

МИНИСТЕРСТВО ОКРУЖАЮЩЕЙ СРЕДЫ И БЛАГОУСТРОЙСТВА ТЕРРИТОРИЙ

ПОЛОЖЕНИЕ Nr. 100 от 18.01.2000

ВРЕМЕННОЕ ПОЛОЖЕНИЕ ПО ОПРЕДЕЛЕНИЮ УЩЕРБА, ПРИЧИНЕННОГО ОКРУЖАЮЩЕЙ СРЕДЕ

Опубликован: 05.09.2000 в Monitorul Oficial Nr. 112

Утверждаю: Зарегистрирован: Министерство окружающей среды Министерство юстиции и благоустройства территории Республики Молдова Республики Молдова В.Штербец _____ А.Капчеля 18 января 2000 г. N 100 17 февраля 2000 г. Согласовано: Согласовано: Министерство финансов Министерство экономики и Республики Молдова реформ Республики Молдова М.Маноли Е.Шлопак 19 января 2000 г. 20 января 2000 г.

ОБЩИЕ ПОЛОЖЕНИЯ

Настоящее положение разработано в соответствии с Законом об охране окружающей среды N 1515-XII от 16 июня 1993 г., Законом о плате за загрязнение окружающей среды N 1540-XIII от 25 февраля 1998 г. и является методической основой для определения ущерба, причиненного окружающей среде.

- 1. Предметом положения являются аварийные и продолжительные неразрешенные выбросы (сбросы, расположение) загрязнителей в окружающей среде и степень поражения.
- 2. Положение определяет порядок и способ подсчета ущерба, причиненного окружающей среде нарушением экологических норм.
- 3. Методы подсчета ущерба разработаны для земельных ресурсов, недр, токсичных веществ и отходов.
- 4. Ущерб, причиненный окружающей среде, возмещается экономическими агентами, другими юридическими и физическими лицами, которые ведут экономическую деятельность на территории Республики Молдова.

- 5. Денежные средства, полученные от возмещения ущерба, причиненного окружающей среде, поступают в экологический фонд и используются в установленном законом порядке.
- 6. Расходы для возмещения причиненного ущерба окружающей среде относятся на финансовую деятельность экономического агента за счет прибыли, которая остается в распоряжении последнего после выплаты налога на прибыль.
- 7. Экологические нормы допустимого загрязнения и охраны окружающей среды разрабатываются соответствующими организациями, которые имеют лицензию на этот вид деятельности, а также экономическими агентами и утверждаются Государственной экологической инспекцией в установленном порядке.
- 8. Подсчитанный ущерб будет скорректирован в зависимости от текущих коэффициентов индексации цен, установленных исходя из уровня инфляции Министерством окружающей среды.
- 9. Споры, возникшие между плательщиком и органом окружающей среды, рассматриваются в установленном законом порядке.
- 10. Ущерб, причиненный окружающей среде путем загрязнения, возмещается физическими, юридическими лицами, в том числе и иностранными, как правило, в полном размере, без снижения платы, независимо от платы за загрязнение окружающей среды и ухудшение качества природных ресурсов.

Почвенные ресурсы

- 1. МЕТОДИКА ОПРЕДЕЛЕНИЯ УЩЕРБА, НАНЕСЕННОГО ПОЧВЕННЫМ РЕСУРСАМ ПРИ СЖИГАНИИ РАСТИТЕЛЬНЫХ ОСТАТКОВ
- 1.1. Методика определяет порядок расчета ущерба, нанесенного почвенным ресурсам при сжигании растительных остатков на массиве.
- 1.2. Ущерб, нанесенный при сжигании растительных остатков, подсчитывается исходя из стоимости производства, транспортировки и внесения в почву той массы навоза, необходимой для восстановления массы гумуса, которая могла бы образоваться от растительных остатков, уничтоженных при сжигании.
- 1.3. Масса растительных остатков на поверхности почвы берется как норматив 1900 кг/га, так как на конкретном поле они уничтожены.
- 1.4. Предполагаемое количество потерянного гумуса при сжигании остатков определяется с помощью уравнения:

 $Hp = 0.187 \times M,$ (1.1)

где

Нр - потерянный гумус;

0.187 - коэффициент перехода массы растительных остатков в гумус;

М - масса сгоревших растительных остатков, кг/га.

Нанесенный ущерб при сжигании растительных остатков определяется следующим уравнением:

 $P = B \times C \times S, \tag{1.2}$

гле

Р - ущерб, нанесенный при сжигании растительных остатков;

С - расходы на 1т навоза;

- S площадь, на которой были сожжены растительные остатки;
- В необходимая масса навоза для восстановления массы гумуса; B=Hp/0,0297; (1.3)
- 0,0297 коэффициент перехода навоза в гумус.
- 1.5. Пример. Установлено, что в хозяйстве на одном поле площадью 58га сгорела стернь. Почва чернозем типичный. Затраты на 1 т навоза составляют по ценам 1995 года 5 лей. Масса сгоревшей стерни составляет в соответствии с нормативами 1900 кг/га. Определить вред, нанесенный почвенным ресурсам сжиганием стерни.
 - 1.6. Решение
 - 1.6.1. Hp = 0.187 x M = 0.187 x 1900 = 356 $\kappa r/ra$
 - 1.6.2. B = 356/0.0297 = 11986 kr/ra = 12 T/ra
 - 1.6.3. $P = B \times C \times S = 12 \times 5 \times 58 = 3480$ леев

Вред, нанесенный почвенным ресурсам сжиганием стерни, составляет 3480 леев.

- 2. МЕТОД ПРОГНОЗИРОВАНИЯ И ОПРЕДЕЛЕНИЯ ПОТЕНЦИАЛЬНОЙ ЭРОЗИИ ПОЧВ И ОПРЕДЕЛЕНИЕ УЩЕРБА, НАНЕСЕННОГО ПОЧВЕННЫМ РЕСУРСАМ В РЕЗУЛЬТАТЕ ПРОЛИВНЫХ ДОЖДЕЙ
- 2.1. Определение факторов, которые влияют на эрозию почв.
- 2.1.1. Влияние факторов "рельеф", "гранулометрические" и "степень эродированности" почв. Самое значительное воздействие на развитие процессов эрозии оказывает рельеф площади. Рельеф определяет потенциальное значение эрозии почвы. Степень эродированности почв быстро растет в диапазоне уклонов 1-7 градусов. Наряду с величиной уклона на процесс эрозии влияют длина и форма склона (табл. 2.1).

Таблица 2.1

Коэффициент воздействия формы склона на эрозионность почв

п/н 	Форм	а склона	Значение коэффициента
1.	Вогнутый		1,35
2.	Однообразный		1,00
3.	Выпуклый		0 , 85

Характеристика эрозионной опасности почв в зависимости от типов и подтипов почв, гранулометрического состава так же как и их степень эрозионности, показаны в таблицах 2.2, 2.3, 2.4.

Таблица 2.2

Относительная эрозионная опасность почв

п/н	Типы и подтипы почв	Коэффициент эрозионной опасности
1. 2. 3. 4.	Чернозем типичный Чернозем выщелоченный и подзолистый Лесные почвы Чернозем обыкновенный Чернозем карбонатный	0,32 0,45 0,68 0,77 1,00

Таблица 2.3

Коэффициент эрозионной опасности в зависимости от гранулометрического состава почвы

п/н	Гранулометрический состав почв		Величина коэффициента
1. 2. 3.	Глинистый Суглинисто-глинистый Суглинистый Суглинисто-песчаный и песчаный		0,8 1,0 1,2 1,6

Таблица 2.4

Коэффициент эрозионной опасности в зависимости от степени эрозии почв

п/н 	Степень эрозии	Величина коэффициента
	1	2
1.	Неэродированные	1,0
2.	Слабо эродированные	1,4
3.	Умеренно эродированные	2,0
4.	Сильно эродированные	2,8
5.	Очень сильно эродированные	3,0
6.	Очень, очень сильно эродированные	3,2

2.1.2. Влияние фактора "сельхозкультура"

Влияние c/x культур на развитие эрозии изучено более фундаментально. Если противоэрозионный эффект на вспаханном поле близок к нулю, то под многолетними травами приближается к единице.

Параметры противоэрозионной защиты представлены в таблице 2.5.

Таблица 2.5

Относительные размеры эрозии почвы под полевыми культурами

п/н 	Название культуры	Величина коэффициента
1.	 Многолетние травы 2-го года	0,04
2.	Осенние культуры	0,09
3.	Смесь овощных и злаковых	0,19
4.	Однолетние травы	0,21
5.	Овес	0,27
6.	Подсолнечник	0,44
7.	Кукуруза	0,57
8.	Многолетние насаждения	0,23

2.2. Взаимодействие факторов, которые влияют на эрозию почвы. Математическая зависимость.

Факторы влияют на эрозию почвы не отдельно, а в комплексе, дополняя друг друга.

Эта зависимость имеет следующий вид:

- W = 0.0055(2 x insln + di x sdl) x h x k x e x f, (2.1.)
- W эрозия почвы (т/га);
- in крутизна уклона в точке, предшествующей точке отсчета (в градусах);
- ln расстояние от водораздела до точки, предшествующей точке отсчета (м);
- ${
 m di}$ увеличение угла наклона в точке отсчета по сравнению с предшествующей точкой (в градусах);
- dl увеличение расстояния от водораздела до точки отсчета по сравнению с предшествующей точкой (м);
 - h суточные атмосферные осадки (мм);
 - k коэффициент влияния c/x культур на эрозию почвы (табл.2.5);
- e коэффициент влияния степени эродированности почвы на эрозию (табл.2.4);
 - f коэффициент влияния формы склона на эрозию почвы (табл.2.1);
 - Все коэффициенты представлены в таблицах 2.1; 2.2; 2.3; 2.4; 2.5.
- 2.3. Определение потенциальной эрозии в проектах и схемах регламентирования режима собственности на землю.

Потенциальная эрозия почвы в проектах регламентирования режима собственности на землю для пахотных земель, а также в схемах регламентирования режима собственности на землю в селах определяется обязательным образом в соответствии с характерными профилями склонов (от водораздела до тальвега) и результаты включаются в соответствующий документ.

Таблица 2.6
Оценка эффективности комплекса противоэрозионных мер в проектах регламентирования режима собственности на землю

N скло	- Пло-	Потери	Поте-	Уменьше	ние поч	терь п	очвы	Фактическ	ие потери	
на, по								после в		
ля								иротивоэрозионных		
	на,	проти-	B CO-	мотренн	ых в п	роекте	,	1	мер	
	га	воэро-	ответ		T					
		-HONE								
				Arpo-					С конкрет-	
		мер,							ной площа-	
				ческие					ди , т/га	
			_	(c 15%)						
			ного		ные 1	_				
			обус-		тра-					
			трой-		вы		30%)			
			ства		(c 1		ļ			
			тер-		10%)					
			рито-			10%)	ļ			
			рии,т				ļ			
			(30%)			I	I			
I-1;										
I-1; II-1	44.2	666.7	355.	9 53.4	35.6	35.6	106.	8 124.5	2.82	
II-I II-3;	44.2	000.7	333.	9 55.4	33.6	33.6	100.	0 124.3	2.02	
II-3, II-2	32.8	162.1	93.	1 14.0	9.3	0 3	27.	9 32.6	0.99	
II-2;	32.0	102.1	93.	1 14.0	9.3	9.3	۷1.	9 32.0	0.99	
II-4	34.5	212.4	167	3 25.1	16.7	16.7	50.	2 58.6	1.70	
II-6;	51.5	212.1	107.	5 20.1	10.7	10.7	J 0 •	2 30.0	1.70	
II-5	59.7	1089.3	684.	1 102.6	68.4	68.4	205.	2 239.5	4.01	
III-1	25.0			5 28.7						
III-2	31.5								2.22	
III-3;										
III-4;										
III-5	62.6	2221.9	746.	4 112.0	74.6	74.6	223.	9 261.3	4.17	
IV-1;										
III-6	24.6	268.2	166.	3 24.9	16.6	16.6	49.	9 58.3	2.37	
IV-2	10.7									
IV-6;										
IV-4	24.4	486.8	219.	2 32.9	21.9	21.9	65.	8 76.7	3.14	
IV-7;										
IV-5;										
IV-3	50.3	2009.2	703.	3 105.5	70.3	70.3	211.	0 246.2	4.89	
Всего	400.3	7629.2	3588.	7 538.4	358.8	358.8	1076.	6 1256.1	3.14	

Одновременно берется во внимание присутствие противоэрозионных объектов, которые уже существуют на момент разработки проекта (схемы) и проектируемых.

В схемах регламентирование режима собственности на землю больших хозяйственно-административных единиц потенциальная эрозия почвы на момент их разработки вычисляется на всей территории на основе "ключевых"

склонов, массивов с/х угодий и севооборотов.

В таблице 2.6 дан пример определения потенциальной эрозии на "ключевой" долине на момент разработки и выполнения проектов.

Уровень уменьшения эрозии при применении комплекса противоэрозионных мер представлен для 10%-ный обеспеченности, учитывая гармоничное сочетание агротехнических, лесомелиоративных, гидротехнических, а также мер залужения и территориального обустройства. Все гидротехнические меры предусмотрены для 10%-ный обеспеченности, а другие – для 39%-ный.

Расчеты проведенные в соответствии с таблицей 2.6, показывают, что противоэрозионное обустройство поля для 10%-ной обеспеченности (повторение события 1 раз в 10 лет), которые включают формирование отдельных участков посредством агротехники и распределения посевов в них, уменьшат эрозионные процессы на 25-35%.

При совместном применении противоэрозионных агротехнических мер (обработка почвы и уход за растениями) и противоэрозионным обустройством участка показатели эрозионных процессов уменьшаются на 35-45%. Дополнение перечисленных противоэрозионных мер посредством травосеяния (травосеяние склонов, каналов, посадка буферных травяных полос) увеличивают противоэрозионный эффект еще на 10%. Аналогичный эффект дает облесение (лесные полосы), а гидротехнические – в размере 30%.

Применение всего комплекса противоэрозионных мер позволит уменьшение эрозии почв до 95-98%. Таким образом, применение противоэрозионных мер при возделывании растений в поле уменьшает эрозию почв в следующих пропорциях:

- противоэрозионная организация участков 30%
- противоэрозионная агротехника 15%
- противоэрозионное травосеяние 10%
- противоэрозионное облесение 10%
- гидротехническое обустройство 30%.
- 2.3.1. Вычисление средней цены $1\,\mathrm{m}3$ почвы для определения ущерба при нарушениях почвенного покрова.

При содержании гумуса 1.0% считается, что почва переходит в слабогумифицированную почвенную породу. Суммарная толщина горизонтов с содержанием гумуса более 1.0% считается условно как толщина почвенного профиля или гумусового профиля. Почвой-эталоном, оцениваемым в 100 баллов по бонитету, считается типичный чернозем со средней толщиной гумусового профиля - 93 см и средним содержанием гумуса в этом слое почвы - 2.97 - 3.00%.

Цена $1\,$ м3 почвы зависит от его конкретных особенностей. Для эродированных почв, главные особенности которых определяют цену $1\,$ м3 исчезнувшей почвы, являются содержание гумуса в пахотном слое и текстурный класс этого слоя.

Таблица 2.7 Тарифы для расчета нормативной цены земли (для единицы градус гектар) в леях

Название бывших районов и	Продажа-покупка	
городов 	 	оборота
В среднем по республике	289.53	9264.96
РАЙОНЫ:		
Анений Ной	282.81	9049.92
Басарабка	310.34	9930.88
Бричень	254.21	8134.72
Кахул	371.97	11903.04
Каменка	250.75	8024.00
Кантемир	326.48	10447.36
Кэинарь	282.69	9046.08
Кэлэрашь	462.45	14798.40
Кэушень	282.48	9039.39
Чадыр Лунга	307.45	9838.40
Чимишлия	312.61	10003.52
Комрат	340.45	10894.40
Криулень	313.82	10042.24
Дондушень	258.88	8284.16
Дрокия	258.03	8256.96
Дубэсарь	243.15	7780.80
Единец	260.62	8339.84
Фэлешть	261.36	8363.52
Флорешть	247.17	7909.44
Глодень	260.05	8321.60
Григориополь	232.14	7428.48
Хынчешть	358.60	11475.20
Яловень	389.29	12456.96
Леова	309.87	9915.84
Ниспорень	414.79	13273.28
Окница	251.95	8062.40
Орхей	307.20	9830.40
Резина	250.20	8006.40
Рыбница	254.72	8151.04
Рышкань	253.80	8121.60
Сынжерей	260.33	8330.56
Слобозия	246.99	7903.68
Сорока	255.26	8168.32
Стрэшень	459.65	14708.80
Шолдэнешть	249.13	7972.16
Штефан Водэ	308.75	9880.00
Тараклия	361.83	11578.56
Теленешть	269.88	8636.16
Унгень	290.93	9309.76
Вулкэнешть	366.45	11726.40
ГОРОДА:		
Кишинэу	361.00	11552.00
Бэлць	260.33	8330.56
Тираспол	246.99	7903.68
1		

Оценка 1м3 почвы-эталона со средней толщиной профиля 93 см и средним содержанием гумуса в этом слое 3.0% осуществляется на основе средней цены (выведение из с/х оборота) по Республике Молдова 1 га почвы с бонитетом 100 баллов и равно 926496 леев (табл.2.7).

2.3.1.1. Процедура расчета стоимости 1 м 3 почвы-эталона со средним содержанием гумуса 3.0 % следующая:

гле

Р1м3 - стоимость 1м3 почвы-эталона, лей;

Рга - стоимость 1 га почвы-эталона с бонитетом 100, леев (926496 леев);

Vra - объем почвы на площади 1 га.

2.3.1.2.

 $Vra = Sra \times h,$ (2.3.)

где

Sra - площадь 1 га (100001 м2);

h - толщина почвенного профиля (0.93 м);

 $Vra - 10000 \text{ m2} \times 0.93 \text{ m} = 9300 \text{ m3}$

2.3.1.3. Стоимость 1 м3 конкретной почвы (P1м3) вычисляется по формуле:

$$P1m3 = P1m3 \times Ch \times Ct...,$$
 (2.5.)

где

Ch - коэффициент корректировки стоимости почвы в зависимости от конкретного содержания гумуса в этой почве;

 ${\sf Ct}$ - коэффициент корректировки стоимости почвы в зависимости от текстурного класса.

2.3.1.4. Ch =
$$\frac{a1}{---}$$
, a (2.6.)

где

а1 - содержание гумуса в изучаемом слое почвы;

а - среднее содержание гумуса в профиле почвы-эталона (3.0%).

Таким образом, для вычисления стоимости 1 м3 выведенной в результате эрозии снятия или разрушения почвы необходимо определить текстурный класс и содержание гумуса в пахотном слое этой эродированной почвы. Эти параметры можно установить соответственно и на основе информации из почвенных карт, агрохимической картограммы (содержание гумуса).

В таблице 2.8. показана средняя стоимость 1м3 почвы в зависимости от содержания гумуса и текстурного класса, вычисленного по формуле, представленной в вышестоящем тексте.

Таблица 2.8

Средняя стоимость в Республике Молдова 1 м3 почвы различного гранулометрического состава и содержания гумуса

 N п/п	 Гумус %	: Стоимость 1 м3 почвы, лей						
11/11	•	 Песчан- ный 		нисто- песчан-	Суглинис- тый и су- глинисто- глинистый	суглинис- тый		 Тяжело глинис- тый
1	4.9	49	81	114	163	147	 114	81
2	4.8	48	80	112	160	144	112	80
3	4.7	47	79	100	156	141	100	79
4	4.6	46	77	108	153	138	108	77
5	4.5	45	75	105	150	135	105	75
6	4.4	44	74	103	146	132	103	75
7	4.3	43	72	101	142	129	101	73
8	4.2	42	70	98	139	126	98	71
9	4.1	41	69	95	136	123	95	69
10	4.0	40	67	93	133	120	93	67
11	3.9	39	66	90	130	117	90	66
12 13	3.8 3.7	38	64 62	88 86	127	114 111	88	64
14	3.6	37 36	60	84	124 120	108	86 84	62 60
15	3.5	35	58	82	117	105	82	58
16	3.4	34	57	79	113	102	79	57
17	3.3	33	56	77	110	99	77	56
18	3.2	32	54	75	107	96	75	54
19	3.1	31	52	72	103	93	72	52
20	3.0	30	50	70	100	90	70	50
21	2.9	29	49	67	96	87	67	49
22	2.8	28	48	65	93	84	65	48
23	2.7	27	46	63	90	81	63	46
24	2.6	26	44	60	86	78	60	44
25	2.5	25	42	58	83	75	58	42
26	2.4	24	41	55	80	72	55	41
27	2.3	23	39	53	77	69	53	39
28	2.2	22	37	51	74 70	66	51	37
29 30	2.1	21 20	35 33	49 47	67	63 60	49 47	35 33
31	1.9	19	32	45	64	57	45	32
32	1.8	18	31	42	60	54	42	31
33	1.7	17	29	40	57	51	40	29
34	1.6	16	27	37	53	48	37	27
35	1.5	15	25	35	50	45	35	25
36	1.4	14	24	33	47	42	33	24
37	1.3	13	23	30	43	39	30	23
38	1.2	12	21	28	40	36	28	21
39	1.1	11	19	25	36	33	25	19
40	1.0	10	17	23	33	30	23	17
41	0.9	9	16	20	30	27	20	16
42	0.8	8	14	18	27	24	18	14
43	0.7	7	12	16	23	21	16	12
44 45	0.6 0.5	6 5	10 8	14 12	20 17	18 15	14 12	10 8
45 46	0.5	5 4	8 6	9	17	15 12	9	8 6
47	0.4	3	5	7	10	9	7	5

- 3. МЕТОДИКА ОПРЕДЕЛЕНИЯ УЩЕРБА, ПРИЧИНЕННОГО ПОЧВЕННЫМ РЕСУРСАМ В РЕЗУЛЬТАТЕ ОПОЛЗНЕЙ И ФОРМИРОВАНИЯ ОВРАГОВ
- 3.1. Методика определяет порядок вычисления ущерба причиненного почвенным ресурсам в результате нарушения правил эксплуатации противоэрозионных объектов и реплантированных участков.
- 3.2. Ущерб вычисляется исходя из стоимости разрушенного почвенного покрова на территории, где были нарушены правила эксплуатации противоэрозионных объектов и реплантированных участков.
- 3.3. Главные нарушения правил следующие: затяжные паузы в строительстве объектов (1 год и более), нарушения при строительстве и закладке дренажных труб, коллекторов, наблюдательных колодцев, нарушения в технологии строительства водных бассейнов в больших и малых системах ирригации, которые приводят к большим потерям воды и способствуют эрозии почв, разрушению объектов от агротехники, затяжных пауз в ремонте объектов и т.д. Эти нарушения способствуют эрозии почв, образованию оползней, оврагов и т.д.
 - 3.4. Ущерб вычисляется по формуле
 - $P = Si \times Qi \times K$,

(3.1.)

тπе

Р - ущерб, лей;

- Si площадь участка, где была разрушена почва в результате нарушения правил, га;
 - Qi стоимость почвы, лей/га;
- К коэффициент, который предусматривает изменение стоимости почвы в зависимости от ее характеристик.
 - 3.5.
 - $K = Ke \times Kg \times Ks \times Kz \times Kh \times Ka \times Kp$ (таблица 3.3.), (3.2.)
 - Ке степень эродированности почвы;
 - Кд гранулометрический состав почвы;
 - Кѕ степень засоления почвы;
 - Кz степень щелочности почвы;
 - Кh гидроморфизм почвы;
 - Ка степень оглеения;
 - Кр плантажированность почвы.
- В случае, если в таблице 3.3 отсутствуют некоторые из качественных характеристик, соответствующий коэффициент равен 1. В случае, если невозможно определить почву, разрушенную при оползнях и других последствиях, применяется для расчета средняя стоимость 1 га почвы (табл. 2.7).
- 3.6. Пример. При оползнях был нарушен участок в 6 га, из которых 3 га (S1) до оползней был представлен выщелочным черноземом, слабо эродированным мощностью 0,5 м, на остальных 3 га (S2) была серая лесная почва, сильно эродированная мощностью 0,3 м. Определить ущерб, принесенный почвенным ресурсам. Данные из таблицы 3.3:
 - Q1 = 94921 лей/га; Ke1 = 0.8; Q2 = 20111 лей/га; Ke2 = 0.5.

Таблица 3.3

НОРМАТИВЫ

стоимости плодородного слоя почв для расчета ущерба, нанесенного экономике Республики Молдова, при разрушении, загрязнении и применении не по назначению (16)

 Тол-	 Стои- мость													 Гид- ро-			
слоя	Q лей 	Эр 	одиро: ность	ван- Ке	грану ческі	уломе ий со	три- с-	Выще 	елачив Rz	ание	За 	солені Кs	ие	-qом меиф	 	 I сипі	Kp
	 	сла- бое 	сред нее 	силь ное 	гли- нис- тое 	сла- бо гли- нис- тое	пес чан ное 	сла бое 	сред- нее 	СИЛЬ НОЕ 	сла- бое 	сред нее 	силь ное 	 			
1		3	4	J 5	6	7	8	9	10	11	12	13	14	15	16	17	18
									 сные								
	25550 34300		0.7	0.5	0.8									1.0	6 0.	6 0.4	4 0.4
	00440					(Серы	е ле	сные								
0-50	20112 29983 43254	0.8	0.7	0.5	0.8	0.7	0.0	6						1.0	6 0.	6 0	.4 0.4
						Тем	но-с	ерые	лесны	е							
0-50	34889 51840 79950	0.8	0.7	0.5	0.8	0.7	0.0	6						1.0	6 0.	6 0	.4 0.4
					τ	Черно	земы	под	волист:	ые							
0-50	59606 92890 140442	0.8	0.7	0.5	0.8	0.7	0.0	6 0	.8 0.	6 0.	4 0.	B 0.	7 0.	5 1.0	6		
0 100	11011	_			Ч	ерноз	емы і	выщеј	почные								
0-50 0-100	59640 94921 146599	0.8	0.7	0.5	0.9	0.8	0.	6 0	.8 0.	6 0.	4 0.	B 0.	7 0.	5 1.0	6		
					Ч	ерноз	емы :	гипич	чные								
0-50 0-100	62596 97616 149700 174380	0.8	0.7	0.5	0.9	0.8	0.0	6 0	.8 0.	6 0.	4 0.	3 0.	7 0.	5 1.0	6		
				1	Черно:	земы :	ксер	тифс	ные ле	сные							
0-50 0-100	64176 104128 162849 191940	3 0.8 9	0.7	0.5	0.9	0.8	0.0	6 0.	.8 0.	6 0.	4 0.	3 0.	7 0.	5 1.0	6		
					Чері	нозем	ы обы	ыкноі	венные								
0-50 0-100	53455 84000 130238 15743	0.8	0.7	0.5	0.9	0.8	0.	6 0	.8 0.	6 0.	4 0.	3 0.	7 0.	5 1.0	6		
0 20	F2272				Чеј	онозе	мы ка	арбог	натные								
0-50 0-100	53378 82969 132949 158693	0.8	0.7	0.5	0.9	0.8	0.0	6 0	.8 0.	6 0.	4 0.	8 0.	7 0.	5 1.0	6		

3.7. Решение.

P=Q1xS1xKe1+Q2xS2Ke2=94921x3x0.8+20111x3x0.5=257977 (лей)

Причиненный ущерб от оползня в результате нарушения правил эксплуатации противоэрозионного объекта составляет 257977 леев.

4. МЕТОДИКА ОПРЕДЕЛЕНИЯ УЩЕРБА, НАНЕСЕННОГО ПОЧВЕННЫМ РЕСУРСАМ ПОСРЕДСТВОМ ЗАГРЯЗНЕНИЯ ХИМИЧЕСКИМИ ВЕЩЕСТВАМИ

4.1. Область применения.

Методика определения ущерба в результате загрязнения участков (почв) химическими веществами определяет правила расчета платежа для возмещения ущерба в результате загрязнения почв химическими веществами, включая

загрязнение почв от санкционированных свалок, промышленных и коммунальных отходов, и распространяется на все участки независимо от расположения и форм собственности.

Министерство окружающей среды Республики Молдова, Национальный научно-практический центр гигиены и эпидемиологии обязаны выполнять нормативы настоящего документа.

- 4.2. Общие принципы.
- 4.2.1. Метод определения ущерба в результате загрязнения почв химическими веществами разработан в соответствии с Законом об охране окружающей среды и утвержден Министерством окружающей среды Республики Молдова.
- 4.2.2. Определение загрязненных почв и степени загрязнения осуществляется в соответствии с нормативными и методическими документами, утвержденными или разрешенными для пользования Министерством сельского хозяйства и перерабатывающей промышленности и Министерством окружающей среды Республики Молдова.
- 4.2.3. Площади, глубина загрязнения почв и концентрация химических веществ определяются на основе материалов изучения почв и лабораторных анализов, выполненных на основе соответствующих нормативных и методических актов, утвержденных или разрешенных для пользования Министерством сельского хозяйства и перерабатывающей промышленности и Министерством окружающей среды Республики Молдова.

Ущерб от загрязнения определяется:

- ъ в случае загрязнения почв (выбросов и выделений загрязненных веществ) на основе результатов изучения или лабораторных анализов в сравнении с прежними результатами;
- ъ в случае нарушения технологии и нормативов применения пестицидов и удобрений, невыполнения нормативов охраны окружающей среды во время хранения химикатов, транспортировки и выполнения погрузочно-разгрузочных работ, выбросов, выделений (высвобождений) на основе результатов изучения и лабораторных анализов;
- аu в случае загрязнения почв в местах нахождения несанкционированных свалок отходов на основе результатов об объеме (массе) отходов и степени их опасности и лабораторных анализов.

Анализы выполняются в лабораториях зональных экологических агентств, Центра превентивной медицины, Министерства сельского хозяйства и перерабатывающей промышленности и в других тестированных химических лабораториях.

При загрязнении почв во время нарушений, выбросов и выделения (высвобождения) и загрязнения почв несанкционированными свалками полевые работы и лабораторные анализы выполняются за счет виновных.

- 4.3. Вычисление размера платежа за ущерб от загрязнения почв химическими веществами.
- 4.3.1. Величина ущерба от загрязнения почв определяется исходя из затрат для выполнения общего объема работ по очищению загрязненных почв. В случае, когда невозможно определить эти расходы, величина ущерба вычисляется по формуле:
 - P = Nc x S(i) x Ct x Cp(i), где (4.1.)
- P величина платежа за ущерб от загрязнения почв одним или несколькими (от 1 до n) химическими веществами (тысячи лей);
- ${
 m Nc}$ норматив стоимости сельскохозяйственных почв (тысячи леев/га), определенный по таблице 2.7. нормативы стоимости сельхозугодий (Nc) равны нормативам стоимости освоения новых участков в обмен выведенным из сельхозоборота, утвержденные соответствующим постановлением Правительства Республики Молдова;
- Ct коэффициент перерасчета в зависимости от периода времени для восстановления c/x почв, определенный по таблице 4.10;
 - S(i) площадь почв, загрязненных химическими веществами (i);
- Cp(i) коэффициент перерасчета в зависимости от степени загрязнения почв химическими веществами (i), определенный по таблице 4.5;
- 4.3.2. Устанавливаются пять уровней степени загрязнения почв: 1 незагрязненные почвы; 2 слабо загрязненные почвы; 3 средне загрязненные почвы; 4 сильно загрязненные почвы; 5 очень сильно

(полностью) загрязненные почвы. Незагрязненные почвы характеризуются содержанием в почве химических веществ, которые не превышают предельно допустимую концентрацию (ПДК) или ориентированно допустимую концентрацию (ОДК), указанные в таблице $4.1;\ 4.2;\ 4.3.$ Для уровня 1 (незагрязненные) коэффициент Ср в формуле 4.1 равен нулю, тогда PNO (платеж не осуществляется). Критерии уровня загрязнения почв хим.веществами представлены в таблице 4.4.

4.3.3. В случае отсутствия в таблице 4.4 химических веществ, которые загрязнили почвы, ущерб от загрязнения вычисляется также по формуле (4.1) и в этом случае Cp(i) определяется на основе результатов таблиц 4.7, 4.8 и формулы (4.2).

$$C(i)$$
 fact
 $Lc = \frac{C(i)}{C(i)}$ fon, (4.2)

где

- C(i) fact содержание de facto токсиканта (i) в почве;
- C(i) fon значение регионального фонового содержания в почве токсического вещества (i).

ПРИМЕЧАНИЕ. Региональное фоновое содержание химических веществ - содержание их в почвах на территориях, которые не затронуты техногенным $\mathbf{P}_{\mathbf{q}}$

При отсутствии в таблице 4.8 данных о фоновом содержании в почвах химических неорганических веществ фон берется как среднее - региональный для незагрязненных территорий и утверждается Министерством окружающей среды; для органических веществ фоновое содержание в почвах равно 0.1 ПЛК.

4.3.4. Величина ущерба от загрязнения почв на несанкционированных свалках определяется по формуле

$$P = (Np(i) \times M(i) \times 25 \times Ct),$$
 (4.3.)

- P величина оплаты за ущерб от загрязнения почвы одним или несколькими (от 1 до n) химическими веществами (тысячи леев);
- $\operatorname{Np}(i)$ норматив оплаты зв загрязнение почвы от 1 тонны (куб.м) отходов типа (i) (лей), которые определяются по формуле 4.9. Классификация по опасности токсичных отходов в таблице 4.9 разработана в соответствии с "Временной классификацией токсичных производственных отходов и Методических указаний для определения классификации по опасности токсичных индустриальных отходов";
 - M(i) масса (объем) отхода типа (i) (т, м.куб);
- 25 коэффициент увеличения для загрязнения почв от отходов несанкционированных свалок;
- Ct коэффициент перерасчета в зависимости от периода времени для восстановления с/х угодий, определенный по таблице 4.10.

Таблица 4.1 Максимально допустимые концентрации (МДК) химических неорганических соединений в посевах

Элемент, хими	ическое вещество	Величина МДК, мг/кг почвы
	Общие формы	
Ванадий	. 1	150
Марганец		1500
Марганец+ванадий		1000+100
Арсений		2.0
Олово		4.5
Ртуть (Hidrargium	n)	2.1
Свинец		32
Сурьма		4.5
Хром (+3)		90
Соединения серы*		160
H2S Нитраты		0.4
	Растворимая фор	
Фтор		10
-	Мобильные формы	-i**
	имиачного раствора ј	цинка извлечены из почвы при рн 4,8; кобальта – при помощи черноземов.
Q		
Свинец		6 4
Никель Уром		6
Хром Медь		3
медь Цинк		23
ципк		2 J

Кобальт

Марганец: для черноземов

5

700

Таблица 4.2

	Величина ПДК, мг/ кг почвы		Величина ПДК, мг/ кг почвы
Агелон	0.15	Диурон	0.5
Акрекс	1.0	Дурсбан	0.2
Актелик	0.5	Зенкор	0.2
Актелик	0.1*	Изатрин	0.05
	••-	7100177111	0.00
* для почв с рН 5.5			
Альфаметилстирол	0.5	Изопропилбензол	0.5
Атразин	0.5	Изопропилбензол +	
Ацетальдегид	10.0	альфаметилстирол	0.5
Базудин	0.1	Иодофендос	0.5
Байлетон+метаболит	0.03	Карбофос	2.0
Байфидан	0.02	Кельтан	1.0
Банвел Д	0.25	Ксилолы	
Бенз (а) пирен	0.02	(орто-, мета-, пара-)	0.3
Бензин	0.1	Купроцин	1.0
Бензол	0.3	Линурон	1.0
Бетанол	0.25	Мезоранил	0.1
Велексон	1.0	Метатион	1.0
Гардона	1.4	Метафос	0.1
ГХЦГ (линдан)	0.1	Мирал	0.03
ГХЦГ (гексахлоран)	0.1	Монурон	0.3
ГХБД (гексахлорбутадиен)	0.5	Пиримор	0.3
Гептахлор	0.05	Политриазин	0.1
Гетерофос	0.05	Полихлоркамфен	0.5
Глифосат	0.5	Полихлорпинен	0.5
Далапон	0.5	Прометрин	0.5
2.4 - Д дихлор -		Пропанид	1.5
феноксиуксусная кислота	0.1	- Ридомил	0.05
2.4 - дихлорфенол	0.05	Ринкорд	0.02
2.4 Д-аминная соль	0.25	Ронит	0.8
Бутиловый эфир группы 2.4д	0.15	Севин	0.05
Кротиловый эфир		Семерон	0.1
группы 2.4-д	0.15	Симазин	0.2
Октиловый эфир		Сумицидин	0.02
группы 2.4-д	0.15	Стирол	0.1
Малолетучие эфиры		Толуол	0.3
Группы 2.4-д	0.14	Фенурон	1.8
2M - 4HP	0.4	Фозалон	0.5
2M - 4HM	0.6	Фосфамид	0.3
ДДТ и его метаболиты		Формальдегид	7.0
(сумарные количества)	0.1	Фталофос	0.1
Децис	0.01	Циклофос	0.03
Дилор	0.5	Цинеб	0.2
Фурадан	0.01	Энтам	0.9
Фурфурол	3.0		-
Хлорофос	0.5		
Хлорамп	0.05		
*	-		

пестицидов в почвах

Таблица 4.3

Название	Величина ПДК,	Название	Величина ПКД,
вещества	мг/кг почвы	вещества	мг/кг почвы
Абат	0.6	 Карагард	0.4
Амбуш	0.05	Которан	0.03
Амибен	0.5	Ленацил	1.0
Антио	0.2	Лонтрел	0.1
Арезин	0.7	Метазин	0.1
Байлетон	0.4	Метоксихлор	1.6
Байтекс	0.4	Морфонол	0.15
Бенлат	0.1	Нитропирин+6ХПК	0.2
Биферан	0.5	Нитрофор	0.2
БМК	0.1	Офунак	0.05
Бромофос	0.2	Пентахлорбифенил	0.1
Бронокот	0.5	Пирамин	0.7
Гексахлорбензол	0.03	Пликтран	0.1
Геметрел	0.5	Плондрел	0.15
Гербан	0.7	Поликарбацин	0.6
Гидрел	0.5	Полихлорбифенелы	0.06
Дактал	0.1	(суммарно)	
ДДВФ	0.1	Препарат А-1	0.5
Декстрел	0.5	Промед	0.01
Дигидрел	0.5	Рамдон	0.2
Дифенамид	0.25	Реглон	0.2
Дропл	0.05	Ровраль	0.15
Зелек	0.15	Сангор	0.04
Кампозан	0.5	Сапроль	0.03
Каптан	1.0	Солан	0.6
Стомп	0.15	TXAH	0.2
Сульфазин	0.1	TXM	0.1
Сутан	0.6	Фталан	0.3
Тепоран	0.4	Хлорат магния	1.0
Тербацил	0.4	Хостаквик	0.2
Тиллам	0.6	Цианокс	0.4
Тиодан	0.1	Цидиал	0.4
Топсин-М	0.4	Етафос	0.1
Тетрахлорбифенил		Эупарен	0.2
Трефлан	0.1	Ялан	0.9
Триалат	0.05		
Трихлорбифенилы	0.03		

Таблица 4.4 Показатели степени загрязнения почв химическими веществами

Показатели степени з	агрязне	их вроп кин	мическими	веществам	и
Элемент, соединение	Co	одержание (уровню	мг/кг), с загрязне		нно
	вень	 	уровень- умеренно загряз- ненные почвы	сильно загряз- ненные почвы	очень сильно загряз- ненные почвы
1	2	3	4	5	6
Кадмий	20	до 3	до 5	до 20	
Свинец Ртуть	600 10	до 125	до 250	до 600	
Арсений	50	до 3	до 5	до 10	
Цинк	3000	до 20	до 30		_
Медь	500	до 500	до 1500		0
Кобальт	300	до 50	до 150		
Никель	500	до 150	до 300	до 500	
Молибден	200	до 40	до 100	до 200	
Сурьма Барий	300 2000	до 20	до 50	до 300	
Хром	800	до 200	до 400		0
Ванадий	350	до 250	до 500		
Фтор (растворимый в воде)	50	до 225 до 15	до 300 до 25	до 350 до 50	
Ор	ганичес	кие соедине	ния		
Хлорированные углеводы (включительно пестициды, которые содержат C1, ДДТ, НСН, 2-4D и др.)	50	до 5	до 25	до 50	
Хлорфенолы	10	до 5	до 5	до 10	
Фенолы Еуфенилы	10		до 5	до 10	
Циклогексан	60		до 5	до 10	
Пиридин	20		до 30	до 60	
Стирол	50		до 3	до 20	
Нефть	5000	до 5	до 20	до 50	

		до 2000	до 3000	до 5000	
Бензопирен	0.5	 0 1	0 25	0 E	
Бензин	10	до 0.1	до 0.25	до 0.5	
		до 1	до 3	до 10	
Толуол	100	до 10	до 50	до 100	
Альфаметил	50	до то	до 30	до 100	
70	100	до 3	до 10	до 50	
Ксилен (орто-; мета-; пара)	100	до 3	до 30	до 100	
Нитраты	380		Д	H	
		до 180	до 250	до 380	
Тетрагидросфоран	150				2.0

Таблица 4.7
Определение степени загрязнения почв в соответствии с суммарным показателем загрязнения (Zc)

Величина показателя	Степень загрязнения почв	Коэффициенты (Ср)
< 2	Незагрязненные	0
2 - 8	Слабо	0.3
8 - 32	Средне загрязненные	0.6
32 - 64	Сильно загрязненные	1.0
> 64	Очень сильно загрязненные	2.0

Фоновое содержание общих форм тяжелых металлов и мышьяка в почвах (мг/кг)

Таблица 4.8

Почвы	Zn	Cd	Pb	Hg	Cu	Co	Ni	As
Серые лесные почвы	60	0.20	16	0.15	18	12	35	2.6
Черноземы	68	0.24	20	0.20	25	15	45	5.6

Платежи за загрязнение почв отходами с несанкционированных свалок

Типы отходов	Единицы изме- рения	Нормативы опла- ты за размещение отходов (лей)
Нетоксичные отходы: - добывающей промышленности - перерабатывающей промышленности - коммунальной промышленности	t m.c. m.c.	6.6 303.6 528.0
Токсичные отходы: - 1 класс токсичности очень опасный - 2 класс токсичности высоко опасный - 3 класс токсичности умерено опасный - 4 класс токсичности мало опасный	t t t	39960 15840 10560 5280

Таблица 4.10

Значение коэффициента перерасчета (Сt) нормативов стоимости с/х угодий (Nc) в формуле 4.1 в зависимости от периода времени, необходимого для их восстановления (коэффициенты Сt приравниваются коэффициентам перерасчета ежегодной потерянной прибыли)

Продолжительность периода восстанов- ления (года)	Коэффициент перерасчета	Продолжительность периода восстанов- ления (года)	Коэффициент перерасчета
1	0.9	8-10	5.6
2	1.7	11-15	7.0
3	2.5	16-20	8.2
4	3.2	21-25	8.9
5	3.8	26-30	9.3
6-7	4.6	31 и более	10.0

- 4.4. Заключительные инструкции
- 4.4.1. Ущербы в результате сжигания растительных остатков, от эрозии почв в результате невыполнения противоэрозионных мер, включительно и нарушений правил эксплуатации противоэрозионных объектов и реплантированных участков, загрязнения химическими веществами возмещаются предприятиями, организациями и другими юридическими и физическими лицами независимо от организационно-юридических форм и форм собственности, включительно совместными предприятиями с участием юридических и физических лиц из заграничных стран и гражданами.
- 4.4.2. Иски по возмещению ущербов формируются и предъявляются виновным юридическим и физическим лицам инспекторами Государственной экологической инспекции Министерства окружающей среды.
- 4.4.3. Штрафы по предъявленным искам не освобождают виновных как от выполнения мер по охране окружающей среды, так и от платежа штрафа и возмещения ущербов, причиненных окружающей среде, здоровью и собственности граждан в соответствии с Законом Республики Молдова о защите окружающей среды, административным кодексом, Кодексом о земле РМ и другими нормативными актами.
- 4.4.4. Денежные средства от перечисленных исков направляются в небюджетные экологические фонды. Если юридические или физические лица отказываются возмещать ущерб в соответствии с исками, денежные средства взимаются в судебном порядке.

4.4.5. Средства, взимаемые с виновных юридических и физических лиц, как возмещение за причиненный ущерб, применяются как для выполнения работ по консервации и восстановлению почв, возмещению ущербов и потерь, произошедших в результате ухудшения качества почв, компенсации потерь сельскохозяйственной и лесной продукции, так и для выполнения работ по установлению площадей загрязненных почв и лабораторных анализов по определению степени их разрушения.

При.	π∩ж	ОНИ	9

Форма акта о деградации и загрязнении почв
АКТ N о загрязнении почв
"" 2000
1. Должность, фамилия, имя и отчество сотрудника, составляющего ак
2. Должность, фамилия и инициалы лиц, которые участвовали констатации загрязнения почв 3. Информация о виновных юридических и физических лицах
(должность, фамилия, имя и отчество)
(место работы, место жительства)
(пазышле и кридический адрее организаций парушителя) 4. Место, суть нарушения (загрязнение, тип загрязнения). 5. Площадь, глубина и степень загрязнения. 6. Величина штрафа за ущерб от загрязнения почв. 7. Объяснения нарушителю. 8. Были предупреждены или привлечены к ответственности эти лица з
причиненный ущерб, когда, где и за что
Подпись лица, составляющего акт Подпись нарушителя*

- * Отказ нарушителя подписать этот акт не освобождает его от ответственности
 - 5. МЕТОДИКА ОПРЕДЕЛЕНИЯ УЩЕРБА, НАНЕСЕННОГО ПОЧВЕННЫМ РЕСУРСАМ В РЕЗУЛЬТАТЕ НАРУШЕНИЯ БАЛАНСА ПИТАТЕЛЬНЫХ ЭЛЕМЕНТОВ
- 5.1. Методика определяет порядок вычисления ущерба, нанесенного почвенным ресурсам в результате нарушения баланса питательных элементов.
- 5.2. Ущерб вычисляется исходя из средней цены удобрений: азотных (1.10 лея/кг), фосфорных (1.53 лея/кг) и калийных (1.08 лея/кг).
- 5.3. Баланс количественный учет круговорота химических элементов в системе почва растение окружающая среда за определенный промежуток времени и выражается кг/га. Баланс питательных элементов определяется за 1-5 лет и оценивается по шкале трех уровней (положительный, уравновешенный или отрицательный) для каждого элемента в отдельности (табл.5.1, 5.2). Содержание азота в форме нитратов в почве на конкретном поле определяется оперативно весной, а данные относительно мобильных форм фосфора и калия выбраны из материалов последнего цикла агрохимического обследования почв в хозяйствах. Данные относительно полученных урожаев и применения минеральных и органических удобрений на каждом поле в отдельности могут быть выбраны из финансовых отчетов данные относительно содержания питательных элементов в навозе, выраженные в киллограмах активного вещества, вычисляются, применяя

коэффициенты, указанные в таблице 5.3, и прибавляются к количеству питательных элементов, внесенных в почву с минеральными удобрениями.

- 5.4. Применение методики определения ущерба, нанесенного почвенным ресурсам в результате нарушения баланса питательных элементов, осуществляется в следующих случаях:
- 5.4.1. Отрицательный баланс, когда содержание питательных элементов в почве на данном поле меньше минимального допустимого уровня их содержания (табл. 5.1, 5.2).
- 5.4.2. Положительный баланс, когда содержание питательных элементов в почве на данном поле больше максимально допустимого уровня их содержания (табл. 5.1, 5.2).
- 5.4.3. Баланс уравновешенный, когда содержание питательных элементов в почве на данном поле оптимальное (табл. 5.1, 5.2).

Таблица 5.1

Норматив для расчета ущерба причиненного почвенным ресурсам в результате нарушения уравновешенного баланса азота

Оценка Баланса 	Нарушение Балано азота в кг/га	са Содержание NO3, кг/га в слое почвы 0-100 см.	единицы баланса
Положительный Уравновешенный (оптимальный)	Более + 15 + 15 - 15	Более 150 60 - 150	1.10
Отрицательный	Менее - 15	Менее 60	1.10

Таблица 5.2
Нормативы для вычисления ущерба, причиненного почвенным ресурсам в результате нарушения уравновешенного баланса фосфора и калия

Оценка Баланса	Нарушение Баланса, кг/га 	Содержание в п 100г в слое по	очвы 0-30 см	Ущерб для едини- цы баланса
		Мачигин	Чириков	(лей/кг)
	Δ) Δ	 осфор (Р2О5)		
_	, <u>-</u>			
Положительный	Волее 15	Волее 4.5	Более 15	1.53
Уравновешанный (оптимальный)	+1515	1.5 4.5	5 15	0.0
Отрицательный	Менее - 15	Менее 1.5	Менее 5	1.53
	В) по	отасиу (К2О)		
Положительный	Более 30	Более 40	Более 20	1.08
Уравновешанный (оптимальный)	+3030	20 40	10 20	0.0
Отрицательный	Менее 30	Менее 20	Менее 10	1.08

5.5. Ущерб определяется по следующей формуле:

 $P = B \times C \times S, \tag{5.1}$

где

Р - ущерб, лей

В - баланс питательных элементов N; P2O5; K2O; кг/га.

С - ущерб для единицы веса баланса (табл.1.1,1.2), леев.

S - площадь поля, где был нарушен баланс, га

B = G - (Er + El), (5.2)

где

- G масса питательных элементов (каждый в отдельности), внесенных в почву с минеральными и органическими удобрениями
- ${\tt Er}$ масса питательных элементов, вынесенных с урожаем (табл.5.5), кг.
- El масса питательных элементов, которые теряются в результате эрозии (табл.5.4), кг/га

Er R \times K, (5.3)

где

R- урожай основной продукции, т/га

K- коэффициент выноса питательных элементов одной тонной урожая, имея в виду основную и побочную продукцию (табл.5.5)

Таблица 5.3 Средний химический состав навоза и его фракций

Тип навоза	Форма навоза и его фракций 	C _I		 одержани массе 	е в 	Сумма NPK в тонне, кг
	 	Влаж- ность	N 	P2O5 	K20	
Крупно	С подстилкой	58	0.53	0.31	0.81	14.5
Рогатый	Без подстилки	90	0.30	0.17	0.37	8.4
CKOT	Твердая фракция	75	0.57	0.42	0.79	17.8
	Жидкая фракция	98	0.57	0.02	0.09	6.8
Свиньи	С подстилкой	60	0.807	0.53	0.52	18.5
	Без подстилки	94	0.23	0.13	0.08	4.4
	Твердая фракция	82	0.56	0.66	0.25	14.7
	Жидкая фракция	99	0.06	0.03	0.05	1.4
Овцы	С подстилкой	45	1.04	0.45	1.43	29.2
	Твердая фракция	53	1.06	0.43	1.10	25.9
Птицы	С подстилкой	46	1.53	1.44	1.00	39.7
	Твердая фракция	52	1.85	1.29	0.92	4.06
	Жидкая фракция	99	0.14	0.03	0.09	2.6

Таблица 5.4

Потери питательных элементов на пахотных почвах в результате эрозионных процессов (среднегодовое), кг/га

Степень эрозии почв	Элемент	Пропашные	е Густо за-
	плодородия	культуры	сеянные
			культуры
Слабо эродированные	Азот	30	12
	Фосфор	16	6
	Калий	332	131
Средне эродированные	Азот	52	21
	Фосфор	25	10
	Калий	619	256
Сильно эродированные	Азот	80	38
	Фосфор	37	18
	Калий	1107	529

Таблица 5.5 ынос азота, фосфора и калия 1 тонны урожая сельхоз

Вынос	asor	ra,	фосфор	pa	И	калия	1	тонны	урожая	сель	EOX
культ	гур,	учи	итывая	И	В	спомога	aT6	ельную	продукц	цию,	КГ

C/x	СУММА					
			K20			
Озимая пшеница	33.0	12.0	24.0	69.0		
Озимый ячмень	30.0	10.0	24.0	64.0		
Летний ячмень	30.0	10.0	24.0	64.0		
Овес	30.0	13.0	29.0	72.0		
Кукуруза (зерно)	28.0	10.0	27.0	65.0		
			32.0			
Фасоль	40.0	140.0	20.0	74.0		
Вика (боб) и смеси						
вики	50.0	15.0	20.08	84.0		
Сорго	30.0	10.0	30.0	70.0		
			6.0			
Подсолнух			100.0			
Соя	64.9	19.5	79.6	134.0		
			60.8			
			9.5			
			3.9			
Корнеплоды кормовые			3.5			
Кукуруза (силос)						
Однолетние травы (сено)	21.0	6.5	23.8	51.3		
Однолетние травы						
(зеленная масса)	5.3	1.5	7.3	14.1		
Многолетние травы						
(сено)	30.3	6.0	28.1	64.4		
Многолетние травы						
(зеленная масса)						
Виноградники	6.5		6.7			
Плодовые деревья	2.3		2.0			
Пастбища и луга						

5.6. Пример. На поле (100га) урожай кукурузы на семена составляет 50 ц/га. Вынос питательных элементов с урожаем составляет на гектар - N140, P50, K135.

Определить ущерб в результате нарушения баланса питательных элементов.

Изучаются три варианта дозирования удобрений, имея одинаковый урожай. Случай 1. Были внесены 180 кг азота, 60 кг фосфора и 150 кг калия на 1 га кукурузы и баланс увеличился на 40 кг (180-140) по сравнению с максимально допустимым содержанием азота. Определено, что в почве в слое 0-100 см содержатся 170 кг азота в нитратной форме. Делаем вывод, что не было необходимости вносить азотные удобрения. Умножая 1.10 лея (табл.5.1) на 40 кг и на 100 га получаем ущерб 4400 леев, который должен быть возмещен.

Случай 2. Было внесено в почву на поле, предназначенном для кукурузы, N150, P150, K150 и в результате баланс фосфора стал выше по сравнению с допустимым на 100 кг (150-50). Учитывая, что в почве содержалось P2O5 5Mr/100 г (Мачигин), не было необходимости вносить фосфор. В результате нарушение баланса фосфора составляет 15300 леев (1.53 х 100 кг х 100 га).

Случай 3. Было внесено в почву на кукурузном поле N60, K150 и в результате баланс азота стал (остался) отрицательным на 80 кг (140-60) и фосфора на 50 кг по сравнению с допустимым. В результате анализа почвы установлено, что в слое 0-100 см содержалось всего 50 кг азота в форме

нитратов и P205 - 1,3мг/100г почвы в слое 0-30 см. Из этого следует, что были необходимы более высокие дозы азота и фосфора. В этом случае ущерб в результате нарушения баланса азота и фосфора в почве составляет 16450 леев/100 га (80 х 1.10 х 100) + (50 х 1.53 х 100).

- 6. МЕТОДИКА ОПРЕДЕЛЕНИЯ УЩЕРБА, НАНЕСЕННОГО ПОЧВЕННЫМ РЕСУРСАМ В РЕЗУЛЬТАТЕ НАРУШЕНИЯ ОПТИМАЛЬНОГО УРОВНЯ ПИТАТЕЛЬНОГО РЕЖИМА ПОЧВЫ
- 6.1. Методика определяет порядок вычисления ущерба, нанесенного почвенным ресурсам в результате нарушения оптимального уровня питательного режима почвы, и применения неаргументированных норм удобрений, сточных вод животноводческих комплексов и т.д.
- 6.2. Установлен минимальный уровень допустимого предела содержания питательных элементов почвы, то что позволит установить уровень загрязнения почвы с точки зрения ее деградации.

Минимальный промежуточный уровень предельно допустимого содержания питательных элементов в почве:

- 60 кг NO3 на га в слое 0-100 см. TOEA

Фосфор (Р2О5) - 1,5 мг по Мачигину и 5 мг по Чирикову на

100 г почвы в слое 0-30 см.

Калий (K2O) - 20 мг по Мачигину и 10 мг по Чирикову на 100 г почвы в слое 0-30 см.

6.3. Устанавливается максимальный уровень допустимого предела содержания питательных элементов в почве с целью определения степени загрязнения почвы в результате аккумуляции этих элементов.

Максимальный промежуточный уровень допустимого предела содержания питательных элементов в почве:

- 150 кг NO3 на га в слое почвы 0-100 см.

Фосфор (Р2О5) - 4,5 мг по Мачигину и 15 мг по Чирикову на

100 г почвы в слое 0-30 см.

Калий (K2O) - 40 мг по Мачигину и 20 мг по Чирикову на 100 г почвы в слое 0-30 см.

6.4. Режим питания почвы считается оптимальным тогда, содержание питательных элементов в почве находится между минимальным и максимальным предельно допустимым пределом для:

- от 60 до 150 кг (NO3) на га в слое почвы 0-100 см;

- от 1.5 до 4.5 мг по Мачигину и от 5 до 15 Фосфор Р202 мг по Чирикову на 100 г почвы в слое 0-30

- от 20 до 40 мг по Мачигину и от 10 до 20 Калий К2О мг Чиркову на 100 г почвы в слое 0-30 см.

В случае, когда содержание питательных элементов в почве меньше минимального уровня или больше максимального уровня предельно допустимого содержания (ПДС), земельным ресурсам наносится определенный ущерб из-за снижения плодородия или перенасышения накопленными элементами.

Неаргументированное применение удобрений в большинстве случаев способствует нарушению оптимального питательного почвенного режима, а значит, и экологически уравновешенного состояния.

- 6.5. В результате паспортизации животноводческих установлено, что сточные воды сильно минерализованы. Они не могут быть использованы для орошения в соответствующих дозах, потому что могут спровоцировать засоление или ощелачивание почвы. Доказано, что по содержанию питательных элементов эти сточные воды можно использовать как органические удобрения, но применение этих вод в неаргументированно высоких дозах в большинстве случаев способствует аккумуляции в почве питательных элементов (P205 , K20, N03) и, значит, ее загрязнения. Для устранения отрицательных результатов, современные нормы по применению сточных вод на орошаемых полях определяются конкретно в каждом случае исходя из химического содержания, особенностей почвы, сельхозкультур и
- 6.6. В тех случаях, когда были применены неаргументированно удобрения, сточные воды от живкомплексов, от промышленных и коммунальных

предприятий и нарушен оптимальный уровень питания почвы, определяется ущерб, нанесенный почвенным ресурсам.

- 6.7. Для определения ущерба, нанесенного почвенным ресурсам, необходимы следующие показатели:
 - площадь загрязненного участка, га;
 - общее содержание солей в почве, %;
- содержание подвижного фосфора в слое 0-30 см, мг/100 г почвы по Мачигину или Чиркову;
- содержание обменного калия в слое 0-30 см, мг/100 г почвы по Мачигину или Чиркову.

Таблица 6.1

Нормативы для определения ущерба причиненного почвенным ресурсам в результате нарушения допустимых пределов содержания питательных элементов в почве

Показатели Плодородия Почвы			Измере-	Допустимые лы содержан тательных э тов в по 	одной	
	0-20	FOCT 26423-85 26423-85	୍ଚ		0.3	88.8
Азот (нитраты) NO3 Подвижной фосфор (P2O5)	0-100 0-30	ГОСТ 26488-85 ГОСТ 26205-84 Мачигин	Кг/га мг на 100 г	60 1.5	150 4.5	0.65
Обменный калий	0-30	ГОСТ 26204-84 Чириков ГОСТ	почвы	5.0	15.0	37.0
(K2O)		26205-84 Мачигин ГОСТ 26204-84 Чириков	мг на 100 г почвы	10.0	20.0	43.0 82.0

- 6.9. Вычисление ущерба, нанесенного почвенным ресурсам, осуществляется, применяя нормативы из таблицы 6.1.
- 6.9.1. В случае, когда содержание питательного элемента в почве меньше минимального уровня (ПДС) элемента:

 $P = (ELAC - Ef) \times C \times S$

(6.1)

 $P = (Ef - ELAC) \times C \times S$,

(6.2)

где

Р - ущерб, лей;

ELAC - минимальный уровень (6.9.1) или максимальный (6.9.2) (ПДС) элемента;

- Ef содержание "de facto" элемента;
- С ущерб на единицу содержания питательного элемента меньше или больше ПДС;
 - S площадь поля с загрязненными почвами, га.
- В случае общего содержания солей в почве (табл.6.1) ущерб указан в 0.1% от общего содержания солей почвы.
- 6.10. Пример N 1. На поле площадью 50 га долгое время вносились фосфорные удобрения. В результате содержание подвижного фосфора

составило 7.2 мг P205 на 100 г почвы по Мачигину в слое 0-30 см. Определить ущерб, причиненный почвенным ресурсам в результате загрязнения. Это случай 8.9.2, когда содержимое "de facto" фосфора (7.2 мг) выше максимального уровня допустимого лимита содержимого (LAC N 4.5) и ущерб определяется по уравнению:

- $P = (Ef ELAC) \times C \times S N (7.2 4.5) \times 120 \times 50 = 16200 (лей).$
- 6.11. Пример N 2. На поле площадью 40 га были долго использовались отбросные сточные воды с высокой степенью минерализации от животноводческого комплекса и из-за использования неаргументированных норм общее содержание солей в слое 0-20 см достигло уровня в 0.5%, а содержание подвижного фосфора -5.5 мг на 100 г почвы по Мачигину в слое 0-30 см. Определить ущерб, причиненный почвенным ресурсам в результате загрязнения.

Решение. Это случай с двумя типами загрязнения почвы.

Определяем ущерб по каждому типу загрязнения отдельно.

- 6.11.1. Ущерб, причиненный почвенным ресурсам в результате засоления (случай 6.9.2.), когда общее содержание солей в почве (0.5%) превосходит LAC = 0.3%:
 - $P1 = (Ef ELAC) \times C \times S = (0.5 0.3) \times 88.8 \times 40 = 710$ (лей).
- 6.11.2. Ущерб, причиненный почвенным ресурсам в результате нерегламентирования оптимального режима содержания подвижного фосфора P205 (случай 6.9.2), когда содержание подвижного фосфора ($5.5 \, \mathrm{Mr}$) превосходит ПДС = $4.5 \, \mathrm{Mr}$:
 - $P2 = (Ef ELAC) \times C \times S = (5.5 4.5) \times 120 \times 40 = 4800$ (лей). Общий ущерб: P = P1 + P2 = 710 + 4800 = 5510 (лей).
- 6.12. Пример N 3. На поле площадью 50 га долгое время не были использованы удобрения и почва деградировала, содержание подвижного фосфора достигло уровень $2.8~\mathrm{mr}$ на $100~\mathrm{r}$ почвы по Чирикову в слое $0-30~\mathrm{cm}$. Определить ущерб, причиненный почвенным ресурсам в результате нарушения оптимального режима подвижного фосфора.

Решение: это случай 6.9.1, когда содержание подвижного фосфора $(2.8 \ \mathrm{mr})$ меньше минимально допустимого уровня (ПДС N 5 mr):

 $P = (ELAC - Ef) \times C \times S N (5 - 2.8) \times 37 \times 50 = 4050 (лей).$

7. МЕТОДИКА ОЦЕНКИ УЩЕРБА, ПРИЧИНЕННОГО ПОЧВЕННЫМ РЕСУРСАМ В РЕЗУЛЬТАТЕ ЭРОЗИИ

- 7.1. Методика устанавливает последовательность расчета ущерба, причиненного почвенным ресурсам в результате эрозии после таяния снега и проливных дождей.
- 7.2. Ущерб рассчитывается (вычисляется) исходя из стоимости объема эродированной почвы.
 - 7.3. Определение объема эродированной почвы.

Изучение объектов осуществляется после окончания таяния снега или ливневых дождей. На склоне на определенном расстоянии от черты водораздела, где уже заметно начало, измеряется вниз по склону $100 \, \text{м}$, и от этой точки перпендикулярно направлению склона осуществляется измерение размеров на $100 \, \text{м}$ (значит, $100 \, \text{x} \, 100 \, \text{м}$, квадрат, равный $1 \, \text{га}$).

Эти измерения осуществляются через каждые 100 м. Замеряется линейкой ширина и глубина размывов с точностью до 0.02 м. Средняя величина объема эродированной почвы, рассчитанная для самых характерных площадей склона, относится ко всей площади склона и служит для определения объема эродированной почвы на весь склон.

7.4.1. Ущерб определяется по уравнению:

 $P=V \times Q \times Ke \times S \times Kg$,

(7.1)

где

Р - ущерб, лей.

- V объем эродированной почвы, 1м3 .
- Q цена 1м3 плодородной почвы из поверхностного слоя, лей (таблица 4.8).
- Ке коррекционный коэффициент в зависимости от степени эрозии (таблица 5.3).
 - S площадъ участка, где почва эродирована, га.
- ${\rm Kg}$ коррекционный коэффициент в зависимости от гранулометрического состава (таблица 5.3).

7.4.2.

 $V = 100s/D, \tag{7.2}$

гле

- 100 расстояние вдоль склона между линиями определения размеров размывов, м;
 - S суммарная поперечная площадь на расстоянии в 100 м, м2;
- D коррекционный коэффициент исходя из формы поперечного среза промоин (в случае, когда поперечный срез имеет форму треугольника D=2, в случае, когда имеет форму прямоугольника D=1).

7.4.3.

 $S = L \times h, \tag{7.3}$

где

- L ширина долины, см.
- h глубина размыва, см.
- 7.4.4. Пример. На второй день после проливного дождя была установлена эрозия почвы на склоне площадью 20 га. Почва карбонатный чернозем, глинистый слабоэродированный. Определить ущерб, причиненный эрозией почвы. Согласно данным таблицы 5.3
 - Q = 104 лея, Ke = 0.8, Kg = 0.9.
- 7.4.5. Решение. Согласно схеме 7.1. считается количество размывов и определяются размеры, ширина и глубина каждого. Определено, что на линии длиной в $100\,\mathrm{M}$, перпендикулярной направлению склона, образовались $18\,\mathrm{pазмывов}$ со следующими параметрами: (знаменатель-ширина, числитель-глубина долины),

Поперечный срез размывов имеет условную форму треугольника, значит, $\pi = 2$.

- 7.4.6. Определяем площадь поперечного среза размыва и получаем результаты:
 - 50.4, 54.6, 74.8, 62.5, 25.2, 58.9, 27.0,
 - 29.5, 117.6, 182.5, 170.4, 212.3, 146.9, 238.3,
 - 247.1, 141.4, 158.1, 116.8 cm3.
 - 7.4.7 Суммарная поперечная площадь размыва
 - $S = 1 \times h = 0,21143 \text{ M2}.$
 - 7.4.8.
 - $V = 100 \times s/d = 100 \times 0,21143/2 = 10,57 \text{ m}3/ra.$
 - 7.4.9.
 - P = Vx Q x Ke x Kg x S = 10,57 x 104 x 0,8 x 0,9 x 20 = 15829 леев.

Ущерб, причиненный эрозией почвы на склоне площадью в 20 га, составляет 15829 леев.

- 8. МЕТОДИКА ОЦЕНКИ УЩЕРБА, ПРИЧИНЕННОГО ПОЧВЕННЫМ РЕСУРСАМ В РЕЗУЛЬТАТЕ ПРОЦЕССОВ АНТРОПОГЕННОЙ ДЕГРАДАЦИИ (ЗАСОЛЕНИЕ, ОСОЛОНЦЕВАНИЕ).
- 8.1. Методика устанавливает порядок расчета ущерба, причиненного почвенным ресурсам в результате засоления и осолонцевания.
- 8.2. Ущерб вычисляется исходя из стоимости почвенного покрова, который в процессе орошения частично потерял плодородие в результате засоления и осолонцевания.
- 8.3. Процесс засоления или осолонцевания почвы при орошении определяется экспертами соответствующих полей и потом оценивается степень деградирования. Изучение орошаемых полей осуществляется (насколько это возможно) осенью, когда почва достигает состояния равновесия после степени усадки, до осенней вспашки.
- 8.4. Параметры, необходимые для расчета ущерба, показаны в таблицах 8.1, 8.2, 8.3.

Площадь поля осолонцевания определяется на поле экспериментами. Толщина деградированного слоя определяется визуально в полевых условиях и в обязательном порядке уточняется после проведения лабораторных анализов. Степень засоления почвы определяется в результате анализа водного экстракта (ГОСТ -26428-85) (4), а степень осолонцевания — по относительному содержанию обменного натрия (Na%) от суммы (Ca+Mg+Na). Обменные катионы осолонцевания определяются по методу Пффеффера в случаях, когда почвы содержат CaSO4 или по методу Тасcher (M.,1990) (для незасоленных и карбонатных почв).

- 8.5. Ущерб вычисляется по уравнению:
- $P = \{Q \times Ks, z\} \times 100 \times h \times d \times S,$ rge (8.1)
- Р ущерб, лей.
- Q цена 1 тонны почвы, лей.
- Ks -коррекционный коэффициент для степени засоления или осолонцевания орощаемой почвы.
 - h -толщина засоленного или осолонцеватого слоя через орошение, см.
 - d -плотность засоленного и осолонцеватого слоя, д/см3.
- S -площадь деградированного поля в результате засоления или осолонцевания, га.
- 8.6. Пример. В результате орошения типичного глинистого чернозема с содержанием гумуса 4% со щелочной водой, почва стала слабо солонцетизированной на площади 5 га. Толщина солонцетизированного слоя -10 см, кажущаяся плотность равняется 1.20 г/см3. Определить ущерб, причиненный почвенным ресурсам.
 - 8.7. Решение. Согласно полевым исследованиям S = 5, h = 10, d = 1.20 Из таблицы 5.9 Q = 113, а из табл.8.1 Кs = 0.8, тогла
 - $P = \{113 (113 \times 0.8)\} \times 100 \times 10 \times 1.20 \times 5 = 135600 \text{ леев.}$
- В случае, когда орошение приводит к осолонцеванию и засолению почвы, одновременно учитываются оба коэффициента Ks и Kz.

Таблица 8.1 Значение степеней осолонцевания и засоления и

поправочные коэффициенты Ks и Kz для орошаемых почв

	Степень солноцеватости	Na, % из суммы обменных катионов	Ks
1.	Несолонцеватая	17	0.1
	Степень засоления	Содержание солей (плотный остаток), %	Kz
	Не солонцеватая	< 0.20	1.0
2.	Слабо солонцеватая	0.21 - 0.40	0.8
3.	Умеренно солонцеватая	0.41 - 0.60	0.6
4.	Сильно солонцеватая	0.61 - 0.90	0.3
5.	Очень сильно солонцеватая	> 0.90	0.1

9. МЕТОДИКА ОПРЕДЕЛЕНИЯ УЩЕРВА, ПРИЧИНЕННОГО ПОЧВЕННЫМ РЕСУРСАМ В РЕЗУЛЬТАТЕ ДЕГУМИФИКАЦИИ

- 9.1. Данная методика определяет последовательность вычисления ущерба, причиненного почвенным ресурсам в результате дегумификации.
 - 9.2. Дегумификация почв считается в следующих случаях:
- 9.3. Содержание гумуса в пахотном слое ниже минимально допустимого количества. Минимально допустимое количество гумуса в условиях Республики Молдова установлено на уровне 2% .
- 9.4. Содержание гумуса в пахотном слое уменьшилось по сравнению с показателем предыдущего цикла агрохимических исследований независимо от уровня содержания в почве.

- 9.5. Главным мероприятием, проводимое с целью восстановления содержания гумуса в почве, является внесение навоза. Для вычисления ущерба в результате дегумификации почв ограничиваются определением расходов (затрат) на внесение необходимого количества навоза для восстановления содержания гумуса. Мероприятия по восстановлению содержания гумуса могут включать разные способы для определения ущерба.
 - 9.6. Ущерб вычисляется по уравнению:
 - $P = 40 (Hs-Hf)/0.0297 \times C \times S, (9.1)$
- P ущерб, причиненный почвенным ресурсам в результате дегумификации, лей;
- Hs содержание гумуса из пахотного слоя (0-30 см), в предыдущем цикле агрохимических исследований, или минимально допустимого содержания гумуса (МДК), %;
- ${\tt Hf}$ содержание "de facto" гумуса в пахотном слое в момент исследования, %;
- C цена 1 тонны навоза, включительно производство, транспортировка и внесение в почву, лей;
 - S площадь полей с дегумифицированными почвами, га;
 - 0.0297 коэффициент перевода массы навоза в гумус;

гле

- 29.7 количество гумуса, которое формируется из 1 тонны навоза, кг.
- 9.7. Пример. Установлено, что среднее содержание гумуса в почве пахотного слоя в данный момент составляет 1.8%. Площадь поля 50 га. Определить ущерб, причиненный почвенным ресурсам в результате дегумификации на уровне ниже допустимого. Предел содержания гумуса (LAC=2%). Цена 1 тонны навоза, включая все расходы в 1995 г равнялась 5.00 леев.

Решение:

Ущерб, причиненный почвенным ресурсам в результате дегумификации, составляет 67235 леев.