# Научно-исследовательский институт коммунального водоснабжения и очистки воды НИИ КВОВ

## РЕКОМЕНДАЦИИ

ГСИ. РАСХОД СТОЧНОИ ЖИДКОСТИ В БЕЗНАПОРНЫХ ТРУБОПРОВОДАХ МЕТОДИКА ВЫПОЛНЕНИЯ ИЗМЕРЕНИЙ МИ 2220-96

## ИНФОРМАЦИОННЫЕ ДАННЫЕ

РАЗРАБОТАНА Научно-исследовательским институтом коммунального водоснабжения и очистки воды

ИСПОЛНИТЕЛИ: канд. техн. наук Т.М.Колискор, канд. техн. наук В.М.Трескунов

СОИСПОЛНИТЕЛИ: канд. техн. наук Л.И.Чесаков, канд. техн. наук М.Н.Шафрановский

УТВЕРЖДЕНА И ЗАРЕГИСТРИРОВАНА ВНИИМС 1 октября 1996 г.

## СОДЕРЖАНИЕ

|                                    | Стр |
|------------------------------------|-----|
| 1. Общие положения                 | 4   |
| 2. Калибровка трубопровода и лотка | . 5 |
| 3. Аппаратурное оформление метода  | 11  |
| 4. Техника безопасности            | 14  |

#### РЕКОМЕНДАЦИИ

ГСИ. Расход сточных вод в безнапорных трубопроводах Методика выполнения измерений МИ 2220-96 Срок введения с 1.10.96г.

Настоящая рекомендация устанавливает методику выполнения измерений расхода сточных вод в безнапорных трубопроводах диаметром от 0,1 до 3,0 м с поперечным сечением круговой формы и в лотках U-образной формы с полукруглым сечением.

Настоящую рекомендацию применяют для организации учета, в том числе коммерческого, сточных вод в системах канализации и водоснабжения.

#### 1. ОБЩИЕ ПОЛОЖЕНИЯ.

Метод измерений расхода сточных вод в безнапорных канализационных коллекторах основан на зависимости расхода воды от уровня заполнения трубопровода или измерительного лотка.

Для обеспечения возможности автоматических измерений расхода в безнапорных трубопроводах и лотках выполняют их калибровку по методу, разработанному НИИ КВОВ.

Суть метода состоит в измерениях скорости движения потока, уровня заполнения трубопровода или лотка, при котором выполнялись измерения скорости, в расчете на основе полученных результатов градуировочной характеристики водовода.

Погрешность автоматических измерений расхода складывается из погрешности калибровки трубопровода или лотка и погрешности расходомера

$$\delta = \sqrt{\delta_1^2 + \delta_2^2}$$

где  $\delta$  - погрешность автоматических измерений;

 $\delta_1$  - погрешность калибровки;

 $\delta_2$  - погрешность расходомера-счетчика

Допускается осуществлять калибровку трубопроводов и лотков расчетным методом с использованием известной формулы Шези. Основными исходными данными для такого расчета являются строительный уклон трубопровода и коэффициент шероховатости стенок. Однако уклон, указанный в строительной документации, очень часто не совпадает с реальным, а коэффициент шероховатости стенок изменяется в процессе эксплуатации. Поэтому калибровка трубопроводов и лотков расчетным методом дает менее точные результаты, чем экспериментальным методом НИИ КВОВ.

## 2. КАЛИБРОВКА ТРУБОПРОВОДА И ЛОТКА

- 2.1. Рекомендация составлена применительно к безнапорным трубопроводам с замкнутым поперечным сечением круглой формы или полукруглым сечением (лоток U-образной формы), транспортирующим сточную жидкость, и позволяет выполнять калибровку с погрешностью, не превышающей 2.5%.
- 2.2. Условия выполнения измерений, при которых достигается необходимая погрешность измерений (не более 4.0%):
- а) дно трубопровода не должно подвергаться заилению или отложению осадка (допускаемая толщина осадка (ила) указана в табл.1.

Таблица 1

| Диаметр      | 0,1 | 0,2 | 0,3 | 0,4 | 0,5 | 0,6 | 0,7 | 0,8 | 0,9 | 1,0 | 1,1- | 1,6- | 2,1- | 2,6- |
|--------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|------|------|------|------|
| трубы, м     |     |     |     |     |     |     |     |     |     |     | 1,5  | 2,0  | 2,5  | 3,0  |
| Допускаемая  |     |     |     |     |     |     |     |     |     |     |      |      |      |      |
| толщина слоя | 1   | 2   | 2   | 5   | 5   | 8   | 8   | 10  | 10  | 12  | 15   | 20   | 25   | 30   |
| осадка, мм   |     |     |     |     |     |     |     |     |     |     |      |      |      |      |

б) поток должен быть установившимся, для чего длина прямого участка трубопровода, имеющего постоянный уклон и диаметр без боковых присоединений перед измерительным сечением, должна быть *не менее 20H*, а после него – *не менее 10H* (*H* – максимальный уровень заполнения).

При несоблюдении этих требований метрологические характеристики уточняют на основе проводимых на объекте исследований;

- в) измерительное сечение, т.е. сечение, в котором располагаются приборы для измерения скорости и уровня, выбирают в середине трубопровода или лотка;
- г) в измерительном сечении и вблизи него не должно быть местных выступов, закладных деталей и других предметов, вызывающих искажение уровня за счет местных возмущений потока.
- 2.3. Для калибровки трубопровода и измерительного лотка используют одноточечный метод определения расхода сточной жидкости. Этот метод основан на известной зависимости распределения скоростей в сечении трубопровода от основных параметров: диаметра и уровня заполнения;
- 2.4. Методику определения расхода сточной жидкости реализуют двумя способами:
  - по измерениям средней скорости потока ( $\mathit{Vcp}$ ) и расчете расхода по формуле

$$Q = \omega V c p , \qquad (1)$$

где  $\omega$  - площадь сечения потока (определяется по формулам (5) и (7) соответственно для лотков круглого и U-образного сечения;

- по измерениям максимальной скорости (Vmax) и расчете расхода по формуле

$$Q = \omega NV max , \qquad (2)$$

Значения N определяют по табл.2.

Выбор способа зависит от диаметра трубопровода и его наполнения.

Первый способ рекомендуется использовать, когда расстояние максимальной скорости от поверхности жидкости меньше, чем 1,5 диаметра гидрометрической вертушки. В остальных случаях целесообразно использовать второй способ, так как измерение максимальной скорости проводят более точно, чем любой другой скорости в сечении потока, и, кроме того, при измерениях на большем расстоянии от дна лотка существует меньшая вероятность налипания загрязнений на вертушку.

Для практического использования метода составлены таблицы 2 и 3, позволяющие определить необходимые гидравлические параметры потока по результатам измерений диаметра трубопровода и наполнения лотка.

- 2.5. Требования к измерительному оборудованию:
- для измерений уровня допускается применять следующие средства: мерные иглы, крючковые рейки, пьезометрические трубки, водомерные трубки, водомерные рейки и т.п.;
  - скорость потока измеряют при помощи гидрометрических вертушек:
  - для потоков глубиной менее 0,3 м : вертушки типа X-6M, ГР-55, M-11, ГР-96,
  - для потоков глубиной более 0,3 м вертушки ГР-21М, ГР-99, ИСТ.
  - 2.6. Порядок выполнения измерений и расчетов.
- 2.6.1. Мерной штангой или стальной рулеткой измеряют горизонтальный диаметр трубы или лотка не менее, чем в трех сечениях. По среднему арифметическому из этих значений принимают значение D.
- 2.6.2. Измеряют уровень заполнения. Для этого с помощью мерной иглы или другого устройства измеряют расстояние от выбранной неподвижной базы до

-9-

дна лотка, а затем до поверхности жидкости. Уровень жидкости в лотке H определяют, как разность этих измерений.

При небольших скоростях течения (менее 0,3 м/с) допускаются прямые измерения уровня путем погружения измерительных средств, предварительно натертых мелом, в жидкость.

- 2.6.3. По табл.2 находят ординату максимальной скорости h,, соответствующую фактическим величинам D и H/D.
  - 2.6.4. Определяют (H h).
- 2.6.5. При  $(H-h) \le 1.5$  диаметра гидрометрической вертушки расход определяют по средней скорости.

Для этого:

- вычисляют ординату средней скорости потока *Үср* по формуле:

$$Ycp = 0.414R \tag{3},$$

где R - гидравлический радиус сечения водовода, м.

Для водоводов круглого сечения и лотков U-образной формы при  $H/D \le 0.5$ 

$$R = \overline{R} D \tag{4}$$

где  $\overline{R}$  - относительный гидравлический радиус, определяемый по табл.3, вычисляют площадь живого сечения  $\omega$  по формуле

$$\omega = \omega D^2 \tag{5}$$

где  $\omega$  - относительная площадь живого сечения, определяемая по табл.3.

Для лотков U-образной формы при H/D>0,5 гидравлический радиус определяют по формуле:

$$R_{U} = \frac{\omega_{U}}{\chi_{U}} \tag{6}$$

где  $\,\omega_{\!\scriptscriptstyle U}\,$ - площадь живого сечения лотка, определяемая по формуле:

$$\omega_U = 0.3927 D^2 + D(H - \frac{D}{2}) \tag{7}$$

 $\chi_U$  - смоченный периметр лотка —

$$\chi_U = 1,571D + 2(H - \frac{D}{2}) \tag{8}$$

На штанге с мерными делениями закрепляют вертушку на расстоянии Ycp от конца и измеряют скорость Vcp.

Расход Q вычисляют по формуле (1).

2.5.6. При (H-h)>1,5 диаметра гидрометрической вертушки расход определяют также по максимальной скорости.

**Примечание** . Для лотков U-образной формы определение расхода по максимальной скорости выполняют только при соотношении  $\frac{H}{D} \le 0,5$  .

#### Для этого:

- на штанге с мерными делениями закрепляют вертушку на расстоянии h от конца;
- измеряют Vmax на высоте h от дна лотка;
- по табл.2 находят значение N;
- по формуле (5) определяют площадь живого сечения  $\omega$ ;
- вычисляют расход Q по формуле (2);
- измерения скоростей в каждой из указанных точек проводят не менее трех раз, затем вычисляют среднее значение.
- 2.7. Градуировочную характеристику водовода зависимость расхода от уровня определяют по графикам (рис.1, 2) соответственно для водоводов круглого и U-образного сечения. Определяют коэффициент  $A_0$ , соответствующий измеренному наполнению,

 $A_0 = Q_0/Q_{max},$ 

где  $Q_{\theta}$  – расход, вычисленный на основании измерений, при данном наполнении;

 $Q_{max}$  - расход при максимальном наполнении.

По величине  $Q_{\theta}$  , установленной для данного коллектора, и величине  $A_{\theta}$  , определенной по графику в зависимости от наполнения, можно установить расход при любом наполнении.

На основании полученной характеристики градуируют расходомер, который будет использоваться для автоматического учета.

#### 3. АППАРАТУРНОЕ ОФОРМЛЕНИЕ МЕТОДА

3.1. Для автоматических измерений расхода и объема сточных вод наиболее целесообразно использовать акустические бесконтактные расходомеры типа ЭХО-Р.

**Принцип действия** расходомера заключается в бесконтактном измерении уровня жидкости, протекающей в водоводе, и пересчете его в мгновенное значение расхода с последующим интегрированием.

Расходомер включает в себя электронный блок ППИ-Р и акустический преобразователь АП-11 или АП-13.

АП-11 предназначен для работы в диапазонах изменения уровня до 2 м, АП-13 – до 0.3 м.

Акустический преобразователь устанавливают над лотком и соединяют кабелем длиной до 100 м с электронным блоком. Электронный блок устанавливают в отапливаемом помещении. Для измерения расхода в безнапорных трубопроводах акустический преобразователь помещают в специальный звуковод.

Расходомер поверяют по МИ 2251-93 один раз в год.

Основные технические характеристики расходомера следующие:

Основная погрешность, %  $\pm 3$  Выходной сигнал :

- при измерениях объемного расхода, мА 0-5
- при измерениях количества — показания счетчика, м³ Напряжение питания, В 220 Температура окружающего воздуха, °C: для акустического преобразователя -30 - +50 для электронного блока 5 - 50 Расходомер зарегистрирован в Государственном реестре средств

измерений

### 4. ТЕХНИКА БЕЗОПАСНОСТИ

Производство работ по определению расходов сточной жидкости в системах канализации осуществляют в соответствии с действующими «Правилами техники безопасности по эксплуатации систем водоснабжения и водоотведения населенных мест». М., Стройиздат, 1990.

Перед спуском людей в колодец, где проводят измерения, проверяют его загазованность лампой ЛБВК.

# Значения N и h для трубопроводов круглого сечения

| D, мм | 200    | )  | 300    |     | 400    |     | 500    |     |  |
|-------|--------|----|--------|-----|--------|-----|--------|-----|--|
| H/D   | N      | h  | N      | h   | N      | h   | N      | h   |  |
| 0,10  | 0,8537 | 18 | 0,8967 | 19  | 0,8563 | 36  | 0,8513 | 45  |  |
| 0,15  | 0,8440 | 25 | 0,8571 | 39  | 0,8545 | 52  | 0,8609 | 65  |  |
| 0,20  | 0,8501 | 35 | 0,8549 | 49  | 0,8608 | 66  | 0,8658 | 84  |  |
| 0,25  | 0,8632 | 39 | 0,8611 | 59  | 0,8658 | 80  | 0,8672 | 101 |  |
| 0,30  | 0,8575 | 45 | 0,8632 | 68  | 0,8675 | 92  | 0,8698 | 116 |  |
| 0,35  | 0,8673 | 50 | 0,8658 | 77  | 0,8700 | 104 | 0,8718 | 131 |  |
| 0,40  | 0,8603 | 57 | 0,8709 | 84  | 0,8721 | 114 | 0,8739 | 144 |  |
| 0,45  | 0,8680 | 59 | 0,8720 | 91  | 0,8741 | 123 | 0,8740 | 156 |  |
| 0,50  | 0,8721 | 63 | 0,8715 | 97  | 0,8742 | 132 | 0,8749 | 167 |  |
| 0,55  | 0,8701 | 66 | 0,8737 | 103 | 0,8743 | 140 | 0,8757 | 178 |  |
| 0,60  | 0,8740 | 69 | 0,8740 | 108 | 0,8753 | 147 | 0,8756 | 187 |  |
| 0,65  | 0,8742 | 72 | 0,8738 | 112 | 0,8755 | 153 | 0,8756 | 195 |  |
| 0,70  | 0,8727 | 75 | 0,8742 | 116 | 0,8749 | 159 | 0,8726 | 202 |  |
| 0,75  | 0,8742 | 76 | 0,8739 | 120 | 0,8743 | 164 | 0,8747 | 209 |  |
| 0,80  | 0,8723 | 78 | 0,8726 | 122 | 0,8720 | 168 | 0,8729 | 215 |  |

## Продолжение табл.2

| D, мм |        | 600 |        | 700 |        | 800 |        | 900 |        | 1000 |  |  |
|-------|--------|-----|--------|-----|--------|-----|--------|-----|--------|------|--|--|
| H/D   | N      | h   | N      | h   | N      | h   | N      | h   | N      | h    |  |  |
| 0,10  | 0,8571 | 54  | 0,856  | 64  | 0,8600 | 73  | 0,8608 | 82  | 0,8610 | 91   |  |  |
| 0,15  | 0,8609 | 79  | 0,8646 | 92  | 0,8651 | 105 | 0,8656 | 119 | 0,8663 | 132  |  |  |
| 0,20  | 0,8671 | 101 | 0,8668 | 118 | 0,8679 | 135 | 0,8690 | 153 | 0,8730 | 170  |  |  |
| 0,25  | 0,8698 | 121 | 0,8703 | 142 | 0,8718 | 163 | 0,8723 | 184 | 0,8703 | 206  |  |  |
| 0,30  | 0,8718 | 141 | 0,8723 | 165 | 0,8730 | 189 | 0,8741 | 214 | 0,8749 | 238  |  |  |
| 0,35  | 0,8730 | 158 | 0,8742 | 186 | 0,8750 | 213 | 0,8761 | 241 | 0,8767 | 269  |  |  |
| 0,40  | 0,8722 | 179 | 0,8754 | 205 | 0,8764 | 236 | 0,8751 | 266 | 0,8776 | 297  |  |  |
| 0,45  | 0,8752 | 189 | 0,8762 | 223 | 0,8774 | 256 | 0,8779 | 290 | 0,8786 | 323  |  |  |
| 0,50  | 0,8752 | 203 | 0,8773 | 239 | 0,8778 | 275 | 0,8783 | 311 | 0,8790 | 348  |  |  |
| 0,55  | 0,8770 | 216 | 0,8773 | 254 | 0,8780 | 292 | 0,8787 | 331 | 0,8791 | 370  |  |  |
| 0,60  | 0,8769 | 227 | 0,8773 | 267 | 0,8781 | 308 | 0,8778 | 352 | 0,8791 | 390  |  |  |
| 0,65  | 0,8766 | 237 | 0,8773 | 280 | 0,8777 | 323 | 0,8782 | 366 | 0,8787 | 409  |  |  |
| 0,70  | 0,8761 | 246 | 0,8766 | 291 | 0,8771 | 335 | 0,8775 | 380 | 0,8779 | 426  |  |  |
| 0,75  | 0,8752 | 255 | 0,8755 | 301 | 0,8761 | 347 | 0,8765 | 394 | 0,8769 | 441  |  |  |
| 0,80  | 0,8734 | 262 | 0,8739 | 309 | 0,8761 | 357 | 0,8748 | 405 | 0,8753 | 454  |  |  |

# Продолжение табл.2

| D, мм | 1200   |     | 1400   | 00 1500 |        |     | 1600   |     | 2000   |     |
|-------|--------|-----|--------|---------|--------|-----|--------|-----|--------|-----|
| H/D   | N      | h   | N      | h       | N      | h   | N      | h   | N      | h   |
| 0,10  | 0,8629 | 110 | 0,8650 | 129     | 0,8660 | 138 | 0,8663 | 147 | 0,8685 | 185 |
| 0,15  | 0,8685 | 159 | 0,8702 | 186     | 0,8706 | 200 | 0,8715 | 213 | 0,8732 | 258 |
| 0,20  | 0,8720 | 205 | 0,8731 | 240     | 0,8740 | 258 | 0,8746 | 275 | 0,8763 | 346 |
| 0,25  | 0,8743 | 248 | 0,8758 | 290     | 0,8762 | 312 | 0,8767 | 333 | 0,8784 | 419 |
| 0,30  | 0,8763 | 288 | 0,8775 | 337     | 0,8780 | 362 | 0,8784 | 386 | 0,8801 | 487 |
| 0,35  | 0,8778 | 325 | 0,8777 | 381     | 0,8794 | 409 | 0,8798 | 437 | 0,8812 | 550 |
| 0,40  | 0,8788 | 359 | 0,8798 | 422     | 0,8803 | 453 | 0,8806 | 484 | 0,8820 | 610 |
| 0,45  | 0,8797 | 391 | 0,8805 | 459     | 0,8809 | 494 | 0,8810 | 529 | 0,8825 | 666 |
| 0,50  | 0,8799 | 421 | 0,8809 | 494     | 0,8812 | 531 | 0,8815 | 568 | 0,8827 | 717 |
| 0,55  | 0,8801 | 448 | 0,8809 | 527     | 0,8812 | 566 | 0,8816 | 606 | 0,8827 | 765 |
| 0,60  | 0,8799 | 473 | 0,8806 | 557     | 0,8810 | 598 | 0,8813 | 640 | 0,8824 | 809 |
| 0,65  | 0,8797 | 494 | 0,8802 | 584     | 0,8805 | 628 | 0,8808 | 672 | 0,8818 | 850 |
| 0,70  | 0,8787 | 517 | 0,8793 | 609     | 0,8799 | 655 | 0,8799 | 701 | 0,8809 | 887 |
| 0,75  | 0,8776 | 535 | 0,8782 | 631     | 0,8784 | 679 | 0,8787 | 727 | 0,8796 | 921 |
| 0,80  | 0,8759 | 552 | 0,8765 | 651     | 0,8767 | 701 | 0,8770 | 751 | 0,8779 | 952 |

. Таблица 3  $\label{eq:definition}$  Относительные значения  $\varpi$  и  $\overline{R}$  для водовода круглого сечения

| H/D  | $\frac{\overline{\omega}}{\omega}$ | $\overline{R}$ |
|------|------------------------------------|----------------|
| 0,10 | 0,04088                            | 0,0635         |
| 0,15 | 0,07388                            | 0,0929         |
| 0,20 | 0,1118                             | 0,1206         |
| 0,25 | 0,1536                             | 0,1466         |
| 0,30 | 0,1982                             | 0,1709         |
| 0,35 | 0,2450                             | 0,1935         |
| 0,40 | 0,2934                             | 0,2142         |
| 0,45 | 0,3428                             | 0,2331         |
| 0,50 | 0,3927                             | 0,2500         |
| 0,55 | 0,4426                             | 0,2649         |
| 0,60 | 0,4920                             | 0,2776         |
| 0,65 | 0,5404                             | 0,2881         |
| 0,70 | 0,5872                             | 0,2962         |
| 0,75 | 0,6319                             | 0,3017         |
| 0,80 | 0,6736                             | 0,3042         |
| 0,85 | 0,7115                             | 0,3033         |
| 0,90 | 0,7445                             | 0,2980         |
| 0,95 | 0,7707                             | 0,2865         |
| 1,00 | 0,7854                             | 0,2500         |

# Зависимость расхода жидкости от ее уровня в водоводе круглого сечения

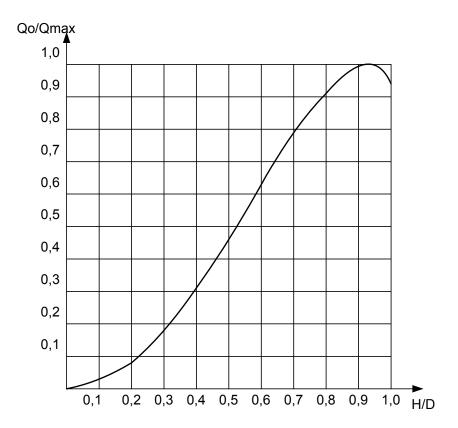
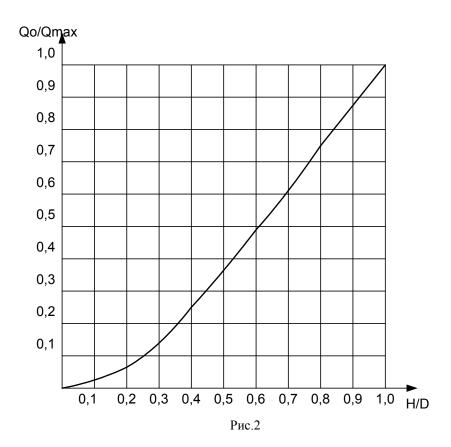




Рис.1

# Зависимость расхода жидкости от ее уровня в в лотке U-образной формы



-14-

-15-