регистрировать параметры режима потребления (часовой график нагрузки), необходимые для расчета технических потерь электрической энергии в элементах сети.

Случай С. Известно только количество активной (W_a) энергии, переданное через элементы сети в течение расчетного периода и зарегистрированное средством учета. Средство учета не имеет возможность регистрировать параметры режима потребления, необходимые для расчета технических потерь электрической энергии в элементах сети.

4.2. Алгоритм расчета технических потерь электрической энергии в силовых трансформаторах

4.2.1. Обшие замечания

Передача мощности и энергии через трансформатор приводит к потерям активной и реактивной мощности:

$$\Delta P = \Delta P_0 + \Delta P_s \tag{1}$$

$$\Delta Q = \Delta Q_0 + \Delta Q_s \qquad (2),$$

а также к потерям активной и реактивной энергии:

$$\Delta W_a = \Delta W_{0,a} + \Delta W_{s,a} \tag{3}$$

$$\Delta W_r = \Delta W_{0,r} + \Delta W_{s,r} \tag{4}$$

4.2.2. Метод расчета постоянных потерь

4.2.2.1. Постоянные потери мощности ΔP_{θ} и ΔQ_{θ} определяются на основе технических параметров трансформатора. Потери ΔP_{θ} представляют собой справочные/паспортные данные трансформатора, а потери ΔQ_{θ} рассчитываются согласно формуле:

$$\Delta Q_0 = \sqrt{\left(\frac{I_0\%}{100} \times S_{nom}\right)^2 - \Delta P_0^2}$$
 (5),

где ток $I_0\%$ и мощность трансформатора S_n являются справочными/паспортными данными.

4.2.2.2. Постоянные потери энергии $\Delta W_{0,a}$ и $\Delta W_{0,r}$ определяются согласно выражениям:

$$\Delta W_{0,a} = \Delta P_0 x T_f \qquad (6)$$

$$\Delta W_{0,r} = \Delta Q_0 x T_f \qquad (7)$$

4.2.3. Метод расчета переменных потерь

- **4.2.3.1.** В настоящей инструкции переменные потери энергии в трансформаторах определяются методом времени наибольших потерь.
- **4.2.3.2.** Переменные потери активной и реактивной энергии в течение расчетного периода для **случаев А** и **В** определяются согласно следующим формулам:

$$\Delta W_{s,a} = \Delta P_{sc} \, x \, \tau \, x \, - \frac{W_a^2 + W_r^2}{T_{M}^2 \, x \, S_{nom}^2}$$
 (8)

$$\Delta W_{s,r} = \Delta Q_{sc} \, x \, \tau \, x \, - \frac{W_a^2 + W_r^2}{T_{M}^2 \, x \, S_{nom}^2}$$
 (9),

где:

 T_M и τ для **случая A** определяются согласно формулам (15) и (16) и для **случая B** — согласно п.4.2.4;

 ΔP_{sc} представляют собой справочный/паспортный параметр;

 ΔQ_{sc} определяются по формуле:

$$\Delta Q_{sc} = \sqrt{\left(\frac{u_{sc}\%}{100} \times S_{nom}\right)^2 - \Delta P_{sc}^2}$$
 (10)

Напряжение короткого замыкания $u_{sc}\%$ и мощность трансформатора S_{nom} (kVA) и активные потери короткого замыкания ΔP_{sc} (kW) являются справочными/паспортными параметрами.

4.2.3.3. Переменные потери активной и реактивной энергии в трансформаторе в течение расчетного периода для **случая** С определяются, используя следующие выражения:

$$\Delta W_{s,a} = \Delta P_{sc} \, x \, \tau \, x \, \frac{W_a^2 \, (1 + t g^2 \varphi)}{T_M^2 \, x \, S_{nom}^2}$$
 (11)

$$\Delta W_{s,r} = \Delta Q_{sc} \, x \, \tau \, x \, \frac{W_a^2 \, (1 + tg^2 \varphi)}{T_{M}^2 \, x \, S_{pom}^2}$$
(12),

где:

 T_M и τ для случая С определяются согласно п.4.2.4;

 ΔP_{sc} представляет собой справочный/паспортный параметр,

 ΔQ_{sc} рассчитывается согласно формуле (10);

 W_a определяется на основе показаний средства учета для расчетного периода (является известным параметром);

 $tg\phi$ рассчитывается, имея значение коэффициента мощности $\cos\phi$, согласно формуле:

$$tg\varphi = \sqrt{\frac{1}{\cos^2\varphi} - 1} \tag{13}$$

4.2.3.4. Для расчета количества потерь энергии в трансформаторе потребителя в **случае В** коэффициент мощности рассчитывается по формуле:

$$\cos \varphi = \frac{W_a}{\sqrt{W_a^2 + W_r^2}} \tag{14}$$

а для расчета количества реактивной энергии и значения потерь энергии в трансформаторе потребителя в **случае** C используется коэффициент мощности $\cos \varphi = 0.75$, указанный в контракте на поставку электрической энергии.

4.2.3.5. Время использования максимальной нагрузки T_M , как и время наибольших потерь τ для **случая** A определяются приближенно согласно формулам:

$$T_{M} = \frac{1}{S_{M}} \times \sum_{t=1}^{T} S_{t}$$
(15)

где:

 S_t – полная мощность нагрузки трансформатора в течение часа t расчетного периода; S_M – максимальная мощность, зарегистрированная в течение расчетного периода.

4.2.3.6. Значения T_M и τ для **случаев В** и **С** определяются приближенно согласно пункту 4.2.4. Значения времени наибольших потерь τ , приведенные в таблице № 1, определяются согласно формуле:

$$\tau_{an} = \left(0,124 + \frac{T_{Man}}{10000}\right)^2 \times 8760 \tag{17}$$

Месячные значения времен T_M и τ рассчитываются согласно формулам:

$$T_{M.\,\text{Mecsu}} = T_{M.\,\text{200}}/12 \text{ M} \tau_{\text{Mecsu}} = \tau_{\text{200}}/12.$$

- **4.2.4.** Расчет времен T_M и τ для случаев **В** и **С**
- **4.2.4.**1 Вычисление времени максимальной нагрузки T_M производится, применяя так называемый метод T_M -мобил.
- **4.2.4.2** Расчетные значения параметров T_M и τ (часы в течение расчетного периода), в конечном итоге, выбираются из серии конкретных значений, приведенных в таблице N_2 1

Таблица № 1

					,
T_{M} , h	167	333	500	667	730
τ, h	77	200	383	623	730

Таблица № 2

T_{M} , h	2000	4000	6000	8000	8760
τ, h	920	2405	4592	7479	8760

4.2.4.3. Выбор значений для расчета T_M и τ производится, применяя вспомогательный расчетный параметр W^+ , вычисленный по формуле $W_i^+ = S_{nom} \ x \cos \varphi \ x$ T_{Mi} для всех значений T_M , приведенных в таблице № 1.

Способ выбора значения T_M следующий: для известных значений параметров S_{nom} и $cos \varphi$ и для заданного значения W_a определяется то минимальное значение T_M из серии конкретных значений 167, 333 и т.д. (смотри таблицу № 1), для которой выполняется условие:

$$W_a < 0.9 \text{ x } W^+ (T_M).$$

- **4.2.5.** В приложении № 2 приведены примеры расчета потерь электрической энергии в трансформаторах для тех трех случаев, приведенных в п.4.1.
 - 4.3. Алгоритм расчета технических потерь электрической энергии в линиях
 - 4.3.1. Общие положения
- **4.3.1.1.** Передача мощности и энергии по линии вызывает потери активной и реактивной мощности

$$\Delta P = \Delta P_0 + \Delta P_s \tag{1}$$

$$\Delta Q = \Delta Q_0 + \Delta Q_s \tag{2},$$

а также потери активной и реактивной энергии

$$\Delta W_a = \Delta W_{0,a} + \Delta W_{s,a} \tag{3}$$

$$\Delta W_r = \Delta W_{0\,r} + \Delta W_{s\,r} \tag{4}$$

- **4.3.1.2.** Ввиду своих малых значений, реактивные потери в линии не учитываются. Таким образом: ΔQ =0 и, соответственно, ΔW_r =0.
- **4.3.1.3.** Ввиду того что активные постоянные потери в линиях с номинальным напряжением ниже 110 кВ малы, их не учитывают. Таким образом: ΔP_{θ} =0 и, соответственно, $\Delta W_{\theta,a}$ =0.
 - 4.3.2. Расчет сопротивления линии

Сопротивление линии рассчитывается согласно формуле:

$$R = k_r \cdot k_{tr} \cdot k_c \cdot \rho_{20} - \frac{l}{q} \cdot 10^3, [OM]$$
 (5),

где:

 k_r - коэффициент скрутки (1 — для одножильного провода; 1.02 — для многожильного провода);

 k_{tr} - коэффициент трассы, который учитывает удлинение линии за счет провисания проводов воздушной линии электропередачи или непрямолинейной прокладки кабеля (принимается равным 1,03);

 k_c - коэффициент, который учитывает увеличение сопротивления переменному току за счет поверхностного эффекта и эффекта близости, а также за счет потерь, обусловленных токами, индуцированными в кабельных оболочках (k_c =1 - для ЛЭП; для кабеля – в соответствии с приведенной ниже таблицей):

Сечение провода, q, мм ²	10	16	25	35	50	70	95	120	150	185	240	300	400
Kc	1,006	1,009	1,015	1,020	1,029	1,041	1,056	1,070	1,088	1,108	1,140	1,175	1,234

l - длина линии, κM (указанная в контракте на поставку электроэнергии);

q - сечение провода, mn^2 (указанное в контракте на поставку электроэнергии);

Следует отметить, что в случае сталеалюминиевого провода берется только сечение алюминия.

- 4.3.3. Порядок расчета переменных активных потерь в линии.
- **4.3.3.1.** В настоящей инструкции переменные потери электроэнергии в линии определяются методом средних нагрузок [1,2,4].
- **4.3.3.2.** Переменные потери активной энергии в линии в течение расчетного периода определяются по формуле:

$$\Delta W_{s,a} = R \cdot K_{f}^{2} \cdot \frac{W_{a}^{2} + W_{r}^{2}}{U_{nom}^{2} \cdot T_{f}} \cdot 10^{-3}, [\kappa em-u]$$
 (6),

где:

 T_f - период работы линии в течение расчетного периода, u;

 \dot{W}_a - рассчитывается на основании показаний средства учета за расчетный период (этот параметр известен), $\kappa 6m-4$;

 W_r - в **ситуации A** и **ситуации B** рассчитывается на основании показаний средства учета за расчетный период (этот параметр известен), $\kappa \epsilon ap. u$,

а в ситуации С рассчитывается по формуле:

$$W_r = W_a \cdot \sqrt{\frac{1}{\cos^2 \varphi} - 1}$$

, где $\cos \varphi$ – это коэффициент мощности, указанный в

контракте на поставку электроэнергии;

 K_f - коэффициент формы графика нагрузки.

Для ситуации В и ситуации С K_f =1.15, а для Ситуации А K_f рассчитывается по следующей формуле:

$$K_{f} = \frac{\sqrt{T_{f} \sum_{t=1}^{T_{f}} S_{t}^{2}}}{\sum_{t=1}^{T_{f}} S_{t}}$$
(7),

гле

 S_t - кажущаяся мощность нагрузки линии, соответствующая часу t периода фактурации;

 U_{nom} - номинальное напряжение линии, указанное в контракте, κB ;

R - сопротивление линии, рассчитанное согласно п.5.2.2, O_M .

- **4.3.3.3.** В случае однофазной линии переменные потери активной энергии рассчитываются по формуле (6), затем умножая на 2/3.
- **4.3.4.** Примеры расчета потерь энергии в линии для различных ситуаций представлены в приложении 3.

Технические параметры силовых трансформаторов

S _{nom} , kVA	U _{sc} , %	ΔP _{sc} , kW	ΔP_0 , kW	I ₀ , %
		$U_{nom} = 10/0,4 \text{ kV}$		
25	4,7	0,69	0,13	3,2
30	5,5	0,85	0,30	9,0
10	4,7	1,00	0,175	3,0
50	5,5	1,325	0,44	8,0
53	4,7	1,47	0,24	2,8
100	4,7	2,27	0,33	2,6
160	4,7	3,10	0,51	2,4
180	5,5	4,1	1,2	7,0
250	4,5	4,20	0,74	2,3
320	4,5	4,99	0,84	7,0
100	4,5	5,90	0,95	2,1
560	4,5	7,2	2,0	5,0
530	5,5	8,50	1,31	2,0
1000	5,5	12,20	2,45	1,4
1600	5,5	18,00	3,30	1,3
1800	5,5	24,0	8,0	4,5
2500	5,5	26,00	4,60	1,0
	1 .	$U_{nom} = 6/0,4 \text{ kV}$		1 -
25	4,7	0,69	0,13	3,2
30	5,5	0,85	0,25	8,0
10	4,7	1,0	0,175	3,0
53	4,7	1,47	0,24	2,8
.00	4,7	2,27	0,33	2,6
160	4,7	3,1	0,51	2,4
180	5,5	4,0	1,0	6,0
250	4,5	4,2	0,74	2,3
320	4,5	5,0	0,8	6,0
100	4,5	5,9	0,95	2,1
560	4,5	7,2	2,0	5,0
530	5,5	8,5	1,31	2,0
.000	5,5	12,2	2,45	1,4
1600	5,5	18	3,3	1,3
800	5,5	24,0	8,0	4,5
2500	5,5	26,0	4,6	1,0
		$U_{\text{nom}} = 10/6 \text{ kV}$,
.000	5,5	11,6	2,4	1,4
600	5,5	16,5	3,3	1,3
.800	5,5	24,0	8,0	4,5
2500	5,5	23,5	4,6	1,0
3200	5,5	37,0	11,0	4,0
1000	6,5	33,5	6,4	0,9
5600	5,5	56,0	18,0	4,0
6300	6,5	46,5	9,0	0,8

Примеры, иллюстрирующие методологию расчета

Пример 1 (случай А)

Требуется определить технические потери электроэнергии в трансформаторе 10/0,4 kV, принадлежащем потребителю, за период с 4 октября по 3 ноября. В данный период времени трансформатор работал 528 часов. Средство учета, установленное на напряжение 0,4 kV трансформатора, имеет возможность регистрировать активную и реактивную составляющие нагрузки. На основе показаний средства учета, используя формулы (15) и (16), были рассчитаны $T_M = 447 \ h$ и $\tau = 413 \ h$.

Также известны:

- номинальная мощность трансформатора: $S_{nom} = 630 \ kVA$;
- номинальное (первичное) напряжение трансформатора: $U_{nom} = 630 \ kV$;
- потребление активной и реактивной энергии, определенное на основе показаний средств учета для данного периода: $W_a = 201000 \text{ kWh}$ и $W_r = 96480 \text{ kvarh}$;
- технические параметры трансформатора: $u_{sc}\%=5,5\%$; $\Delta P_{sc}=8,5$ kW; $\Delta P_0=1,31$ kW; $I_0\%=2,0\%$.

Решение:

- 1. За расчетный период принимается фактический период работы трансформатора: $T_f = 528 \ h$.
 - 2. Постоянные потери энергии в трансформаторе за расчетный период:

$$\Delta W_{0,a} = \Delta P_0 x T_f = 1,31 \text{ x } 528 = 691,68 \text{ kWh}$$

$$\Delta W_{0,r} = \Delta Q_0 x T_f = 12,532 \text{ x } 528 = 6616,896 \text{ kvarh}$$

где

$$\Delta Q_0 = \sqrt{\left(\frac{I_0\%}{100} \times S_{nom}\right)^2 - \Delta P_0^2} = \sqrt{\left(\frac{2}{100} \times 630\right)^2 - 1.31^2} = 12,532 \text{ kvar.}$$

3. Переменные потери энергии в трансформаторе за расчетный период:

$$\Delta W_{s,a} = \Delta P_{sc} x \tau \qquad \frac{W_a^2 + W_r^2}{-} = 8,5 \times 413 \qquad \frac{201000^2 + 96480^2}{-} = 2200,499$$

$$x \qquad - \qquad \qquad kWh$$

$$T_M^2 x S_{nom}^2 \qquad 447^2 \times 630^2$$

где

$$\Delta Q_{sc} = \sqrt{\left(\frac{u_{sc}\%}{100} \times S_{nom}\right)^2 - \Delta P_{sc}^2} = \sqrt{\left(\frac{5.5}{100} \times 630\right)^2 - 8.5^2} = 33.591 \text{ kvar.}$$

4. Общие потери энергии в трансформаторе за расчетный период:

$$\Delta W_a = \Delta W_{0,a} + \Delta W_{s,a} = 691,68 + 2200,499 = 2892 \text{ kWh}$$

$$\Delta W_r = \Delta W_{0,r} + \Delta W_{s,r} = 6616,896 + 8695,915 = 15313$$
 kvarh.

Пример 2 (случай В)

Требуется определить технические потери электроэнергии в трансформаторе, принадлежащем потребителю, за период с 13 апреля по 12 мая. В течение данного периода времени трансформатор работал 696 часов. Средство учета установлено на стороне 0,4 kV трансформатора и регистрирует потребление активной и реактивной энергии.

Также известны:

- номинальная мощность трансформатора: $S_{nom} = 400 \ kVA$;
- номинальное (первичное) напряжение трансформатора: $U_{nom} = 10 \ kV$;
- потребление активной и реактивной энергии, определенное на основе показаний средства учета для данного периода: $W_a = 53954 \text{ kWh}$ и $W_r = 39062 \text{ kvarh}$;
- технические параметры трансформатора: $u_{sc}\%=4,5\%$; $\Delta P_{sc}=5,9$ kW; $\Delta P_0=0,95$ kW; $I_0\%=2,1\%$.

Решение:

- 1. Расчетный период равен фактическому периоду работы трансформатора: $T_f = 696$
 - 2. Коэффициент мощности *соѕф*:

$$\cos \varphi = \frac{W_a}{\sqrt{W_a^2 + W_r^2}} = \frac{53954}{\sqrt{53954^2 + 39062^2}} = 0.81$$

3. Периоды T_M и τ .

h.

Для значений $S_{nom}=400~kVA,~cos\varphi=0.81~$ и $W_a=53954~kWh$ применяем требования пункта 5.2.4 для расчета T_M и τ .

min									
$T_{\mathcal{M}}$, h	167	333	500	667	730				
τ, h	77	200	383	623	730				
$0.9 \times S_{nom} \times cos \varphi \times T_M$ kWh	48697,2	97102,8	145800	194497,2	212868				

$$W_a \leq 0.9 \times S_{nom} \times cos \varphi \times T_M$$

Итак, получаем $T_M = 333 \ h$ и $\tau = 200 \ h$.

4. Постоянные потери энергии в трансформаторе за расчетный период:

$$\Delta W_{0,a} = \Delta P_0 x T_f = 0.95 \text{ x } 696 = 661.2 \text{ kWh}$$

$$\Delta W_{0,r} = \Delta Q_0 x T_f = 8,346 \times 696 = 5808,816 \text{ kvarh}$$

где

$$\Delta Q_0 = \sqrt{\left(\frac{I_0\%}{100} \times S_{nom}\right)^2 - \Delta P_0^2} = \sqrt{\left(\frac{2,1}{100} \times 400\right)^2 - 0.95^2} = 8,346 \text{ kvar}.$$

5. Переменные потери энергии в трансформаторе за расчетный период:

5. Переменные потери энергии в трансформаторе за расчетный период:
$$\frac{W_{a}^{2}+W_{r}^{2}}{\Delta W_{s,a}}=\Delta P_{sc}\,x\,\tau\,x\,\frac{W_{a}^{2}+W_{r}^{2}}{T_{M}^{2}\,x\,S_{nom}^{2}}=5,9\,x\,200\,x\,\frac{333^{2}\,x\,400^{2}}{53954^{2}+39062^{2}}=295,087\,kWh$$

$$\frac{W_{a}^{2}+W_{r}^{2}}{\Delta W_{s,r}}=\Delta Q_{sc}\,x\,\tau\,\frac{W_{a}^{2}+W_{r}^{2}}{x}=17,005\,x\,200\,\frac{333^{2}\,x\,400^{2}}{x}=850,502\,kvarh$$

$$\frac{T_{M}^{2}\,x\,S_{nom}^{2}}{x}=333^{2}\,x\,400^{2}$$

где

$$\Delta Q_{sc} = \sqrt{\left(\frac{u_{sc}\%}{100} \times S_{nom}\right)^2 - \Delta P_{sc}^2} = \sqrt{\left(\frac{4.5}{100} \times 400\right)^2 - 5.9^2} = 17,005 \text{ kvar.}$$

6. Общие потери энергии в трансформаторе за расчетный период:

$$\Delta W_a = \Delta W_{0,a} + \Delta W_{s,a} = 661,2 + 295,087 = 956 \text{ kWh}$$

$$\Delta W_r = \Delta W_{0,r} + \Delta W_{s,r} = 5808,816 + 850,502 = 6659$$
 kvarh.

Пример 3 (случай С)

Требуется определить технические потери в трансформаторе 10/0,4 kV, принадлежащем потребителю, за период равный 28 дням. Средство учета установлено на стороне 0,4 kV трансформатора и регистрирует только количество активной энергии.

Также известно:

- номинальная мощность трансформатора: $S_{nom} = 63 \text{ kVA}$;
- номинальное (первичное) напряжение трансформатора: $U_{nom} = 10 \ kV$;
- значение коэффициента мощности, указанного в контракте на поставку электрической энергии: $cos \varphi = 0.75$;
- потребление активной энергии, регистрируемое счетчиком за данный период: $W_a =$ 20100 kWh;
- технические параметры трансформатора: $u_{sc}\% = 4,7\%$; $\Delta P_{sc} = 1,47 \text{ kW}$; $\Delta P_0 = 0,24$ kW; $I_0\% = 2.8\%$

Решение:

- 1. Период расчета: $T_f = 28 \times 24 = 672 \text{ h}$.
- 2. Периоды T_M и τ для расчетного периода.

Для значений $S_{nom}=63~kVA,~cos\varphi=0.75~$ и $W_a=20100~kWh~$ применяем требования пункта 5.2.4 для получения T_M и τ .

	min							
$T_{\mathcal{M}}$ h	167	333	500	667	730			
τ, h	77	200	383	623	730			
$0.9 \times S_{nom} \times cos \varphi \times T_M$ kWh	7101,7	14160,8	21262,5	28364,2	31043,3			

$$W_a \leq 0.9 \times S_{nom} \times \cos \varphi \times T_M$$

Итак, получаем $T_M = 500 h$ и $\tau = 383 h$.

3. Постоянные потери энергии в трансформаторе за расчетный период:

$$\Delta W_{0,a} = \Delta P_0 x T_f = 0.24 \text{ x } 672 = 161.28 \text{ kWh}$$

$$\Delta W_{0,r} = \Delta Q_0 x T_f = 1,748 \text{ x } 672 = 1174,656 \text{ kvarh},$$

где

$$\Delta Q_0 = \sqrt{\left(\frac{I_0\%}{100} \times S_{nom}\right)^2 - \Delta P_0^2} = \sqrt{\left(\frac{2.8}{100} \times 63\right)^2 - 0.24^2} = 1.748 \text{ kvar.}$$

4. Переменные потери энергии в трансформаторе за расчетный период:

$$\Delta W_{s,a} = \Delta P_{sc} x \tau \frac{W_{a}^{2} (I + tg^{2} \varphi)}{-} = 1,47 \times 383 \frac{20100^{2} \times (1 + 0,8819^{2})}{-} = 407,528 \text{ kWh}$$

$$T_{M}^{2} x S_{nom}^{2} = 500^{2} \times 63^{2}$$

$$\Delta W_{s,r} = \Delta Q_{sc} x \tau \frac{W_{a}^{2} (I + tg^{2} \varphi)}{-} = 2,57 \times 383 \frac{20100^{2} \times (1 + 0,8819^{2})}{-} = 712,48 \text{ kvarh,}$$

$$T_{M}^{2} x S_{nom}^{2} = 500^{2} \times 63^{2}$$

где

$$\Delta Q_{sc} = \sqrt{\left(\frac{u_{sc}\%}{100} \times S_{nom}\right)^2 - \Delta P_{sc}^2} = \sqrt{\left(\frac{4.7}{100} \times 63\right)^2 - 1.47^2} = 2.57 \text{ kvar.}$$

$$tg\varphi = \sqrt{\frac{1}{\cos^2 \varphi} - 1} = \sqrt{\frac{1}{0.75^2} - 1} = 0.8819$$

5. Общие потери энергии в трансформаторе за расчетный период:

$$\Delta W_a = \Delta W_{0,a} + \Delta W_{s,a} = 161,28 + 407,528 = 569 \text{ kWh}$$

$$\Delta W_r = \Delta W_{0,r} + \Delta W_{s,r} = 1174,656 + 712,48 = 1887$$
 kvarh.

Примеры, иллюстрирующие методику расчета технических потерь электрической энергии в линиях

Пример 1 (ситуация А)

Требуется определить технические потери активной электроэнергии в ВЛЭП $10~\kappa B$ потребителя за период с 4 октября по 3 ноября. В указанном периоде линия работала в течение 528 часов. Линия связывает разграничительный пункт и трансформатор $10/0,4~\kappa B$ — собственность потребителя. Энергия, поступившая в трансформатор в течение периода работы линии, составила: активная — $203892~\kappa Bm.ч$ и реактивная — $111793~\kappa вар.ч$. Средство учета, установленное на стороне $0,4~\kappa B$ трансформатора, имеет возможность регистрации графика активной и реактивной нагрузки. На основании показаний средства учета, используя формулу (7), был рассчитан $K_f = 1,18$.

Также известны:

- длина линии: $l=1,5 \ \kappa M$;
- сечение линии: $q = 70 \text{ мм}^2$;
- провод: алюминиевый, многожильный.

Решение:

- 1. Период работы линии представляет собой реальное время ее работы: $T_f = 528 \ v$.
- 2. Сопротивление линии:

$$R = k_r \cdot k_{tr} \cdot k_c \cdot \rho_{20} \cdot \frac{l}{q} \cdot 10^3 = 1,02 \cdot 1,03 \cdot 1 \cdot 0,0295 \cdot \frac{1,5}{70} \cdot 10^3 = 0,664 \ Om$$

3. Переменные потери активной энергии в линии за период расчета:

$$\Delta W_{s,a} = R \cdot K^{2}_{f} \quad \frac{W^{2}_{a} + W^{2}_{r}}{-} \quad \cdot 10^{-} = 0,664 \cdot 1,18^{2} \quad \frac{203892^{2} + 111793^{2}}{-} \quad \cdot 10^{-3} = 947 \text{ kem-}$$

$$U^{2}_{nom} \cdot T_{f} \quad 10^{2} \cdot 528$$

Пример 2 (ситуация В)

Требуется определить технические потери активной электроэнергии в кабельной линии электропередачи $10~\kappa B$ потребителя за период с 13 апреля по 12 мая. В указанный период линия работала в течении 696 часов. Линия связывает разграничительный пункт и трансформатор $10/0,4~\kappa B$ — собственность потребителя. Средство учета, установленное на стороне $10~\kappa B$ трансформатора, имеет возможность регистрировать потребление активной и реактивной энергии. Энергия, поступившая в трансформатор в течение периода работы линии, составила: активная — $54910~\kappa Bm. 4$ и реактивная — $45721~\kappa Bap. 4$.

Также известны:

- длина линии: l=0,15 км;
- сечение линии: $q = 50 \text{ мм}^2$;
- провод: алюминиевый, многожильный.

Решение:

- 1. Период работы линии представляет собой реальное время ее работы: $T_f = 696 \ v$.
- 2. Сопротивление линии:

$$R = k_r \cdot k_{tr} \cdot k_c \cdot \rho_{20} \cdot \frac{l}{l} \cdot 10^3 = 1 \cdot 1,03 \cdot 1,029 \cdot 0,0295 \cdot \frac{0,15}{l} \cdot 10^3 = 0,094 \ OM$$

3. Переменные потери активной энергии в линии за период расчета:

$$\Delta W_{s,a} = R \cdot K_{f}^{2} \quad \frac{W_{a}^{2} + W_{r}^{2}}{-} \quad \cdot 10^{5} = 0,094 \cdot 1,15^{2} \quad \frac{54910^{2} + 45721^{2}}{-} \quad \cdot 10^{-3} = 9 \text{ kem-}$$

$$U_{nom}^{2} \cdot T_{f} \quad 10^{2} \cdot 696$$

Пример 3 (ситуация С)

Требуется определить технические потери активной электроэнергии в кабельной линии электропередачи 0,38 кВ потребителя за период, равный 28 дням. Потребитель был обязан установить счетчик реактивной энергии, но предписание не было выполнено. В период расчета средство учета, установленное на противоположной разграничительной точке конце линии, регистрирует только потребление активной энергии. Потребление активной энергии, зарегистрированное в течение периода работы линии, составило: 20100 квт-ч.

Также известны:

- коэффициент мощности, применяемый в приведенных условиях $cos \varphi = 0.75$:
- длина линии: $l = 0.05 \, \kappa M$;
- сечение линии: $q = 25 \text{ мм}^2$;
- провод: медный, одножильный.

Решение:

- 1. Период работы линии представляет собой реальное время ее работы: $T_f = 28 \ x \ 24 = 672 \ y$.
 - 2. Сопротивление линии:

$$R = k_r \cdot k_{tr} \cdot k_c \cdot \rho_{20} \cdot \frac{l}{q} \cdot 10^3 = 1 \cdot 1,03 \cdot 1,015 \cdot 0,0175 \cdot \frac{0,05}{25} \cdot 10^3 = 0,037 \ Om$$

3. Расчетное потребление реактивной энергии:

$$W_r = W_a \cdot \sqrt{\frac{1}{\cos^2 \varphi} - 1} = 20100 \cdot \sqrt{\frac{1}{0,75^2} - 1} = 17727$$
 квар.ч

4. Переменные потери активной энергии в линии за расчетный период:

$$\Delta W_{s,a} = R \cdot K_{f}^{2} - \frac{W_{a}^{2} + W_{r}^{2}}{U_{nom}^{2} \cdot T_{f}} \cdot \frac{10^{2}}{3} = 0,037 \cdot 1,15^{2} - \frac{20100^{2} + 17727^{2}}{U_{nom}^{2} \cdot T_{f}} \cdot 10^{-3} = 362 \text{ kem-}$$

Пример 4 (ситуация С)

Требуется определить технические потери активной электроэнергии в кабельной линии электропередачи 0,38 кВ потребителя за период, равный 30 дням. Средство учета, установленное в противоположном разграничительному пункту конце линии, регистрирует только потребление активной энергии. Согласно нормам, потребитель не обязан устанавливать у себя счетчик реактивной энергии. Потребление активной энергии, зарегистрированное в течение периода работы, составило: 6100 квт-ч.

Также известны:

- коэффициент мощности $cos \varphi = 0.92$:
- длина линии: $l = 0, 1 \, \kappa M$;
- сечение линии: $q = 35 \text{ мм}^2$;
- провод: медный, одножильный.

Решение:

- 1. Период работы линии представляет собой реальное время ее работы: $T_f = 30 \times 24 = 720 \text{ y}$.
 - 2. Сопротивление линии:

$$R = k_r \cdot k_{tr} \cdot k_c \cdot \rho_{20} \cdot \frac{l}{q} \cdot 10^3 = 1 \cdot 1,03 \cdot 1,020 \cdot 0,0175 \cdot \frac{0,1}{35} \cdot 10^3 = 0,053 \ Om$$

3. Расчетное потребление реактивной энергии:

$$W_r = W_a \cdot \sqrt{\frac{1}{\cos^2 \varphi} - 1} = 6100 \cdot \sqrt{\frac{1}{0.92^2} - 1} = 2599$$
 квар.ч

4. Переменные потери активной энергии в линии за расчетный период: