КОАКСИАЛЬНЫЕ И СИММЕТРИЧНЫЕ КАБЕЛИ СВЯЗИ

20.1. НОМЕНКЛАТУРА

Коаксиальные и симметричные кабели дальней связи предназначены для передачи телефонных разговоров, телеграмм, фототелеграмм, телевизионных и радиовещательных программ. По назначению кабели дальней связи делят на три группы: магистральные, зоновые и сельские.

Магистральные кабельные линии общесоюзного значения связывают Москву с республиканскими, краевыми и областным центрами, а также последние между собой. Зоновые кабельные линии связывают областные центры с районными, районные между собой, а также образуют внутриреспубликанские и внутрикраевые (областные) линии, не имеющие областного деления. Сельские кабельные линии связывают районный центр с сельскими советами, совхозами, колхозами, промышленными предприятиями и другими организациями района.

Перечень основных марок кабелей дальней связи приведен в табл. 20.1, а области их применения - в табл. 20.2. Кабельные линии дальней связи используют преимущественно путем уплотнения каналов при частоте выше $12~\mathrm{k}\Gamma\mathrm{u}$ (табл. 20.3). Временно используют эти линии также для связи при низких (до $10~\mathrm{k}\Gamma\mathrm{u}$) частотах без уплотнения.

Таблица 20.1. Перечень основных марок кабелей дальней связи

Марка (код ОКП)	Кабель	ГОСТ, ТУ			
Коаксиальные	Коаксиальные				
ВКАП (3571450400)	С пористой ПЭ изоляцией с алюминиевым внешним проводником в ПЭ оболочке внутризоновый на частоту до 1,5 МГц	TY 16.505.389- 78			
ВКПАП-10 (3571410201)	То же на частоту до 10 МГц	ТУ 16.705.193- 81			
ВКПАПБ (3571450700)	То же на частоту до 1,5 МГц с защитным покровом Б	ТУ 16.505.389- 78			
ВКПАПБ-10 (3571410501)	То же на частоту до 10 МГц	ТУ 16.705.193- 81			
ВКПАПБГ (3571450900)	То же на частоту до 1,5 МГц с защитным покровом БГ	ТУ 16.505.389- 78			
ВКПАПБГ-10 (3571410701)	То же на частоту до 10 МГц	ТУ 16.705.193- 81			
ВКПАПБШп (3571450800)	То же на частоту до 1,5 МГц с защитным покровом типа БШп	ТУ 16.505.389- 78			
ВКПАПБШп-10 (3571410601)	То же на частоту до 10 МГц	ТУ 16.705.193- 81			
ВКПАПКШп (3571453000)	То же на частоту до 1,5 МГц с защитным покровом типа КШп	ТУ 16.505.389- 78			
ВКПАПКШп-10 (3571410901)	То же на частоту до 10 МГц	ТУ 16.705.193- 81			
ВКПАПСтШп (3571451000)	То же, что и ВКПАП, со стальной гофрированной броней в ПЭ шланге	ТУ 16.505.389- 78			
ВКПАПСтШп-10 (3571410801)	То же на частоту до 10 МГц	ТУ 16.705.193- 81			
ВКПАПт (3571450500)	То же, что и ВКПАП, со стальным несущим тросом	ТУ 16.505.389- 78			
ВКПАПт-10 (3571410301)	То же на частоту до 10 МГц	ТУ 16.705.193- 81			
ВКПАПут (3571450600)	То же на частоту до 1,5 МГц с усиленным стальным несущим				

	тросом			
ВКПАПут-10 (3571410401)	То же на частоту до 10 МГц	ТУ 16.705.193- 81		
КМАБп-4 (3571451300)	С четырьмя коаксиальными парами в алюминиевой оболочке с защитным покровом типа Бп магистральный на частоту до 25 МГц			
КМАБп-4-60 (3571452700)	То же на частоту до 60 МГц	ТУ 16.705.122- 80		
КМАБпГ-4 (3571451401)	То же на частоту до 25 МГц с защитным покровом типа БпГ	ΓΟCT 10971- 78 TУ 16.705.122-80		
КМАБпГ-4-60 (3571452801)	То же на частоту до 60 МГц	ТУ 16.705.122- 80		
КМАБпШп-4 (3571451201)	То же на частоту до 25 МГц с защитным покровом типа БпШп	ГОСТ 10971- 78		
КМАБпШп-4-60 (3571452601)	То же на частоту до 60 МГц	ТУ 16.705.122- 80		
КМАШп-4 (3571451101)	То же на частоту до 25 МГц с защитным покровом типа Шп	ГОСТ 10971- 78		
КМАШп-4-60 (3571452501)	То же на частоту до 60 МГц	ТУ 16.705.120- 80		
КМАКпШп-4 (3571451501)	То же на частоту до 25 МГц с защитным покровом типа КпШп	ГОСТ 10971- 78		
КМАКпШп-4-60 (3571452901)	То же на частоту до 60 МГц	ТУ 16.705.122- 80		
КМБ-4 (3571440201)	То же на частоту до 25 МГц в свинцовой оболочке с защитным покровом типа Б			
КМБ-8/6 (3571440901)	То же с 8 нормальными и 6 малогабаритными парами	ТУ 16.505.815- 75		
КМБГ-4 (3571440301)	То же с 4 коаксиальными парами с защитным покровом типа БГ	ГОСТ 10971- 78		
КМБГ-4-60 (3571444101)	То же на частоту до 60 МГц	ТУ 16.705.122- 80		
КМБГ-8/6 (3571441001)	То же с 8 нормальными и 6 малогабаритными парами на часто	КМБл-4 (3571440401)	То же с 4 коаксиальными парами на частоту до 25 МГц с защитным покровом Бл	
КМБл-8/6 (3571441101)	То же с 8 нормальными и 6 малогабаритными парами на частоту до 25 МГц	ТУ 16.505.815- 80		
КМБл-8/6-60 (3571444701)	То же на частоту до 60 МГц	ТУ 16.705.122- 80		
КМБп-4 (3571442701)	То же с 4 коаксиальными парами на частоту до 25 МГц с защитным покровом Бп			
КМБп-4-60 (3571443801)	То же на частоту до 60 МГц	ТУ 16.705.122- 80		
КМБпШп-4-60 (3571444001)	То же на частоту до 60 МГц	-		
КМБШп-4 (3511442801)	То же на частоту до 25 МГц с защитным покровом типа БШп	ГОСТ 10971- 78		
КМБШп-4-60 (3571443901)	То же на частоту до 60 МГц	ТУ 16.705.122- 80		

КМГ-4 (3571440101)	То же на частоту до 25 МГц без защитного покрова	ГОСТ 10971- 78	
КМГ-4-60 (3571443501)	То же на частоту до 60 МГц	ТУ 16.705.122- 80	
КМГ-8/6 (3571440801)	То же с 8 нормальными и 6 малогабаритными парами на частоту до 25 МГц	TY 16.505.815- 75	
КМГ-8/6-60 (3571444501)	То же на частоту до 60 МГц	ТУ 16.705.122- 80	
КМГШп-4 (3571442301)	То же с 4 коаксиальными парами на частоту до 25 МГц с защитным покровом Шп		
КМГШп-4-60 (3571443601)	То же на частоту до 60 МГц	ТУ 16.705.122- 80	
KMK-4 (3571443601)	То же на частоту до 25 МГц с защитным покровом типа К	ГОСТ 10971- 78	
KMK-4-60 (3571444201)	То же на частоту до 60 МГц	ТУ 16.705 122- 80	
KMK-8/6 (3571441201)	То же с 8 нормальными и 6 малогабаритными парами на частоту до 25 МГц	ТУ 16.505.815- 75	
KMK-8/6-60(3571444801)	То же на частоту до 60 МГц	ТУ 16.705.122- 80	
КМКл-4 (3571440701)	То же с 4 коаксиальными парами на частоту до 25 МГц с защитным покровом Кл		
КМКл-4-60 (3571444301)	То же на частоту до 60 МГц	ТУ 16.705.122- 80	
КМКл-8/6-60 (3571444901)	То же с 8 коаксиальными парами и 6 малогабаритными на частоту до 60 МГц	То же	
КМКпШп-4 (3571442901)	То же на частоту до 25 МГц с защитным покровом типа КпШп	ГОСТ 10971- 78	
КМЭБ-4 (3571480101)	То же, что и КМБ-4, но в двойной алюминиево-свинцовой оболочке	ГОСТ 10971- 78	
КМЭБл-4 (3571480201)	То же с защитным покровом Бл	То же	
КМЭБл-4-60 (3571480801)	То же на частоту до 60 МГц	ТУ 16.705.122- 80	
КМЭБп-4 (3571480401)	То же на частоту до 25 МГц с защитным покровом Бп	ГОСТ 10971- 78	
КМЭБп-4-60 (3571480901)	То же на частоту до 60 МГц	ТУ 16.705.122- 80	
КМЭБпШп-4 (3571480501)	То же на частоту до 25 МГц с защитным покровом БпШп	ГОСТ 10971- 78	
КМЭБпШп-4-60 (3571481101)	То же на частоту до 60 МГц	ТУ 16.705.122- 80	
КМЭБШп-4 (3571480401)	То же на частоту до 25 МГц с защитным покровом БШп	ГОСТ 10971- 78	
КМЭБШп-4-60 (3571481001)	То же на частоту до 60 МГц	ТУ 16.705.122- 80	
КМЭК-4 (3571480701)	То же на частоту до 25 МГц с защитным покровом К	ГОСТ 10971- 78	
КМЭКпШп-4 (3571480601)	То же с защитным покровом КпШп	То же	
МКТАБп-4 (3571450201)	С малогабаритными коаксиалами	ТУ 16.505.027-	

	1	
	алюминиевой оболочке и защитным покровом Бп магистральный	
МКТАБпШп-4 (3571450301)	То же с покровом БпШп	То же
МКТАШп-4 (3571450101)	То же с покровом Шп	22 22
МКТП-4 (3571470101)	То же в ПЭ оболочке без защитного покрова	22 22
МКТПБ-4 (3571470201)	То же с защитным покровом Б	?? ??
MKTC-4 (3571441801)	То же в свинцовой оболочке без защитного покрова	""
МКТСБ-4 (3571441901)	То же с защитным покровом Б	›› ·›
МКТСБГ-4 (3571442001)	То же с покровом БГ	›› ·›
МКТСБл-4 (3571443201)	То же с покровом Бл	?? ??
МКТСК-4 (3571442101)	То же с покровом К	›› ·›
МКТСКл-4 (3571443101)	То же с покровом Кл	?? ??
МКТСШв-4 (3571443301)	То же с покровом Шв	» »
ФКБ (3588840101)	С кордельно-бумажной изоляцией в свинцовой оболочке с покровом Б фидерный высокочастотный	
Подводные коаксиальные	и симметричные	
КПГК-5/18-4 (3579116801)	Коаксиальный с ПЭ изоляцией 5/18 мм бронированный стальными проволоками диаметром 4 мм герметизированный	
КПГК-5/18-6	То же бронированный	То же
(3579116901)	проволоками диаметром 6 мм	
КПГЭК-5/18-4 (3579117001)	То же экранированный в ПЭ оболочке бронированный проволоками диаметром 4 мм	
КПГЭК-5/18-6 (3579117101)	То же бронированный проволоками диаметром 6 мм	""
КПК-5/18-2,6 (3579116001)	Коаксиальный с ПЭ изоляцией 5/18 мм бронированный проволоками диаметром 2,6 мм для глубин до 3500 м); ;;
КПК-5/18-4 (3579116101)	То же бронированный проволоками диаметром 4 мм для глубин до 1000 м	?? ??
КПК-5/18-6 (3579116201)	То же бронированный проволоками диаметром 6 мм	""
КПК-5/18-4±4 (3579126201)	То же с двойной броней проволоками диаметром 4 мм для прибрежной трассы на глубинах до 150 м	2)))
КПК-5/18-4±6 (3579126001)	То же бронированный проволокой диаметром 4 и 6 мм	ТУ 16.505.272- 78
КПК-5/18-6±6 (3579126101)	То же с двойной броней проволоками диаметром 6 мм	""
КПК-9,2/34,5-4 (3579116301)	То же 9,2/34,5 мм бронированный проволоками диаметром 4 мм для ремонта линий из кабеля КПК-))))

	5/18-4 или КПК-5/18-6	
КПК-9,2/34,5-6	То же бронированный	» »
(3579116401)	проволоками диаметром 6 мм	» »
КПЭБ-5/18 (3579166200)	То же 5/18 мм экранированный и бронированный стальными	,,,,
	лентами для подземной	
	прокладки на береговых участках	
	трассы	
КПЭК-5/18-4	То же бронированный стальными	?? ??
(3579117201)	проволоками диаметром 4 мм для прокладки в прибрежных	
	участках трассы на глубине до	
	150 м	
КПЭК-5/18-6	То же бронированный	» »
(3579117301)	проволоками диаметром 6 мм	
КПЭК-5/18-4±4	То же с двойной броней	"
(3579126301)	проволоками диаметром 4 мм	
КПЭК-5/18-4±6	То же бронированный	» »
(3579126401)	проволоками диаметром 4 и 6 мм	›› ››
КПЭК-5/18-6±6 (3579126501)	То же с двойной броней проволоками диаметром 6 мм	
		TV 16 505 271
СЭПК-4-2 (3579118001)	Симметричный четырехжильный экранированный с ПЭ изоляцией	
	бронированный оцинкованной	
	стальной проволокой диаметром	
CD-774 / / /2-5-01/01/01/01	2 мм	_
СЭПК-4-4 (3579118101)	То же бронированный проволокой диаметром 4 мм	То же
CDHI(4.6 (2570119201)		?? ??
СЭПК-4-6 (3579118201)	То же бронированный проволокой диаметром 6 мм	
СЭПК-4-4±4	То же с двойной броней	›› ·›
(3579126801)	проволоками диаметром 4 мм	
СЭПК-4-4±6	То же бронированный	22 22
(3579126901)	проволоками диаметром 4 и 6 мм	
СЭПК-4-6±6	То же с двойной броней	›› ·›
(3579127001)	проволокой диаметром 6 мм	
Симметричные магистрал	высокочастотные	
МКАБп (3571250300)	С кордельно-бумажной	
	изоляцией в алюминиевой	78
	оболочке с защитным покровом Бп	
МКАБпГ (3571250400)		То же
, ,	То же с покровом БпГ	, , , ,
МКАБпШп(3571250200)	То же с покровом БпШп	
МКАКпШп (3571250500)	То же с покровом КпШп	?? ??
,	т и	›› ››
МКАШп (3571250100)	То же с покровом Шп	
МКБ (3571240200)	То же в свинцовой оболочке с	?? ??
MI/F A F., (2571/20100)	защитным покровом Б	TV 16 505 100
МКБАБл (3571620100)	То же в алюминиевой оболочке с защитным покровом Бл	ТУ 16.505.189- 76
МКБАБп (3571280300)	То же с покровом Бп	То же
<u> </u>	*	, , , ,
МКБАБпШп (3571280200)	То же с покровом Бп	
МКБАКл (3571620400)	То же с покровом Кл	» »
	_	TV
МКБАКп (3571620800)	То же с покровом Кп	ТУ. 16.505.189-76
		10.505.107 70

МКБАКпШп (3571620500)	То же с покровом КпШп	"
МКБАШп (3571620600)	То же с покровом Шп	-
МККПАБл (3571441700)	С ПЭ изоляцией в алюминиевой оболочке комбинированный с защитным покровом Бл	_
МККПАБлГ (3571441800)	То же с покровом БлГ	То же
МККПАБп (3571441900)	То же с покровом Бп	?? ??
МККПАБпШп (3571442000)	То же с покровом БпШп	" "
МККПАКл (3571442100)	То же с покровом Кл	» »
МККПАКп (3571442200)	То же с покровом Кп	?? ??
МККПАКпШп (3571442300)	То же с покровом КпШп	"
МККПАШп (3571441600)	То же с покровом Шп	?? ??
МККПГ (3571445300)	То же в свинцовой оболочке (без защитного покрова)	?? ??
МКСАБпГ	То же с покровом БпГ	""
МКСАБпШп (3571150200)	То же с покровом БпШп	-
МКСАБпШпу (3571150800)	То же с упрочненным шлангом	ТУ 16.705.027- 77
МКСАКпШп (3571150500)	То же с покровом КпШп	ГОСТ 15125- 76
МКСАСБп (3571190200)	То же в алюминиевой и свинцовой оболочке с защитным покровом Бп	TY 16.505.464-73
МКСАСБпШп (3571190100)	То же с покровом БпШп	ТУ 16.505.464- 73
МКСАСтпШп (3571150600)	То же в алюминиевой оболочке с подушкой из слоя вязкого подклеивающего состава, ПЭ шланга, стальной гофрированной броней и наружным покровом Шп	76
МКСАШп (3571150100)	То же без брони и подушки с защитным покровом Шп	То же
МКСАШп (3571151201)	То же с жилами диаметром 1 мм	ТУ 16.705.202- 81
МКСАШпу (3571150700)	То же, что и МКСАШп, но с упрочненным шлангом	ТУ 16.705.027- 77
МКСБ (3571140200)	С кордельно-полистирольной изоляцией в свинцовой оболочке с защитным покровом Б	ΓΟCT 15125- 76
МКСБГ (3571140300)	То же с покровом БГ	То же
МКСБл (3571140400)	То же с покровом Бл	» »
МКСБпШп (3571140900)	То же с покровом БпШп	?? ??
МКСБШп (3571140800)	То же с покровом БШп	?? ??
МКСГ (3571140100)	То же без защитного покрова	» »
МКПАБл (3571350100)	С кордельно-трубчатой ПЭ изоляцией в алюминиевой оболочке с защитным покровом Бл	

МКПАБп (3571350300)	То же с покровом Бп	То же
МКПАБпШп (3571351100)	То же с покровом БпШп	» »
МКПАКл (3571350400)	То же с покровом Кл	» »
МКПАКп (3571351200)	То же с покровом Кп	» »
МКПАКпШп (3571350500)	То же с покровом КпШп	""
МКПАШп (3571350200)	То же с покровом Шп	?? ??
МКПГ (3571350100)	То же в свинцовой оболочке (без защитного покрова)	22 22
МКПуАБп (3571350600)	С ПЭ изоляцией повышенной электрической прочности с защитным покровом Бп	
МКПуАБпГ (3571350900)	То же с покровом БпГ	То же
МКПуАШв (3571350800)	То же с покровом Шв	""
МКПуАШп (3571350700)	То же с покровом Шп	22 (22
МКСАБл (3571150300)	С кордельно-полистирольной изоляцией в алюминиевой оболочке с защитным покровом Бл	
МКСАБлГ (3571150400)	То же с покровом БлГ	То же
МКСАБп (3571151300)	То же с покровом Бп	?? ??
МКСГСтпШп. (3571141000)	С подушкой из вязкого подклеивающего состава, ПЭ шланга, со стальной гофрированной броней и наружным покровом Шп	» »
МКСГШп (3571140700)	То же, что и МКСГ, с защитным покровом типа Шп	""
MKCK (3571140500)	То же с покровом К	» »
МКСКл (3571140600)	То же с покровом Кл	» »
МКССтШп (3571140400)	То же, что и МКСГ, в стальной гофрированной оболочке с защитным покровом Шп	?) ^{?)}
МКССтШпу (3571160500)	То же с упрочненным шлангом	ТУ 16.705.027- 77
Симметричные, низкочаст	готные	
ТЗБ (3571840300)	С кордельно-бумажной изоляцией в свинцовой оболочке с защитным покровом Б	ГОСТ 5008-73
ТЗБГ (3571840500)	То же с покровом БГ	›› ·›
ТЗБл (3571841400)	То же с покровом Бл	"
ТЗБлГ (3571841600)	То же с покровом БлГ	›› ·›
ТЗБп (3571841500)	То же с покровом Бп	22 22
ТЗГ (3571840100)	То же без защитного покрова	?? ??
ТЗГуп (3571842700)	То же с усиленной изоляцией	22 22
ТЗК (3571840700)	То же с нормальной изоляцией с защитным покровом типа К	То же
ТЗКл (3571842000)	То же с защитным покровом Кл	» »
ТЗПАБп (3571950800)		ТУ 16.505.715- 75

T2HAF-F (2571050000)	защитным покровом Бп	22 22
ТЗПАБпГ (3571950900)	То же с покровом БпГ	» »
ТЗПАШп (3571950400)	То же с покровом Шп	22 22
ТЗПАБпШп (3571950500)	То же с покровом БпШп	
ТЗПАКпШп (3571950700)	То же с покровом КпШп	» »
ТЗПАуБпШп	То же в утолщенной	"
(3571950600)	алюминиевой оболочке с	
ТЗПАуШп (3571950400)	защитным покровом БпШп То же с защитным покровом Шп	» »
<u> </u>	•	ТУ 16.505.119-
ТЗПкАБл (3571950100)	С кордельно-трубчатой ПЭ изоляцией в алюминиевой оболочке с защитным покровом типа Бл	
ТЗПкАБп (3571950200)	То же с покровом Бп	То же
ТЗПкАБпШп (3571951100)	То же с покровом БпШп	?? ??
ТЗПкАШп (3571950300)	То же с покровом Шп	?? ??
ТЗСАБп (3571751400)	С кордельно-полистирольной	
	изоляцией в алюминиевой оболочке с защитным покровом типа Бп	74
ТЗСАБпГ (3571751500)	То же с покровом БпГ	То же
ТЗСАБпШп (3571751300)	То же с покровом БпШп	» »
ТЗСАКпШп (3571751600)	То же с покровом КпШп	""
ТЗСАСБп (3571780100)	То же в алюминиевой и свинцовой оболочках с защитным покровом Бп	2)))
ТЗСАСБпШп (3571780200)	То же с покровом БпШп	""
ТЗСАСтпШп (3571780300)	То же с покровом СтпШп	?? ??
ТЗСАШп (3571751200)	То же в алюминиевой оболочке с защитным покровом типа Шп	""
ТЗСБ (3571740200)	То же в свинцовой оболочке с защитным покровом Б	22 22
ТЗСБГ (3571740300)	То же с покровом БГ	22 22
ТЗСБл (3571740800)	То же с покровом Бл	?? ??
ТЗСБШп (3571741200)	То же с покровом БШп	» »
ТЗСГ (3571740100)	То же без защитного покрова	"
ТЗСГШп (3571740700)	То же с покровом Шп	"
T3CK (3571740400)	То же с покровом К	?? ??
ТЗСКл (3571740400)	То же с покровом Кл	"
ТЗССтШп (3571860100)	То же в стальной гофрированной оболочке с защитным покровом. Шп	-
ТЗупБ (3571842900)	С усиленной кордельно- бумажной изоляцией с защитным покровом Б	ГОСТ 5008-73
ТЗупБГ (3571843100)	То же с покровом БГ	То же
ТЗупБл (3571843800)	То же с покровом Бл	"

ТЗупБлГ (3571844100)	То же с покровом БлГ	""	
ТЗупБн (3571844000)	То же с покровом Бн	›› ·›	
ТЗупК (3571843300)	То же с покровом К	›› ·›	
ТЗупКл (3571845000)	То же с покровом Кл	22 22	
ТЗЭБ (3571840400)	С кордельно-бумажной	›› ·›	
(35/10/00)	изоляцией экранированный в		
	свинцовой оболочке с защитным покровом типа Б		
ТЗЭБГ (3571840600)	То же с покровом БГ	›› ››	
ТЗЭБл (3571841700)	То же с покровом Бл	» »	
ТЗЭБлГ (3571841900)	То же с покровом БлГ	» »	
` ` `	*	» »	
ТЗЭБп (3571841800)	То же с покровом Бп	·· ··	
ТЗЭГ (3571840200)	То же без защитного покрова		
ТЗЭГуп	То же с усиленной изоляцией	ΓΟCT 5008-73	
ТЗЭК (3571840800)	То же с нормальной изоляцией с защитным покровом К		
ТЗЭКл (3571842100)	То же с покровом Кл	» »	
ТЗЭупБ (3571843000)	То же с усиленной изоляцией с	""	
	защитным покровом Б		
ТЗЭупБГ (3571843200)	То же с покровом БГ	?? ??	
ТЗЭупБл (3571844200)	То же с покровом Бл	"	
ТЗЭпуБлГ (3571844400)	То же с покровом БлГ	?? ??	
ТЗЭупБн (3571844900)	То же с покровом Бн	» »	
ТЗЭупК (3571843400)	То же с покровом К	» »	
ТЗЭупКл (3571844500)	То же с покровом Кл	» »	
Симметричные комбинир	ованные		
ТДСБ (3571841000)	С кордельно-бумажной	ГОСТ 5008-13	
	изоляцией в свинцовой оболочке		
THCFF (2571941100)	с защитным покровом Б	То же	
ТДСБГ (3571841100)	То же с покровом БГ	, , , ,	
ТДСБл (3571842200)	То же с покровом Бл	·· ··	
ТДСБлГ (3571842300)	То же с покровом БлГ	›› ››	
ТДСБн (3571842500)	То же с покровом Бн	22 22	
ТДСГ (3571840900)	То же без защитного покрова	22 22	
ТДСГун (3571843500)	То же с усиленной изоляцией		
ТДСК (3571841200)	То же с нормальной изоляцией с защитным покровом К	ГОСТ 5008-73	
ТДСКл (3571842400)	То же с покровом Кл	›› ››	
ТДСупБ (3571843600)	То же с усиленной изоляцией с	?? ??	
THOPE (2571042700)	защитным покровом Б	» »	
ТДСупБГ (3571843700)	То же с покровом БГ	» »	
ТДСупБл (3571844600)	То же с покровом Бл	""	
ТДСупБлГ (3571844700)	То же с покровом БлГ	» »	
ТДСупБн (3571844900)	То же с покровом Бн))))	
ТДСупК (3571843800)	То же с покровом К		
ТДСупКл (3571844800)	То же с покровом Кл	"	
Симметричные для зонов			
ЗКАБп (3571351401)	Одночетверочный с ПЭ изоляцией в алюминиевой	TY 16.505.233-	
	оболочке с защитным покровом	70	
	Бп		

ЗКАКпШп (3571351501)	То же с покровом КпШп	То же
ЗКАШп (3571351301)	То же с покровом Шп	?? ??
3KB (3571320201)	То же в ПВХ оболочке без защитного покрова	?? ??
ЗКВБ (3571320301)	То же с покровом Б	?? ??
ЗКВК (3571320401)	То же с покровом К	?? ??
3КП (3571310201)	То же в ПЭ оболочке без защитного покрова	?? ??
ЗКПБ (3571310301)	То же с покровом Б	» »
ЗКПК (3571310401)	То же с покровом К	» »
КСПЗП (3573110600)	С ПЭ изоляцией с гидрофобным заполнением в ПЭ оболочке для сельской связи	
КСПЗПБ (3573110700)	То же с покровом Б	То же
КСПП (3573110100)	То же без заполнения и защитного покрова	?? ??
КСППБ (3573110200)	То же с покровом Б))))
КСППБт (3573110800)	То же со встроенным тросом	""
КСППЗПБт (3573110900)	То же с заполнением	?? ??
МККШв (3571320101)	С ПЭ изоляцией в ПВХ оболочке для зоновой связи	ТУ 16.505.233- 78
МККШп (3571310101)	То же в ПЭ оболочке	То же
Оптические		
OK-50-1B-1/0 (3587310101)	С одним волокном, защищенным трубкой в ПВХ оболочке	ТУ 16.705.254- 82
OK-50-1B-2/0 (3587310102)	То же с 2 волокнами	То же
OK-50-1B-4/0 (3587310103)	То же с центральным силовым элементом, с 4 волокнами	22 22
OK-50-1B-6/0 (3587310104)	То же с 6 волокнами	?? ??
OK-50-1B-8/0 (3587310105)	То же с 8 волокнами	""
OK-50-1B-10/0 (3587310106)	То же с 10 волокнами	"">"
OK-50-1B-12/0 (3587310107)	То же с 12 волокнами	ТУ 16.705.254- 82
OK-50-2-4/0 (3587310203)	С центральным силовым элементом, с 4 волокнами, защищенными полиамидной оболочкой, в ПВХ оболочке	?? ??
OK-50-2-6/0 (3587310204)	То же с 6 волокнами	22 22
OK-50-2-8/0 (3587310205)	То же с 8 волокнами	22 22
OK 50-3-6/0 (3587310304)	С центральным силовым элементом, с 6 волокнами	22 22
OK-50-4-6/0 (3587310404)	С центральным силовым элементом, с 6 волокнами, уложенными в пазы сердечника, в ПВХ оболочке	2)))
OK-50-4-8/0 (3887310405)	То же с 8 волокнами	?? ??

Таблица 20.2. Области применения и условия прокладки кабелей дальней связи

Тип	Область применения	Условия прокладки
защитного покрова		
Γ	Внутри помещений при отсутствии механических воздействий на кабель, в среде, нейтральной по отношению к оболочке, в районах, не характеризующихся повышенным электромагнитным влиянием	
Шп	При отсутствии механических воздействий на кабель в среде, агрессивной по отношению к оболочке, в районах, не характеризующихся повышенным электромагнитным влиянием	
Шп (поверх алюминиевой оболочки)	При отсутствии больших растягивающихся усилий, в районах, не характеризующихся повышенным электромагнитным влиянием	По мостам и в грунтах
БГ	В пожароопасных помещениях, если кабель не подвергается большим растягивающим усилиям, в районах, не характеризующихся повышенным электромагнитным влиянием	
Бл	В грунтах, нейтральных и агрессивных по отношению к свинцовой оболочке, если кабель не подвергается значительным растягивающим или сдавливающим усилиям, в районах, не характеризующихся повышенным электромагнитным влиянием	Грунты
Бл (поверх экрана)	Повышенная грозодеятельность, влияние ЛЭП и электрифицированных железных дорог, если кабель не подвергается значительным растягивающим или сдавливающим усилиям	
Бп	В грунтах, если кабель не подвергается растягивающим или сдавливающим усилиям, в районах, не характеризующихся повышенным электромагнитным влияниям	агрессивности по отношению к
БпГ	В пожароопасных помещениях, если кабель не подвергается большим растягивающим усилиям, в условиях, характеризующихся повышенным электромагнитным влиянием	шахты, тоннели, каналы и
БпШп	В грунтах и воде в районах, характеризующихся повышенным электромагнитным влиянием, в грунтах, агрессивных по отношению к свинцовой оболочке и стальной броне	подверженных мерзлотным деформациям, в воде, при
К	Переходы горных, судоходных и сплавных рек, их затопляемые и заболоченные поймы, болота глубиной более 2 м, в грунтах, подверженных мерзлотным деформациям и при наличии больших растягивающих усилий, в районах, не характеризующихся повышенным электромагнитным влиянием	По дну рек, в болотах и грунтах
КЛ, Кп	То же, но в грунтах, агрессивных по отношению к свинцовой оболочке	То же
КпШп (поверх алюминиевой оболочки)	Переходы горных, судоходных и сплавных рек, их затопляемые и заболоченные поймы, болота глубиной более 2 м, в грунтах, подверженных мерзлотным деформациям и при наличии больших	

	растягивающих усилий кабеля, в районах, характеризующихся повышенным электромагнитным влияниям	
КпШп	То же и в грунтах с повышенной коррозионной опасностью по отношению к свинцовой оболочке и стальной броне	

Таблица 20.3. Виды связи, система передачи, типы кабелей, линейный спектр частот, расстояние между усилительными участками и дальностью действия

Вид связи	Система передачи	Тип Количеств кабеля каналов связи		Линейный спектр, кГц	Затухание усилительного участка, дБ	Расстояние между участками, км		Дальность действия, км
						НУП	ОУП	
Магистральная:	-	-	-	-	-	-	-	-
по коаксиальному кабелю	К-10800	KM- 2,6/9,4;	10800	312-60000	-	-	-	-
-	K-3600	MKT- 1,2/4,6	3600	312-17000	39	3	120	-
-	К-1920	-	1920	312-8500	43	6	180	-
-	К-300	-	300	60-1300	30	6	240	-
-	ИКМ- 1920	-	1920	До 140*	-	-	-	-
-	ИКМ-480	-	480	До 34*	-	-	-	-
-	ИКП-120	-	120	До 8,5*	-	-	-	-
по оптическому кабелю	ИКМ-30	-	-	2*	-	-	-	12500
-	ИКМ-120	-	=	8,5*	-	-	-	-
-	ИКМ-480	-	=	34*	-	-	-	-
-	ИКМ- 1920	-	-	140*	-	-	-	-
по симметричному кабелю	К-120	МКС	120	12-552	-	-	-	-
-	К-60	-	60	12-252	49	19	160- 170	-
-	К-60П	-	60	12-252	51	12	250- 300	-
Зоновая:	-	-	-	-	-	-	-	-
по коаксиальному кабелю	К-120; К-60П	ВКПАП	120	60-1300	36	10	200	600
по симметричному кабелю	К-60	MK 4*4; K3 1*4	60	12-252	28	10,6	190- 230	5000
-	К-24П	-	24	12-108	34	20	200	5000
-	KB-12	-	12	36-84; 92-148	52	15-25	70	2400
-	ИКМ-120	-	120	До 8448	55	4-5, 5	200	600
Сельская	КНК-12	КСПП	12	6-54; 60-108	43	16	120	120
-	КНК-6Т	"	6	16-60;	49	16	80	80

				76-120				
-	КАМА	3K 1*4; MK 4*4	30	12-252; 312-552	48	13	80	80
-	ИКМ-12	КСПП; МК 4*4	12	До 800	38	7	50- 100	50-100
* Число импульсов в 1 мкс (мегабит).								

20.2. КОАКСИАЛЬНЫЕ МАГИСТРАЛЬНЫЕ КАБЕЛИ

Коаксиальные магистральные кабели КМГ-4, КМБ-4 и др. (ГОСТ 10971-78) состоят из четырех коаксиальных пар типа 2,6/9,4 мм и пяти четверок с жилами диаметром 0,9 мм. Они предназначены для многоканальной связи и телевидения с уплотнением в диапазоне частот до 25 МГц. Кабели по ТУ 16.075.034-78 с пятью дополнительными четверками маркируются: КМГ-4-5П предназначены для уплотнения до 17 МГц. Кабели по ТУ 16.705.122-80, предназначеные для работы в диапазоне до 60 МГц, маркируются КМГ-4-60, КМГ-8/6-60 и др.

ГОСТ 10971-78 полностью соответствует стандарту СЭВ СТ СЭВ 3565-82.

Внутренний проводник коаксиальной пары изготовляют из медной полутвердой проволоки диаметром 2,58 мм. На него насаживают или отливают ПЭ шайбы диаметром 9,40 мм, толщиной 2,2 мм с шагом 30,3 мм. Внешний проводник изготовляют из отожженной медной ленты толщиной 0,26 мм, шириной 30,6 мм с гофрированными кромками с одним продольным швом. Коаксиальную пару обматывают двумя стальными лентами толщиной 0,15 мм с перекрытием и лентами бумаги или пластмассы (рис. 20.1).

Наружный диаметр коаксиальной пары 11,1 мм.

Токопроводящие жилы четверок, симметричных пар и одиночных жил диаметром 0,9 мм изготовляют с полиэтиленовой или кордельно-бумажной изоляцией в кабелях КМ-4 и полиэтиленовой в кабелях КМ-4-60 и КМЭ-4-60. Жилы центральной четверки изготовляют из эмалированного провода ПЭЛ - 0,9 мм с бумажной или ПЭ изоляцией. Изолированные жилы с изоляцией разного цвета скручивают в четверку вокруг ПЭ корделя. Жилы в четверке, расположенные по диагонали, образуют рабочие пары: первая пара красного и желтого (натурального) цвета, вторая пара — синего (фиолетового) и зеленого цвета. Каждую скрученную четверку обматывают цветной хлопчатобумажной или синтетической пряжей: первой центральной — желтой, второй — красной, третьей - зеленой, четвертой — белой и пятой — коричневой (черной).

Четыре коаксиальные пары 2,6/9,4 мм скручивают вокруг четверки с эмалированными жилами с шагом 850 мм с размещением между ними четверок с жилами 0,9 мм (рис. 20.2), обматывают бумажными или из другого материала лентами и прокладывают мерную ленту с условным обозначением предприятия-изготовителя. Поверх поясной изоляции в кабеле КМ накладывают свинцовую оболочку с присадкой сурьмы или алюминиевую, а в кабеле КМЭ — двойную металлическую оболочку (алюминий — свинец) толщиной свинцовой оболочки не менее 1,3 мм и алюминиевой 1 мм и защитные покровы типов Бп, БпШп, КпШп и БпГ (по ГОСТ 7006-72). Наружный диаметр и расчетная масса кабелей приведены в табл. 20.4.

Наружный диаметр кабелей в тропическом исполнении может быть на 5 мм больше указанных в табл. 20.4.

Коаксиальные комбинированные магистральные кабели КМБ-8/6 с коаксиальными парами типа 2,6/9,4 мм (см. § 20.3) предназначены для организаций мощных пучков каналов связи и передачи телевизионных программ на большие расстояния в диапазоне частот до 25 МГц по коаксиальным парам 2,6/9,4 мм и в диапазоне частот до 10 МГц по коаксиальным парам 1,2/4,6 мм. Коаксиальные комбинированные магистральные кабели КМ-8/6 состоят из восьми коаксиальных пар 2,6/9,4 мм, шести коаксиальных пар 1,2/4,6 мм, восьми симметричных пар, одной симметричной четверки и шести одиночных жил диаметром 0,9 мм (рис. 20.3).

Токопроводящие жилы симметричных пар, четверок и одиночных жил диаметром 0,9 мм имеют баллонную изоляцию из ПЭНП. Изолированные жилы скручивают в симметричные пары (белого — красного и белого — зеленого цветов) и в симметричные четверки с жилами красная — желтая (натуральная), синяя (фиолетовая) — зеленая. Допускается обмотка скрученной четверки металлизированной бумагой. Одиночные жилы имеют расцветку, обеспечивающую наличие двух контрольных жил красного и зеленого (синего) цветов. Кабель скручивают двумя концентрическими

повивами с расположенной в центре симметричной четверкой; в первом повиве расположены шесть коаксиальных пар 1,2/4,6 мм и в промежутках между ними — шесть одиночных жил; во втором повиве расположены восемь коаксиальных пар 2,6/9,4 мм и в промежутке между ними — восемь симметричных пар, поясная изоляция из бумажных лент, свинцовая оболочка и защитные покровы типа Б, БГ, Бл, К и Кл.

Строительная длина кабелей всех марок с проволочной броней не менее 600 м, а кабелей с ленточной броней — не менее 400 м. Допускается сдача потребителю отрезков кабелей в свинцовой оболочке (кроме кабелей с броней К) длиной от 200 до 599 м в количестве не более 20% общей длины партии кабелей, кабелей в алюминиевой и двойной (алюминий — свинец) оболочке и в свинцовой оболочке с защитным покровом Шп длиной от 200 до 399 м в количестве не более 20%, отрезки длиной от 400 до 599 м в количестве не более 30% общей длины партии кабелей, отрезки длиной от 100 до 199 м в количестве не более 10% и отрезки кабелей с броней типа К длиной от 100 до 399 м в количестве не более 10% общей длины партии.

Строительная длина кабелей КМГ-8/6, КМБ-8/6, КМБл-8/6 и КМБГ-8/6 не менее 490 м, допускается сдача кабелей длинами не менее 160 м в количестве не более 20% и длиной не менее 100 м в количестве не более 10% общей длины партии. Строительная длина кабелей КМК-8/6 и КМКл-8/6-не менее 200 м.

По согласованию сторон допускается сдача кабелей любыми длинами.

Электрические параметры кабелей при температуре 20° С приведены в табл. 20.5. Номинальный коэффициент затухания коаксиальных и симметричных пар коаксиальных кабелей в зависимости от частоты приведен в табл. 20.6. Отклонения от номинальных значений коаксиальных пар $\pm 2\%$, а симметричных пар с ПЭ и воздушно-бумажной изоляцией $\pm 3\%$.

Типовая характеристика частотной зависимости коэффициента затухания коаксиальных пар 2,6/9,5 мм:

Частота,	1	4	12	20	40	60
МΓц						
α , $\delta E/\kappa M$	2,40	4,79	8,29	10,72	15,20	18,65

Частотная зависимость коэффициента затухания и температурного коэффициента затухания коаксиальных пар приведены в табл. 20.7.

Коаксиальные пары кабелей механически устойчивы и после двухкратной перемотки соответствуют табл. 20.5. Группам кабелей при определенной строительной длине в зависимости от измеренных концевых значений волнового сопротивления коаксиальных пар присваивается номер.

Средние значения волнового сопротивления и группы кабеля с коаксиальными парами 2,6/9,4 мм и 1,2/4,6 мм приведены в табл. 20.8.

Коаксиальные пары кабелей после поставки должны быть испытаны потребителем напряжением постоянного тока в течение 2 мин.

-	испытательное	напряжение,
F	кВ для коаксиальны	х пар
	2,6/9,4 мм	1,2/4,6 мм
Кабель определенной длины:	-	-
на площадке	3,4	2,6
после прокладки	3,2	2,4
Смонтированные усилительные участки длиной не более 6,3 км	3,0	2,0

Рабочее напряжение коаксиальных пар 2,6/9,4 мм не должно превышать 1000 В переменного напряжения частоты 50 Гц или 1400 В постоянного напряжения. Допускается кратковременное перенапряжение коаксиальных пар до 1400 В переменного напряжения длительностью не более 1,2 с. Рабочее напряжение коаксиальных пар 1,2/4,6 мм не должно превышать 660 В переменного напряжения частотой 50 Гц или 1000 В постоянного напряжения, четверки - 250 В частотой 50 Гц или 350 В постоянного напряжения, симметричных пар и одиночных жил - 300 В частотой 50 Гц или 450 В постоянного напряжения.

Транспортирование кабеля может осуществляться любым видом транспорта на любые расстояния при температуре от -40 до +40°C при условии защиты от непосредственного попадания влаги, агрессивных сред, солнечной радиации и механических повреждений.

Диаметр изгиба кабеля при монтаже не должен быть менее $25~\mathrm{D}$ по свинцовой оболочке. Кабель предназначен для прокладки ручным или механизированным способом при температуре окружающей среды от $-10~\mathrm{дo} + 40$ °C.

Для прокладки при температуре ниже -10°C кабели должны быть предварительно прогреты.

Коаксиальные пары готовых кабелей механически устойчивы, их концевые значения волнового сопротивления, внутренняя неоднородность и электрическая прочность, а также герметичность алюминиевой оболочки и ПЭ шланга после двухкратной перемотки соответствуют табл. 20.5. Срок службы кабелей не менее 30 лет.

Диаметр шейки барабана должен быть не менее 25 D при намотке кабелей КМ-4-60 и КМ-8/6-60, 40 D кабелей КМА-4-60, 30 D кабелей КМЭ-4-60. Концы кабелей должны быть запаяны и снабжены вентилем для контроля внутреннего давления. Алюминиевая оболочка на концах должна быть покрыта битумом или краской и поверх этого слоя должны быть насажены пластмассовые колпачки путем термоусадки или приварки к ПЭ шлангу. Оба конца кабеля расположены под обшивкой барабана на расстоянии не менее 100 мм от внутренней поверхности обшивки. Кабели должны транспортироваться и храниться при избыточном давлении воздуха или инертного газа внутри кабеля от 49 до 108 к Па, допустимое давление в кабеле, хранящемся у потребителя, — 29 - 98 кПа.

Рисунок 20.1. Коаксиальная пара магистральных кабелей с шайбовой изоляцией 2,6/9,4 мм

Рисунок 20.2. Схема коаксиального магистрального кабеля КМГ-4

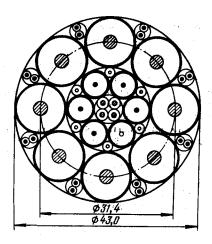


Рисунок 20.3. Схема коаксиального магистрального кабеля КМГ-8/6

Таблица 20.4. Внешний диаметр и масса коаксиальных кабелей

	Марка	D,	g, кг/км	Марка	D,	g, кг/км
	КМАБп-4	51	3240	КМГ-4	35	3185
	КМАБпГ-4	47	2818	КМГ-8/6	48	6255
4	КМАБпШп-	53	3210	КМГШп-4	39	3555
4	КМАКпШп-	60	6607	КМК-4	54	7590
	КМАШп-4	41	1820	КМК-8/6	64	12103
	КМБ-4	45	4070	КМКл-4	55	7820
	КМБ-8/6	56	7527	КМКл-8/6	76	-
	КМБГ-4	41	3730	КМКпШп-4	61	8270
	КМБГ-8/6	60	-	КМЭБ-4	49	4800
	КМБл-4	46	4200	КМЭБл-4	50	5000
	КМБл-8/6	57	7673	КМЭБп-4	54	5250
	КМБп-4	49	4190	КМЭБпШп- 4	56	5300
	КМБпШп-4	54	4505	КМЭБШп-4	50	4835
	КМБШп	49	4255	КМЭК-4	56	7840
	-	-	-	КМЭКпШп- 4	62	8375

Таблица 20.5. Электрические параметры коаксиальных кабелей

Параметр	Частота, кГц	КМБ-4, МКБ-8/6	МКТА, МКТС	ВКПАП	Коэффициент пересчета на другую длину L
Коаксиальные пары					
Электрическое сопротивление на длине 1 км, не более:	Постоянный ток	-	-	-	L/1000
внутреннего проводника диаметром:	-	-	-	-	-
2,6 мм	-	3,7	-	-	-
2,17 мм	-	-	-	5,15	-
1,20 мм	-	15,85	15,85	-	-
внешнего проводника	-	2,5	8,0	1,5	L/1000
Сопротивление изоляции, 10^6 Ом \times км, не менее:	Постоянный ток	-	-	-	-
между внутренним и внешним проводниками	•	10000	15000	15000	1000/L
между внешними проводниками	-	2*	-	-	1000/L
между внешними проводниками и заземленной оболочкой	-	1*	-	10	1000/L
Номинальное значение волнового сопротивления, Ом:	1000	75	75	-	-

-	2500	74,65	-	-	-
-	Импульс длительностью 0,12 мкс	-	75	75	-
отклонения значения волнового сопротивления от номинального 75 Ом, измеренного импульсным прибором, Ом, не более	Импульс 0,06 мкс	±0,65	±1,5	±3,0	-
разность значений волнового сопротивления на входе и выходе каждой коаксиальной пары, Ом, не более	Импульс 0,06 мкс	0,6	1,0	2,0	-
внутренняя неоднородность — коэффициент отражения в любой точке каждой коаксиальной длины, не более, от партии:	Импульс 0,06 мкс	1	1	-	-
100%	-	3×10 ⁻³	4×10 ⁻³	10×10 ⁻³	-
95%	-	2×10 ⁻³	_	-	-
90%	-	-	-	7×10 ⁻³	-
80%	-	1,5×10 ⁻³	3×10 ⁻³	-	-
средняя арифметическая величина трех наибольших коэффициентов отражения в каждой коаксиальной паре любой строительной длины, не более	Импульс 0,06 мкс	1,8×10 ⁻³	•	-	-
Коэффициент затухания, дБ/км, не более	1000-60000	См. табл 20.6 и 20.7	См. табл 20.6	-	L/1000
-	1000	2,455	5,35	2,95	-
-	8000	6,958	15,20	-	-
-	10000	7,856	16,87	-	-
-	25000	12,373	-	-	-
Среднее значение отраженной мощности на строительной длине 500 м, дБ, не менее	55000-65000	40	-	-	$-101g \frac{L}{500}$
Переходное затухание на ближнем конце на длине 500 м, дБ, не менее:	•	-	-	-	-
между коаксиальными парами 2,6/9,5 мм	60	104,2	-	-	-
-	300	130	-	-	-
-	4000-60000	145	-	-	-
между коаксиальными парами 1,2/4,6 мм	60	-	108,6	-	-
между коаксиальными	60	104,2	-	-	-
парами 2,6/9,5 и 1,2/4,6 мм	300	123,3	-	-	-
между коаксиальными парами 1,2/4,6 мм и симметричными парами, уплотняемыми системой К-	110	100	1	-	-

24-P					
между двумя симметричными парами, уплотняемыми системой К-24-Р	110	91,2	-	1	-
Испытательное напряжение, В, в течение 2 мин:	-	-	-	-	-
между внутренним и		3700	2800	-	-
внешним проводниками коаксиальных пар	ток 0,05	2600	2000	3000	-
между экранами	Постоянный ток 0,05	430	280	-] -
коаксиальных пар	ŕ	300	200	5000	
между всеми жилами четверок и внешними проводниками коаксиальных пар, соединенных вместе, по отношению к металлической оболочке	Постоянный ток 0,05	2500	-	-	-
Коэффициент защитного действия металлических покровов:	0,05	-	-	-	-
КМБл-4-60 при продольных ЭДС 50-150 В/км	0,05	0,5	-	-	-
КМЭБл-4-60 и КМА-4-60 при продольных ЭДС, В/км:	-	-	-	-	-
50	-	0,14	-	-	-
80	-	0,12	-	-	-
100-300	-	0,10	-	-	-
КМБл-8/6-60 при продольной ЭДС 50-150 В/км	-	0,35	-	-	-
Электрическое сопротивление металлических покровов на длине 1 км, Ом, не более:	Постоянный ток	-	-	-	L/1000
КМЭ-4-60	-	0,28	-	-	-
KMA-4-60	-	0,25	-	-	-
Сопротивление изоляции ПЭ шланга между алюминиевой оболочкой и водой в кабелях с ПЭ шлангом и между алюминиевой оболочкой и броней, МОм×км, не менее		20	-	-	1000/L
Симметричные четверки,	пары и одиночные	жилы кабеле	— —		
Электрическое сопротивление жилы на длине 1 км, Ом, не более	Постоянный ток	28,5	57	-	L/1000
Разность электрических сопротивлений жил в паре на длине 600 (500) м, Ом, не более		0,8	0,6	-	$\sqrt{L/600}$ $\sqrt{L/500}$
Сопротивление изоляции каждой жилы относительно всех других жил,); ;;	-	-	-	1000/L

-	5000	5000	-	-
-	3000	-	-	-
-	-	-	-	L/1000
0,8	34	32	-	-
-	±3	±4	-	-
-	См. табл. 20.6	-	-	L/1000
10	1,43	-	-	-
110	3,26	-	-	-
10	1,301	-	-	-
110	3,092	-	-	-
-	-	-	-	-
Постоянный эк	1000	1000	-	-
0,05	700	700	-	-
Постоянный эк	2500	700	-	-
0,05	2000	500	-	-
-	-	-	5000	-
-	-	-	-	-
Постоянный ок	-	10	-	1000/L
То же	-	10	-	-
-	-	-	-	-
0,05	0,5	0,6	-	-
-	-	-	-	-
0,05	0,14	0,20	-	-
0,05	0,12	0,15	-	-
0,05	0,10	0,14	-	-
0,05	0,45	0,5	-	-
	0,8 10 110 110 - 110 - Постоянный ок 0,05 Постоянный ок 0,05 Постоянный ок 0,05 То же - 0,05 - 0,05 - 0,05 - 0,05 - 0,05 -	- 3000 - 3000 3000 3000	- 3000 - 3000	- 3000 - - 0,8 34 32 - - ±3 ±4 - - CM. Ta6л. 20.6 - - 10 1,43 - - 10 1,301 - - 110 3,092 - - - - - - Постоянный 1000 1000 - 0,05 700 700 - - - - - 0,05 2000 500 - - - - - 0,05 2000 500 - - - - - 0,05 2000 500 - - - - - 0,05 - - - 0,05 0,5 0,6 - - - - - 0,05 0,12 0,15 - 0,05 0,10 0,14 -

Электрическое сопротивление металлических покровов на длине 1 км, Ом, не более:	Постоянный ток	ı	1	-	L/1000
в алюминиевой оболочке	-	0,25	-	-	-
в алюминиево-свинцовой оболочке	-	0,28	-	-	-
Сопротивление изоляции между алюминиевой оболочкой и водой, броней и водой и алюминиевой оболочкой и броней, МОм×км, не менее		20	-	-	1000/L

Таблица 20.6. Частотная зависимость коэффициента затухания и номинального волнового сопротивления четверок кабелей КМ-4-60 и КМЭ-4-60 н симметричных пар кабелей КМ-8/6-60

f,	α, δБ/км			z, Ом	f,	α, δБ/км			z,
кГц	сплошной ПЭ изоляцией кабелей КМ-	баллонной ПЭ	воздушно- бумажной изоляцией		кГц	четверок со	симметричных пар с баллонной ПЭ изоляцией кабелей КМ-8/6-60	бумажной	Ом
10	1,43	1,349	1,301	188	60	2,38	2,137	2,197	150
20	1,67	1,557	1,480	165	70	2,56	2,284	3,376	149
30	1,85	1,709	1,659	158	80	2,74	2,433	2,555	148
40	2,03	1,857	1,839	154	90	2,92	2,591	2,734	147
50	2,21	1,995	2,018	152	100	3,09	2,752	2,913	146
					110	3,26	2,908	3,092	145

Таблица 20.7. Частотная зависимость коэффициента затухания α и температурного коэффициента затухания τ коаксиальных пар типа 2,6/9,5 мм кабелей КМ-4 и КМ-8/6 при t = 20°C

f, МГц	α, δБ/км	τ*10 ⁻³	f, МГц	α, δБ/км	τ*10-3
0,06	_	2,40000	8,0	6,7719	1,9640
0,1	-	2,30000	8,5	6,9807	1,9625
0,2	-	2,1900	9,0	7,1836	1,9620
0,3	-	2,1300	9,5	7,3809	1,9610
0,4	-	2,090	10,0	7,5731	1,9600
0,5	-	2,0650	11,0	7,9438	1,9590
0,6	-	2,0450	12,0	8,2979	1,9580
0,7	-	2,0300	13,0	8,6381	1,9570
0,8	-	2,0180	14,0	8,9654	1,9565
0,9	-	2,0100	15,0	9,2812	1,9560
1,0	2,3986	2,0050	16,0	9,5868	1,9555
1,2	2,5137	2,0000	17,0	9,8831	1,9550
1,3	2,6250	1,9980	18,0	10,1710	1,9545
1,4	2,7318	1,9950	19,0	10,4511	1,9540
1,5	2,8345	1,9940	20,0	10,7237	1,9535

2,0	2,9337	1,9930	21,0	10,9902	1,9530
2,5	3,3862	1,9910	22,0	11,2502	1,9525
3,0	3,7852	1,9880	23,0	11,5044	1,9520
3,5	4,1460	1,9845	24,0	11,7532	1,9515
4,0	4,4779	1,9815	25,0	11,9970	1,9510
4,5	4,7869	1,9790	30,0	13,1514	1,9500
5,0	5,0773	1,9765	35,0	14,2107	1,9490
5,5	5,3521	1,9745	40,0	15,2045	1,9480
6,0	5,6136	1,9720	45,0	16,1296	1,9470
6,5	5,8634	1,9700	50,0	17,0135	1,9460
7,0	6,1031	1,9685	55,0	17,8482	1,9450
7,5	6,3338	1,9670	60,0	18,6500	1,9440
-	6,5564	1,9655	-	-	-

Таблица 20.8. Группы кабеля по среднему значению волнового сопротивления, Ом

Среднее значение волнового сопротивления пар 2,6/9,4 мм, Ом	Группа кабеля	Среднее значение волнового сопротивления пар 1,2/4,6 мм, Ом	Группа кабеля
74,60 - 74,90	II	73,5-74,1	1
74,91 - 75,15	III	74,11 - 74,7	2
75,16 - 75,40	IV	74,71 - 75,3	3
-	-	75,31 - 75,9	4
-	-	75,91-76,5	5

20.3. МАЛОГАБАРИТНЫЕ КОАКСИАЛЬНЫЕ КАБЕЛИ

Магистральный кабель с коаксиальными парами типа 1,2/4,6 мм предназначен для связи и телевидения в диапазоне частот от 60 до 10000 кГц. Внутренний проводник однопроволочный из отожженной медной проволоки диаметром 1,2 мм. На внутренний проводник наложена трубка из ПЭНП толщиной 0,45 мм с пережимами через 12 мм (рис. 20.4). Внешний проводник из отожженной медной ленты толщиной 0.16 мм свернут в трубку поверх изоляции. Внешний проводник обмотан двумя стальными лентами толщиной 0.1 мм и одной пластмассовой лентой. Жилы симметричных пар и контрольную изготовляют из медной проволоки диаметром 0,7 мм с изоляцией из ПЭНП диаметром 1,6 мм. Контрольная жила имеет периодические оголенные участки. Четыре коаксиальные и четыре симметричные пары скручены вокруг симметричной пары и контрольной жилы в центре. (Симметричные пары размещены между коаксиальными парами.) Расцветка жил симметричных пар кабеля, считая по часовой стрелке с конца А, белая — красная, белая — зеленая, белая — синяя и белая — синяя в центре кабеля. За первую коаксиальную пару принята пара, расположенная между первой симметричной (белая — красная) и второй парами (белая — зеленая). Поверх скрученных коаксиальных и симметричных пар наложена поясная изоляция бумажными лентами и ПЭ, свинцовая или алюминиевая оболочка. Комбинированная пластмассовая оболочка состоит из ПЭ толщиной 1,8 – 0,2 мм и ПВХ толщиной 2,2 - 0,2 мм. Поверх алюминиевой оболочки накладывается ПЭ шланг. Расчетные внешний диаметр и масса кабелей приведены ниже.

Внешний диаметр я масса коаксиальных малогабаритных кабелей

	Dan	G 155/101
-	D, мм	g, кг/км
МКТАБп-4	42	1800
МКТАБпШп-4	46	2000
МКТАШп-4	28	800
МКТП-4	28	700
МКТПБ-4	38	1200
MKTC-4	24	1500

MICTOR A	22	0150
МКТСБ-4	33	2150
МКТСБГ-4	30	1900
МКТСБл-4	35	2250
MKTCK-4	45	4780
МКТСКл-4	48	4950
МКТСШв-4	32	1750

Строительная длина кабелей $500\,\mathrm{m}$, кабеля МКТСК- $4-300\,\mathrm{m}$,МКТСШв- $4-100\,\mathrm{m}$. Допускается сдача кабелей длинами 300 - $500\,\mathrm{m}$ не более 15%, 200 - $300\,\mathrm{m}-10\%$ и 100 - $200\,\mathrm{m}-5\%$ партии (допускается сдача кабеля МКТСШв-4 длинами не менее $50\,\mathrm{m}$ не более 10%). Электрические параметры малогабаритных кабелей приведены в табл. 20.5. Типовая характеристика коэффициента затухания этих кабелей приведена в табл. 20.9.

Магистральные комбинированные кабели связи с ПЭ баллонной изоляцией типа МККПА предназначены для цепей и пучков каналов связи, автоматики и передачи данных с применением систем аппаратуры типов К-12, К-24 РТ, К-60, К-120, К-300 и ИКМ-30(120) на двухкабельной или одно-кабельной линиях связи, проходящих вдоль электрифицированных железных дорог. Цепи обеспечивают передачу дистанционного питания промежуточной аппаратуры постоянным напряжением до 1000 В или переменным напряжением частотой 50 Гц до 690 В.

Комбинированный кабель (рис. 20.5) состоит из коаксиальных пар типа 1,2/4,6 мм, двух высокочастотных и трех низкочастотных четверок жил диаметром 1,05 мм (по изоляции 2,8 мм), пяти сигнальных и одной контрольной жилы диаметром 0,7 мм (по изоляции 1,6 мм).

Токопроводящие жилы симметричных четверок имеют кордельно-трубчатую ПЭ изоляцию. Расцветка жил производится окрашиванием трубки или корделя. Четыре изолированные жилы различного цвета скручены вокруг корделя в четверку с шагом не более 300 мм. Рабочие пары образованы жилами, расположенными по диагонали, имеют расцветку красного или натурального цвета, желтого (синего) и зеленого цветов. Все четверки имеют различные шаги скрутки и обмотку цветной хлопчатобумажной или синтетической пряжей. Сигнальные пары имеют сплошную ПЭ, а контрольная жила — прерывистую ПЭ изоляцию. Сигнальные жилы различного цвета скручены в пары с шагом до 100 мм. Коаксиальные пары, четверки, сигнальные пары и контрольная жила скручены, в кабель с шагом не более 600 мм. (Вокруг четвёрки с бело-желтой нитью расположены по часовой стрелке первая коаксиальная пара, четверки красная и жёлтая, вторая коаксиальная пара, четверки бело-синяя и синяя, между которыми с внешней стороны расположены контрольная жила и сигнальные пары в промежутках между коаксиальными парами и четверками.) Поверх скрученных пар и четверок наложена одна пластмассовая и пять-шесть бумажных лент поясной изоляции или одна пластмассовая, три бумажные ленты и шесть - восемь бумажных корделей.

Поверх поясной изоляции наложены алюминиевая оболочка толщиной $1,8^{-0.3}$ мм, в кабеле МККПГ — свинцовая оболочка и защитные покровы по ГОСТ 7006-72. Строительная длина кабеля $1000\pm15,\,850\pm10$ и 500 ± 10 м. Допускается сдача кабеля длинами от 520 до 839 м и от 100 до 490 м не более 15% партии. Внешний диаметр кабелей приведен ниже.

Внешний диаметр, мм, комбинированных кабелей МККПА и МККП

МККПАШп	32,0
МККПАБл	40,2
МККПАБлГ	33,0
МККПАБп	42,2
МККПАБпШп	41,0
МККПАКл	47,2
МККПАКп	48,2
МККПАКпШп	47,0
МККПГ	25,6

Электрические параметры кабелей приведены в табл. 20.5 (МКТА и МКТС), за исключением электрического сопротивления жил на длине 1 км симметричных четверок диаметром 1,05 мм, сигнальных и контрольной жил диаметром 0,7 мм, которое равно 21,2 и 55,0 Ом соответственно. Сопротивление изоляции четверок и сигнальных пар $10000*10^6$ Ом*км между коаксиальными парами и остальными жилами, соединенными с оболочкой, не менее $1000*10^6$ Ом*км, контрольной жилы — не менее $50*10^6$ Ом*км. Коэффициент затухания в зависимости от частоты соответствует значениям, приведенным выше,

переходное затухание между коаксиальными парами на 60 кГц не менее 106 дБ, между цепями ВЧ четверок на 252 кГц не менее 58,2 дБ (100% значений) и 61,7 дБ (90% значений), защищенность ВЧ четверок на дальнем конце не менее 66,1 дБ (100% значений) и 71,3 дБ (90% значений), рабочая емкость ВЧ четверок не более 24,8 \pm 1,0 нФ/км и НЧ четверок 24,4 \pm 1,3 нФ/км, емкостные связи k_1 , не более 80 пФ, $k_{2,3}$ 950 пФ, емкостная асимметрия $e_{1,2}$ не более 760 пФ, испытательное напряжение между жилами сигнальных пар, внешними проводниками коаксиальных пар и жилами четверок 500 В переменного напряжения в течение 2 мин, между контрольной жилой и всеми остальными жилами, соединенными с оболочкой, 500 В, идеальный коэффициент защитного действия при наведенной продольной ЭДС 30 В/км кабелей МККПАБл, МККПАБл, МККПАБл на 50 Гц не более 0,1, а кабеля МККПАШп не более 0,4.

Рисунок 20.4. Коаксиальная пара малогабаритного коаксиального кабеля

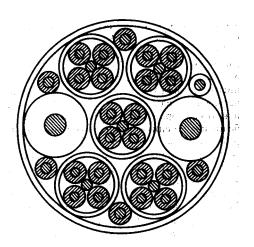


Рисунок 20.5. Схема коаксиального малогабаритного кабеля МКТП-4

Таблица 20.9. Частотная зависимость коэффициента затухания коаксиальных пар 1,2/4,6 мм

f, МГц	α, δБ/км	f, МГц	α, δБ/км	f, МГц	α, δБ/км	f, МГц	α, δБ/км
0,06	1,589	0,70	4,443	1,5	6,551	7,0	14,097
0,10	1,898	0,90	5,056	2,0	7,545	8,0	15,074
0,20	1,501	1,0	5,342	3,0	9,229	9,0	15,996
0,30	2,974	1,1	5,610	4,0	10,652	10,0	16,870
0,40	3,378	1,2	5,865	5,0	11,908	-	-
0,50	3,755	1,3	6,105	6,0	13,047	-	-

20.4. КОАКСИАЛЬНЫЕ КАБЕЛИ ДЛЯ ЗОНОВОЙ СВЯЗИ

Коаксиальные кабели марки ВКПАП для зоновой связи предназначены для работы в диапазоне частот от 60 до 1500 кГц при дистанционном питании переменным напряжением до 1000 В. Кабели могут использоваться для передачи видеосигналов в замкнутых системах в спектре частот до 7,5 МГц.

Внутренний проводник кабеля — медная проволока диаметром 2,14 мм — изолирован пористым полиэтиленом диаметром 9,7 мм. Внешний проводник — трубка из алюминиевой ленты толщиной 0,8 или 1,09 мм с продольным сварным швом. Поверх внешнего проводника наносится вязкий подклеивающий состав и накладывается ПЭ оболочка толщиной 2,1 — 0,3 мм, кабеля ВКПАПт - 2,5, а кабелей ВКПАПут – 3,0 - 0,5 мм. Вязкий подклеивающий состав имеет температуру хрупкости не выше -15°С и размягчения не ниже +60°С, не содержит коррозионно-активных веществ по отношению к алюминиевому внешнему проводнику и обеспечивает продольную герметичность.

В кабелях ВКПАПт и ВКПАПут на коаксиальную пару и стальной несущий трос наложена ПЭ оболочка толщиной 1,5-0,2 и 2,0-0,2 мм соответственно с соединительным промежутком площадью 4*4 и $5*5\pm5$ мм². Поверх ПЭ оболочки в кабелях ВКПАПБГ, ВКПАПБ и ВКПАПБШп накладывается встык стальная лента толщиной 0,3-0,5 мм и в кабеле ВКПАПБШп - ПЭ шланг. В кабеле ВКПАПСтШп стальная лента толщиной 0,3-0,4 мм накладывается продольно и гофрируется (глубина гофра от 1 до 3 мм, а шаг гофрирования — от 4 до 12 мм), покрывается вязким составом и накладывается ПЭ шланг. В кабеле ВКПАПКШп поверх ПЭ оболочки накладывается броня из оцинкованных стальных проволок диаметром 2,8 мм, вязкий подклеивающий состав и ПЭ шланг. Строительная длина кабелей — не менее 800 м. Допускается поставка длинами от 601 до 800 м не более 20%, от 401 до 600 мм не более 25% и от 201 до 400 м не более 10% партии. Внешний диаметр и масса кабелей ВКПАП приведены ниже.

Внешний диаметр и масса однокоаксиальных кабелей с пористой ПЭ изоляцией (2,14/9,7 мм)

-	D, мм	g, кг/км
ВКПАП	$16,4\pm0,8$	268,0
ВКПАПт	17,2 ± 0,8	374,0
	27,2*	
ВКПАПут	18,2 ± 0,8	472,0
	31,8*	
ВКПАПКШп	27,5±1,0	1514,0
ВКПАПБГ	20,8±1,0	596,0
ВКПАПБШп	$26,3\pm1,0$	802,0
ВКПАПБ	25,8±1,0	783,0
ВКПАПСтБГ	27,4±1,0	688,0

^{*} Размер кабеля и троса по высоте.

Электрические параметры этих кабелей приведены в табл. 20.5.

Разрывное усилие троса кабеля ВКПАПт не менее 6,86 кH, а ВКПАПут 14,7 кH. Срок службы кабелей при соблюдении потребителем условий эксплуатации и хранения не менее 20 лет. Алюминиевый внешний проводник и стальная броня на концах кабеля предохранены от коррозии битумом или краской, поверх слоя которых насаживают пластмассовые колпачки путем термоусадки или приварки к ПЭ шлангу. Транспортирование кабелей может производиться при температуре от -40 до +50°С. Барабаны с кабелем должны храниться на площадках при температуре от -50 до +50°С, предохраненными от непосредственного касания с грунтом. Кабели должны прокладываться или подвешиваться и монтироваться при температуре не ниже -10°С. Кабели ВКПАПт и ВКПАПут эксплуатируются на открытом воздухе при температуре от -50 до +50°С в различных метеорологических условиях (дождь, туман, гололед). При механизированной прокладке кабеля допускается натяжение до 980 Н при отсутствии рывков. Наименьший допустимый радиус изгиба должен быть не менее 20 D по алюминиевому внешнему проводнику.

Кабель ВКПАП-10 предназначен для использования в диапазоне частот до 10 МГц. Внутренний проводник этого кабеля имеет диаметр $2,14\pm0,005$ мм, диаметр пористой ПЭ изоляции 9,7 мм, внешний проводник из алюминиевой ленты толщиной 1,0 мм с продольным сварным швом. Отклонения волнового сопротивления $\pm 2,0$ Ом (100% значений) и $\pm 1,5$ Ом (90% значений). Разность концевых значений волнового сопротивления на входе и выходе коаксиальной пары не более 1,5 Ом. Коэффициент отражения в любой точке коаксиальной пары не более $7*10^{-3}$ (100% значений) и не более $5*10^{-3}$ (90% значений), КСВ до 10 МГц — 1,2. Коэффициент затухания на 10 МГц не более 9,72 дБ/км. Внешний диаметр и масса кабеля ВКПАП-10 аналогичны внешнему диаметру и массе кабеля ВКПАП.

20.5. ПОДВОДНЫЕ КОАКСИАЛЬНЫЕ КАБЕЛИ

Коаксиальные кабели КП с ПЭ изоляцией предназначены для подводных магистралей на частоты до 600 КГц и для работы с подводными усилителями с дистанционным питанием постоянным напряжением 3,5 кВ.

Внутренний проводник кабелей КП (рис. 20.6) изготовляют из медных проволок диаметром 3 мм (в центре) и 12 проволок диаметром 1,0 мм в повиве поверх нее. В кабелях КПГК-5/18-4 и КПГК-5/18-6 промежутки между проволоками внутреннего проводника заполнены герметизирующим составом, состоящим из 35% ПЭ и 65% полиизобутилена. Внутренний проводник кабеля КПК-9,2/34,5 изготовляют из медных проволок, в центре — диаметром 4,0 мм, в первом повиве — из 10 проволок диаметром 2,1 мм и во втором повиве — из 8 прямоугольных проволок 3,28*0,5 мм. На внутренний проводник диаметром 5 мм

накладывают изоляцию из ПЭНП диаметром $18,0\pm0,5$ мм эксцентричностью не более 5%, а на проводник диаметром 9,2 мм - изоляцию диаметром $34,5\pm1,0$ мм эксцентричностью не более 7,5%. Поверх изоляции кабеля КПК-5/18 накладывают повив прямоугольных проволок толщиной 0,7 мм, а кабеля КПК-9,2/34,5 — толщиной 0,6 мм и медную ленту толщиной 0,1 мм с перекрытием не менее 15%.

Поверх медной ленты в кабелях КПЭБ-5/18 и КПЭК-5/18 накладывают экран из двух стальных лент толщиной 0,15 мм и двух медных лент толщиной 0,1 мм с перекрытием не менее 15% в последовательности стальная — медная — стальная — медная с чередующимся противоположным их направлением и прорезиненную тканевую или пластмассовую ленты с перекрытием не менее 15%.

Кабели КПЭБ-5/18 и КПЭК-5/18 имеют герметичную оболочку из ПЭНП толщиной 2,0±0,2 мм.

Внешний диаметр, масса и длины подводных коаксиальных кабелей приведены в табл. 20.10, электрические параметры — в табл. 20.11. Значения коэффициента затухания кабелей приведены ниже.

Коэффициент затухания коаксиальных подводных кабелей связи, дБ/км, при 4°С

f,	КПК-5/18-2,6,	КПК-
кГц	КПК-5/18-4, КПК-	- 9,2/34,5-4, КПК
	5/18-6	9,2/34,5-6
36	0,384	-
100	0,656	-
150	0,803	0,452
200	0,928	0,486
250	1,040	0,582
300	1,143	0,651
350	1,238	0,704
400	1,327	0,747
450	1,413	0,799
500	1,493	0,825
560	1,583	0,851

Рисунок 20.6. Подводный коаксиальный кабель КПЭК-5/18

Таблица 20.10. Внешний диаметр D, масса g и длина L коаксиального подводного кабеля

Марка	d	D, мм		g,	L, км	
	стальной проволоки, мм	номинальный	отклонения	кг/км	номинальная	отклонения
КПГК- 5/18-4	4	36,3	±2,2	3677	0,8	±0,1
КПГК- 5/18-6	6	40,3	±2,2	5142	0,8	±0,1
КПК- 5/18-2,6	2,6	24,5	±2,2	2926	34,0	+2,0 -0,5
КПК- 5/18-4	4	36,3	±2,2	3666	34,0	+2,0 -0,5
КПК- 5/18-4	6	40,3	±2,2	5130	34,0	+2,0 -0,5
КПК- 5/18-4+4	4	48,3	±3,0	7296	1,0	0

КПК- 5/18-4+6	4 и 6	52,3	±3,0	9225	1,0	0
КПК- 5/18-6+6	6	56,3	±3,0	11181	1,0	0
КПК- 9,2/34,5-4	4	52,9	±2,5	6625	1,5	±2,5
КПК- 9,2/34,5-6	6	56,9	±2,5	8585	1,5	±2,5
КПЭБ- 5/18	-	37,4	±2,2	2773	0,7	±1,0
КПЭК- 5/18-4	4	43,4	±2,5	4659	0,7	±1,0
КПЭК- 5/18-6	6	47,4	±2,5	6433	0,7	±1,0
КПЭК- 5/18-4+4	4	55,4	±3,3	8968	0,7	±1,0
КПЭК- 5/18-4+6	4 и 6	59,4	±3,3	11070	0,7	±1,0
КПЭК- 5/18-6+6	6	63,4	±3,3	13211	0,7	±1,0

Таблица 20.11. Электрические параметры коаксиальных подводных кабелей связи

Параметр	Частота, кГц	КПК-5/18, КПЭК-5/18, КПЭБ-5/18, КПГК-5/18	КПК- 9,2/34,5
Электрическое сопротивление, Ом/км, не более:	-	1,1	0,375
внутреннего проводника	Постоянный	0,5	0,275
внешнего проводника	ток		
Сопротивление изоляции, 10^6 Ом*км, не менее:	То же	-	-
коаксиальной пары	-	50000	50000
оболочки кабеля	-	10000	-
Емкость коаксиальной пары, мкФ/км, не более	"	0,1	0,1
Волновое сопротивление, Ом	36-560	54,5±5,0	54,5±5,0
Испытательное напряжение, кВ, в течение 2 мин:	-	-	-
между внутренним и внешним проводниками	0,05	5	5
между внешним проводником и броней	0,05	2	-

Отклонение коэффициента затухания отдельных длин кабеля КПК-5/18 от номинальных значений не превышает $\pm 3,0\%$, у 75% сдаваемых партий — не более $\pm 5,0\%$, в кабеля КПК-9,2/34,5-4 не превышает $\pm 10\%$.

Внутренний проводник кабелей КПГК-5/18-4 и КПГК-5/18-6 сохраняет продольную герметичность при давлении 5 МПа после пятикратного, испытания образца кабеля длиной 1 м на барабане с диаметром шейки 1.5 м.

Концы кабеля при транспортировании и хранении должны быть защищены от проникновения влаги, механических повреждений и доступны для измерений. Кабели поставляются в бухтах в трюме судна, баржи или полувагонах, а кабели КПГК-5/18 и КПЭБ-5/18 — на деревянных барабанах при температуре от -30 до +40°C. Хранение кабеля допускается при температурах от -40 до +40°C не более 2 лет. Кабель в бухтах, лежащий на берегу, должен быть защищен от непосредственного воздействия солнца. Срок службы кабеля, включая срок хранения, 12 лет.

20.6. ОПТИЧЕСКИЕ КАБЕЛИ

Передача светового импульса в световоде характеризуется затуханием и дисперсией (уширением импульсов), а также временем пробега. Скорость распространения электромагнитной волны обратно пропорциональна корню из диэлектрической проницаемости среды распространения. Поскольку волокна используются для передачи волн оптического диапазона, то вместо относительной диэлектрической проницаемости обычно пользуются связанным с ней и употребляемым в оптике коэффициентом

преломления $n = \sqrt{E_r \mu_r}$ (для немагнитных материалов $\mu_r = 1$, $n = \sqrt{E_r}$). Наибольшее распространение получили многомодовые волокна. Волокно пропускает свет, заключенный в пределах ограниченного телесного угла, который зависит от показателей преломления материала сердечника n_1 , оболочки n_2 и окружающей среды n_3 . Телесный угол характеризуется числовой апертурой волокна:

$$A = n_3 \sin \theta_{\text{max}} = (n_1^2 - n_2^2)^{1/2}$$

где θ_{max} - половина максимального угла; для воздуха $n_3=1$.

Так, для волокна, имеющего коэффициенты $n_1 = 1,64$ и $n_2 = 1,5$, апертура A = 0,54.

Оптические кабели предназначены для передачи информации в волоконно-оптических линиях связи в условиях фиксированного монтажа на длине волны 0,8 - 0,9 мкм в диапазоне температур от -60 до +70°C. Обозначение оптического кабеля состоит из букв ОК, цифры 50 через дефис, означающий диаметр волокна в мкм, порядкового номера разработки, цифры, обозначающей количество оптических волокон в кабеле, и цифры через дробь, обозначающей количество токопроводящих жил.

Оптические кабели ОК-50 по ТУ 16.705.254-82 предназначены для работы в условиях фиксированного монтажа в диапазоне температур от -30 до $+70^{\circ}$ С. Они изготовляются на основе кварцевого волокна диаметром 50 мкм с затуханием в любом из оптических волокон не более 30 дБ/км. Кабели имеют 1, 2, 4, 6, 8, 10 и 12 оптических волокон (табл. 20.12).

В кабелях марки ОК-50 оптические волокна имеют защитное полиамидное покрытие и располагаются по одному или попарно в трубке из полимерного материала (модульный элемент). По согласованию с потребителями допускается применение оптических волокон без защитного полиамидного покрытия в трубке. Внутри трубки полимерного покрытия толщиной 0,35 мм размещены не менее двух упрочняющих нитей СВМ и заполнение из трех пасм хлопчатобумажных нитей. ПВХ или ПЭ оболочка имеет наружный диаметр 4 мм. Кабели четырех- и восьмиволоконные скручивают вокруг упрочняющего сердечника, состоящего из восьми нитей СВМ № 17 номинальным диаметром 0,2 мм и ПВХ оболочки диаметром 2,4 - 3,1 мм. Оптические волокна с упрочняющими двумя нитями СВМ № 17 и тремя пасмами из хлопчатобумажной пряжи, заключенными в ПВХ трубку толщиной 0,35 мм (диаметр 2,5 мм), скручивают вокруг упрочняющего сердечника с шагом 15 D, продольно накладывают скрепляющую ленту толщиной 0,5 мм, шириной до 30 мм, обматывают пасмой из шести хлопчатобумажных нитей и накладывают ПВХ или ПЭ оболочку наружным диаметром 15 мм.

В кабелях ОК-50 вокруг упрочняющего сердечника, состоящего из десяти нитей СВМ № 17 диаметром по 0,2 мм в ПВХ оболочке (диаметр 2,5 — 3,0 мм), скручены с шагом 15 D кварцевые волокна с полиамидным покрытием диаметром 0,6 - 0,05 мм и ПВХ заполнением диаметром 1,0±0,1 мм, продольно наложена скрепляющая лента толщиной 0,5 мм и шириной 30 мм, обмотанная пасмой из шести хлопчатобумажных нитей, и имеется повив из 12 - 13 трубок из полимерного материала диаметром 1,5±0,1 мм с упрочняющей нитью СВМ № 17 диаметром 0,2 мм и ПВХ или ПЭ оболочка наружным диаметром 15 мм.

В кабелях ОК-50-3 поверх упрочняющего сердечника, состоящего из семи нитей СВМ № 17 диаметром 0,2 мм в ПВХ оболочке диаметром 2,5 - 3,0 мм, скручены с шагом 15 D кварцевые волокна с полиамидным покрытием диаметром 0,6±0,05 мм, ПВХ заполнением диаметром 2,5±0,1 мм с упрочняющими восемью нитями СВМ № 17 диаметром 0,2 мм. Поверх скрученных элементов продольно наложена скрепляющая лента толщиной 0,5 мм и шириной 30 мм, обмотанная пасмой из шести хлопчатобумажных нитей №54, и наложена ПВХ или ПЭ оболочка диаметром до 15 мм. Внутренняя оболочка из ПВХ черного цвета, наружная оболочка из ПВХ пластиката желтого или оранжевого цвета.

Коэффициент затухания в волокнах кабеля не превышает 30 дБ/км. Кабели выдерживают 50 изгибов на угол $\pm 90^{\circ}$ на цилиндр диаметром 10 D. Одно- и двухволоконные кабели выдерживают растягивающее усилие 100 H, четырехволоконные — 200 H, шести-, восьми-, десяти- и двенадцативолоконные — 500 H. Кабель выдерживает раздавливающее радиальное давление не менее 0,25 МПа, устойчив к условиям смены

температур окружающей среды от -30 до +70°C, к воздействию относительной влажности воздуха до 98% при температуре 35°C. Оболочка кабеля устойчива к грибковой плесени и относительной влажности до 98% при температуре 35°C. Срок службы кабелей не менее 3 лет. Строительная длина одно- и двухволоконных кабелей не менее 350 м, четырехволоконных — 200 м, шести- и восьмиволоконных — 100 м.

Кабели могут быть вмонтированы в аппаратуру с использованием различных соединителей и заделок Разделка кабеля должна производиться инструментом, исключающим повреждения кабеля. Монтаж кабеля допускается с помощью любых приспособлений и крепежных элементов, исключающих воздействие, которое может привести к повреждению кабеля.

Таблица 20.12. Конструктивные данные оптических кабелей

Кабель Количество волокон		ество	Номинальный ди мкм	аметр волокна,	D, мм, не более	g, кг/км
	всего	в трубке	с полиамидным покрытием	с покрытием лака	номинальный	не более
OK-50-1- 1/0	1	1	800	150	4,0	25
OK-50-1- 2/0	2	2	800	150	4,0	25
OK-50-1- 4/0	4	1,2	800	150	10	160
OK-50-1-	6	1,2	800	150	15	100
OK-50-1-	8	1,2	800	150	15	150
OK-50-l- 10/0	10	1,2	800	150	15	160
OK-50-l- 12/0	12	-	800	150	15	160
OK-50-2- 4/0	4	-	600	-	10	80
OK-50-2- 6-6/0	6	-	600	-	12	70
OK-50-2- 8/0	8	-	600	-	14	80
OK-50-3-	4	-	600	-	11	130
OK-50-4-	6	-	800	13	13	150
OK-50-4- 8/0	8	-	800	-	14	160

20.7. СИММЕТРИЧНЫЕ ВЫСОКОЧАСТОТНЫЕ КАБЕЛИ С КОРДЕЛЬНО-ПОЛИСТИРОЛЬНОЙ ИЗОЛЯЦИЕЙ

Симметричные высокочастотные кабели связи с кордельно-полистирольной изоляцией в свинцовой, алюминиевой или стальной гофрированной оболочке предназначены для кабельных магистралей, линий зоновой связи и соединительных линий, уплотняемых системами К-60П в диапазоне частот до 252 кГц, системами "Кама" в диапазоне частот до 552 кГц или вторичными цифровыми системами передачи в диапазоне частот до 8448 кГц и работающих при переменном напряжении дистанционного питания до 690 В или до 1000 В постоянного напряжения. Кабели полностью соответствуют СТ СЭВ 4451-83.

Токопроводящие жилы кабелей изготовляют из медной проволоки диаметром 1,2 мм, обмотанной цветной полистирольной нитью (корделем) диаметром 0,8 мм и полистирольной лентой натурального цвета толщиной 0,045 мм, наложенной с перекрытием в сторону, противоположную направлению обмотки нитью. Четыре жилы с изоляцией различного цвета скручивают в четверку с заполнением в центре круглой полистирольной нитью и обматывают цветной хлопчатобумажной или синтетической пряжей или лентой.

Шаги скрутки изолированных жил в четверку различные и не превышают 300 мм. В четверке две жилы, расположенные по диагонали, образуют рабочую пару. Изоляция жил первой пары четверки имеет красный и желтый цвета, второй пары — синий и зеленый. В четырех- и семичетверочных кабелях (4*4 и 7*4) цвета пряжи или ленты всех четверок различные, цвета двух смежных четверок — (счетной и четверки направления) - соответственно красного и зеленого цветов.

Четверки в четырех- и семичетверочных кабелях скручивают в кабель. В центре кабеля 4*4 размещено заполнение из ПЭ или полистирола. Скрученный кабель под свинцовую и стальную оболочку обматывают четырьмя, а под алюминиевую — шестью — восемью лентами кабельной бумаги. Допускается применение в поясной изоляции ПЭ, ПЭТФ, ПА или других лент из синтетических материалов. Под или между лентами поясной изоляции или под оболочкой (экраном) проложена мерная лента, на которой не более чем через каждые 200 мм нанесены деления с цифрами, позволяющие определить длину кабеля с погрешностью не более ±0,5%, а также товарный знак предприятия-изготовителя и год изготовления.

В кабелях МКСГ, МКСГШп, МКСБ, МКСБШп, МКСБпШп, МКСБл, МКСБГ, МКСГСтпШп, МКСК, МКСКл поверх поясной изоляции накладывают свинцовую оболочку, в кабеля МКСАШп (рис. 20.7), МКСАБпШп, МКСАБп, МКСАБпГ, МКСАСстШп и МКСАКпШп - алюминиевую оболочку и в кабелях МКССтШп — экран из алюминиевой фольги толщиной 0,20 мм ±7,5%, медную проволоку диаметром 0,3 - 0,4 мм, ПЭ или ПЭТФ ленту и; стальную гофрированную герметичную оболочку толщиной 0,4 мм — 10%. Форма гофров синусоидальная, глубина гофров — в пределах 1,3 — 2,0 мм, шаг гофрирования 5 - 7,5 мм.

Поверх металлической оболочки на кабели накладывают защитные покровы по ГОСТ 7006-72. Подушка покровов типа Бп, БпШп, КпШп, БпГ и наружный покров типа Шп поверх оболочки не имеют ПЭТФ, ПА или других равноценных лент. Защитный покров кабелей марок МКСГСстШп и МКСАСтпШп имеет вязкий подклеивающий состав, ПЭ шланг, броню из стальной гофрированной ленты толщиной 0,4 мм, вязкий подклеивающий состав и полиэтиленовый шланг.

Вязкий состав состоит из битума (87%) и добавки (13%) машинного масла (80%) и полиизобутилена (20%). Он эластичен при низких температурах, и температура его хрупкости не выше -15°С, каплепадение не ниже 50°С, коррозионно-устойчив к металлической оболочке, а также обеспечивает продольную герметичность между оболочкой и ПЭ шлангом. Максимальный внешний диаметр кабелей соответствует табл. 20.13. Максимальный внешний диаметр кабелей в тропическом исполнении может быть на 5 мм больше указанных в табл. 20.13. Строительная длина кабелей 825±6 мм или 838±6 м. По соглашению изготовителя с потребителем допускается поставка кабеля большими длинами. Допускаются поставки кабелей длинами от 600 до 818 м не более 10% и кабелей длинами от 100 до 599 м не более 4%.

В готовом кабеле на верхнем конце (A) цвета изоляции жил в четверках в направлении по часовой стрелке должны чередоваться в последовательности красный, зеленый, желтый, синий, а цвета пряжи или ленты четверок — от красного к зеленому. На нижнем конце кабеля (Б) цвета должны чередоваться в том же порядке, но в направлении против часовой стрелки.

Электрические параметры кабелей при температуре 20°C соответствуют значениям, приведенным в табл. 20.14.

Частотная зависимость коэффициента затухания кабелей в свинцовых, алюминиевых и стальных гофрированных оболочках приведена в табл. 20.15.

Отклонения среднего значения коэффициента затухания от номинального не более 0,043 дБ/км. Идеальный коэффициент защитного действия (КЗД) металлических покровов при продольной ЭДС 40 В/км при частоте 50 Γ ц кабеля МКСАШп 1*4 0,85 B, а 4*4 или 7*4 0,65 B, кабелей МКСАБп, МКСАБп Γ и МКСАБпШп 1*4 при продольной ЭДС 40-150 В/км 0,30 B, а 4*4 и 7*4 следующий:

Продольная ЭДС, В/км	10	30	50	100
КЗД, В	0,33	0,24	0,17	0,11
Продольная ЭДС, В/км	150	200	250	300
КЗД, В	0,11	0,12	0,14	0,16

КЗД кабелей МКСБ, МКСБГ, МКСБл, МКСБШп, МКСБпШп 4*4 или 7*4 при продольной ЭДС 40 - 250 В равен 0,7 В, кабеля МКССтШп 4*4 0,7 В, а 7*4 0,65 В.

Среднее значение рабочей емкости в строительной длине соответствует группам, указанным в табл. 20.16. Электрические параметры кабелей, герметичность оболочки и шланга после двухкратной перемотки должны соответствовать табл. 20.14.

Симметричные высокочастотные кабели с кордельно-полистирольной изоляцией в алюминиевой и свинцовой оболочках марок МКСАСПБ и МКСАСПБп предназначены для кабельных магистралей с диапазоном частот до 252 кГц (уплотняемых системами К-60П), работающих при напряжении дистанционного питания 690 В, частотой 50 Гц или 1000 В постоянного напряжения.

Конструкция этих кабелей соответствует ГОСТ 15125-76. Диаметр кабеля КМСАСПБ 4*4*1,2 мм 35,4 мм, масса 2580 кг/км, диаметр кабеля МКСАСПБп 4*4*1,2 мм 36,6 мм, масса 2490 кг/км, диаметр кабеля МКСАСПБп 7*4*1,2 мм 42,0 мм и масса 3515 кг/км.

Электрическое сопротивление параллельно соединенных алюминиевой и свинцовой оболочек и брони кабеля 7*4*1,2 мм на длине 1 км не более 0,4 Ом. Отклонение среднего значения коэффициента затухания от номинального не более $\pm 0,43$ дБ/км.

Концы кабеля в алюминиевой оболочке должны быть защищены от попадания влаги и коррозии. Алюминиевая оболочка с торцов должна быть запаяна и покрыта битумом, масляной или нитрокраской. К ПЭ шлангу должен быть приварен пластмассовый колпачок или плотно насажен колпачок из термоусаживаемой пластмассы с вязким подклеивающим составом.

Концы кабеля в стальной гофрированной оболочке или броне должны быть покрыты битумом или нитро- или масляной краской. Концы кабеля между оболочкой и гофрированной броней с торца должны быть обмотаны ПВХ лентой или пропитанной кабельной пряжей, промазаны битумом или краской и обмотаны ПВХ лентой с клеящим подслоем. К ПЭ шлангу должен быть приварен пластмассовый колпачок или плотно насажен колпачок из термоусаживаемой пластмассы с вязким подклеивающим составом.

Механические характеристики свинцовых, алюминиевых и стальных оболочек кабелей с кордельнополистирольной изоляцией и допустимые растягивающие усилия кабелей приведены в табл. 20.17.

Кабели должны отгружаться, храниться и транспортироваться под избыточным давлением воздуха или инертного газа внутри кабеля, равным 0.06 - 0.1 МПа, при температуре окружающей среды от -50 до +40°C, а транспортироваться при температуре от -30 до +40°C.

Кабели предназначены для прокладки ручным и механизированным способом при температуре от -15 до +40°С. При прокладке кабелей допускается не более двух двойных изгибов кабеля в свинцовой оболочке на радиус не менее 12,5 D, а кабелей в стальной и алюминиевой оболочке - на радиус не менее 15D. Допускается эксплуатация кабелей под избыточным давлением воздуха или инертного газа внутри кабеля 0,05 — 0,06 МПа при относительной влажности не более 15% при 20°С. В период прокладки и монтажа кабеля должны быть приняты меры, исключающие попадание влаги или почвенных электролитов под оболочку кабеля через его концы. Подача внутрь кабеля веществ, вредно воздействующих на его изоляцию (жидкий фреон и др.), не допускается.

Рисунок 20.7. Схема магистрального кабеля с кордельно-полистирольной изоляцией МКСАШлп

Таблица 20.13. Диаметр и масса кабелей с кордельно-полистирольной изоляцией

Марка	D, мм			g, кг/км		
	1*4*1,2	4*4*1,2	7*4*1,2	1*4*1,2	4*4*1,2	7*4*1,2
МКСАШп	16,4	24,7	29,8	271	594	865
МКСАБп	-	32,5	38,2	-	1413	1876

МКСАБП* - 32,5 38,2 - 1350 1802 МКСАБП 20,0 28,1 33,8 548 1113 1528 МКСАБПШП 20,0 28,1 33,8 741 1413 1877 МКСАСТПШП 24,4 32,2 - 644 1078 - МКСАКПШП - 39,2 45,3 - 3335 4136 МКССТШП - 28,5 33,2 - 772 1040 МКСГ - 18,7 23,9 - 1076 1593 МКСБ - 18,7 23,9 - 1076 1593 МКСБ - 29,8 34,8 - 1835 2428 МКСБ* - 29,8 34,8 - 1777 2360 МКСБ - 29,8 34,8 - 1777 2360 МКСБ - 31,2 36,2 - 1931 2537										
МКСАБПШП 20,0 28,1 33,8 741 1413 1877 МКСАСТПШП 24,4 32,2 - 644 1078 - МКСАКПШП - 39,2 45,3 - 3335 4136 МКССТШП - 28,5 33,2 - 772 1040 МКСГ - 18,7 23,9 - 1076 1593 МКСБ - 29,8 34,8 - 1835 2428 МКСБ* - 29,8 34,8 - 1777 2360 МКСБ - 31,2 36,2 - 1931 2537 МКСБ - 31,2 36,2 - 1870 2466 <t< td=""><td>МКСАБп*</td><td>-</td><td>32,5</td><td>38,2</td><td>-</td><td>1350</td><td>1802</td></t<>	МКСАБп*	-	32,5	38,2	-	1350	1802			
МКСАСтпШп 24,4 32,2 - 644 1078 - МКСАКпШп - 39,2 45,3 - 3335 4136 МКССТШп - 28,5 33,2 - 772 1040 МКСГ - 18,7 23,9 - 1076 1593 МКСБ - 29,8 34,8 - 1835 2428 МКСБ* - 29,8 34,8 - 1777 2360 МКСБ 17,0 25,4 30,4 751 1567 2112 МКСБл* - 31,2 36,2 - 1931 2537 МКСБл* - 31,2 36,2 - 1870 2466 МКСБп* - 31,2 36,2 - 1870 2466 МКСБпШп 22,1 31,1 36,1 918 1835 2429 МКСГстиШп 24,4 32,2 - 946 1668 - <	МКСАБпГ	20,0	28,1	33,8	548	1113	1528			
МКСАКпШп - 39,2 45,3 - 3335 4136 МКССТШп - 28,5 33,2 - 772 1040 МКСГ - 18,7 23,9 - 1076 1593 МКСГШп 14,2 22,0 27,4 533 1093 1559 МКСБ - 29,8 34,8 - 1835 2428 МКСБ* - 29.8 34,8 - 1777 2360 МКСБП 17,0 25,4 30,4 751 1567 2112 МКСБл - 31,2 36,2 - 1931 2537 МКСБл* - 31,2 36,2 - 1870 2466 МКСБл* - 31,2 36,2 - 1870 2466 МКСБл 22,1 31,1 36,1 918 1835 2429 МКСБлШп 24,4 32,2 - 946 1668 - <t< td=""><td>МКСАБпШп</td><td>20,0</td><td>28,1</td><td>33,8</td><td>741</td><td>1413</td><td>1877</td></t<>	МКСАБпШп	20,0	28,1	33,8	741	1413	1877			
МКССтШп - 28,5 33,2 - 772 1040 МКСГ - 18,7 23,9 - 1076 1593 МКСГШп 14,2 22,0 27,4 533 1093 1559 МКСБ - 29,8 34,8 - 1835 2428 МКСБ* - 29.8 34,8 - 1777 2360 МКСБ 17,0 25,4 30,4 751 1567 2112 МКСБ - 31,2 36,2 - 1931 2537 МКСБ - 31,2 36,2 - 1870 2466 МКСБ - 31,2 36,2 - 1870 2466 МКСБ - 31,2 36,2 - 1870 2466 МКСБ - 31,1 36,1 918 1835 2429 МКСБ 33,5 39,1 1027 1994 2652 МКСК	МКСАСтпШп	24,4	32,2	-	644	1078	-			
МКСГ - 18,7 23,9 - 1076 1593 МКСГШп 14,2 22,0 27,4 533 1093 1559 МКСБ - 29,8 34,8 - 1835 2428 МКСБ* - 29,8 34,8 - 1777 2360 МКСБП 17,0 25,4 30,4 751 1567 2112 МКСБп - 31,2 36,2 - 1931 2537 МКСБп* - 31,2 36,2 - 1870 2466 МКСБпШп 22,1 31,1 36,1 918 1835 2429 МКСБпШп 24,5 33,5 39,1 1027 1994 2652 МКСГстпШп 24,4 32,2 - 946 1668 - МКСК - 38,5 43,7 - 4033 5086 МКСК - 38,5 43,7 - 4214 5280	МКСАКпШп	-	39,2	45,3	-	3335	4136			
МКСГШп 14,2 22,0 27,4 533 1093 1559 МКСБ - 29,8 34,8 - 1835 2428 МКСБ* - 29.8 34,8 - 1777 2360 МКСБГ 17,0 25,4 30,4 751 1567 2112 МКСБп - 31,2 36,2 - 1931 2537 МКСБп** - 31,2 36,2 - 1870 2466 МКСБШп 22,1 31,1 36,1 918 1835 2429 МКСБпШп 24,5 33,5 39,1 1027 1994 2652 МКСГСтпШп 24,4 32,2 - 946 1668 - МКСК - 38,5 43,7 - 4033 5086 МКСКл - 38,5 43,7 - 3958 5001 МКСКл - 39,9 45,1 - 4135 5191	МКССтШп	-	28,5	33,2	-	772	1040			
МКСБ - 29,8 34,8 - 1835 2428 МКСБ* - 29.8 34,8 - 1777 2360 МКСБП 17,0 25,4 30,4 751 1567 2112 МКСБП - 31,2 36,2 - 1931 2537 МКСБП* - 31,2 36,2 - 1870 2466 МКСБШп 22,1 31,1 36,1 918 1835 2429 МКСБпШп 24,5 33,5 39,1 1027 1994 2652 МКСГСтпШп 24,4 32,2 - 946 1668 - МКСК - 38,5 43,7 - 4033 5086 МКСК* - 38,5 43,7 - 3958 5001 МКСКл - 39,9 45,1 - 4135 5191	МКСГ	-	18,7	23,9	-	1076	1593			
МКСБ* - 29.8 34,8 - 1777 2360 МКСБГ 17,0 25,4 30,4 751 1567 2112 МКСБл - 31,2 36,2 - 1931 2537 МКСБл* - 31,2 36,2 - 1870 2466 МКСБІШп 22,1 31,1 36,1 918 1835 2429 МКСБпШп 24,5 33,5 39,1 1027 1994 2652 МКСГСтпШп 24,4 32,2 - 946 1668 - МКСК - 38,5 43,7 - 4033 5086 МКСК* - 38,5 43,7 - 3958 5001 МКСКл - 39,9 45,1 - 4214 5280 МКСКл* - 39,9 45,1 - 4135 5191	МКСГШп	14,2	22,0	27,4	533	1093	1559			
МКСБГ 17,0 25,4 30,4 751 1567 2112 МКСБл - 31,2 36,2 - 1931 2537 МКСБл* - 31,2 36,2 - 1870 2466 МКСБШп 22,1 31,1 36,1 918 1835 2429 МКСБпШп 24,5 33,5 39,1 1027 1994 2652 МКСГСтпШп 24,4 32,2 - 946 1668 - МКСК - 38,5 43,7 - 4033 5086 МКСК* - 38,5 43,7 - 3958 5001 МКСКл - 39,9 45,1 - 4214 5280 МКСКл* - 39,9 45,1 - 4135 5191	МКСБ	-	29,8	34,8	-	1835	2428			
МКСБл - 31,2 36,2 - 1931 2537 МКСБл* - 31,2 36,2 - 1870 2466 МКСБШп 22,1 31,1 36,1 918 1835 2429 МКСБпШп 24,5 33,5 39,1 1027 1994 2652 МКСГСтпШп 24,4 32,2 - 946 1668 - МКСК - 38,5 43,7 - 4033 5086 МКСК* - 38,5 43,7 - 3958 5001 МКСКл - 39,9 45,1 - 4214 5280 МКСКл* - 39,9 45,1 - 4135 5191	МКСБ*	-	29.8	34,8	-	1777	2360			
МКСБл* - 31,2 36,2 - 1870 2466 МКСБШп 22,1 31,1 36,1 918 1835 2429 МКСБпШп 24,5 33,5 39,1 1027 1994 2652 МКСГСтпШп 24,4 32,2 - 946 1668 - МКСК - 38,5 43,7 - 4033 5086 МКСК* - 38,5 43,7 - 3958 5001 МКСКл - 39,9 45,1 - 4214 5280 МКСКл* - 39,9 45,1 - 4135 5191	МКСБГ	17,0	25,4	30,4	751	1567	2112			
МКСБШп 22,1 31,1 36,1 918 1835 2429 МКСБпШп 24,5 33,5 39,1 1027 1994 2652 МКСГСтпШп 24,4 32,2 - 946 1668 - МКСК - 38,5 43,7 - 4033 5086 МКСК* - 38,5 43,7 - 3958 5001 МКСКл - 39,9 45,1 - 4214 5280 МКСКл* - 39,9 45,1 - 4135 5191	МКСБл	-	31,2	36,2	-	1931	2537			
МКСБпШп 24,5 33,5 39,1 1027 1994 2652 МКСГСтпШп 24,4 32,2 - 946 1668 - МКСК - 38,5 43,7 - 4033 5086 МКСК* - 38,5 43,7 - 3958 5001 МКСКл - 39,9 45,1 - 4214 5280 МКСКл* - 39,9 45,1 - 4135 5191	МКСБл*	-	31,2	36,2	-	1870	2466			
МКСГСтпШп 24,4 32,2 - 946 1668 - МКСК - 38,5 43,7 - 4033 5086 МКСК* - 38,5 43,7 - 3958 5001 МКСКл - 39,9 45,1 - 4214 5280 МКСКл* - 39,9 45,1 - 4135 5191	МКСБШп	22,1	31,1	36,1	918	1835	2429			
МКСК - 38,5 43,7 - 4033 5086 МКСК* - 38,5 43,7 - 3958 5001 МКСКл - 39,9 45,1 - 4214 5280 МКСКл* - 39,9 45,1 - 4135 5191	МКСБпШп	24,5	33,5	39,1	1027	1994	2652			
МКСК* - 38,5 43,7 - 3958 5001 МКСКл - 39,9 45,1 - 4214 5280 МКСКл* - 39,9 45,1 - 4135 5191	МКСГСтпШп	24,4	32,2	-	946	1668	-			
МКСКл - 39,9 45,1 - 4214 5280 МКСКл* - 39,9 45,1 - 4135 5191	МКСК	-	38,5	43,7	-	4033	5086			
МКСКл* - 39,9 45,1 - 4135 5191	МКСК*	-	38,5	43,7	-	3958	5001			
	МКСКл	-	39,9	45,1	-	4214	5280			
* Подушка из стеклопряжи	МКСКл*	-	39,9	45,1	-	4135	5191			
	* Подушка из с	* Подушка из стеклопряжи								

Таблица 20.14. Электрические параметры магистральных симметричных высокочастотных кабелей

Параметр	Частота, кГц	MKC, MKCA, MKCCT	МКПуА	МКБА	МКБ	Коэффициент пересчета на другую длину
Электрическое сопротивление жилы на длине 1 км, Ом, не более, диаметром, мм		-	-	-	-	L/1000
1,20	-	15,85	15,95	15,95	15,95	-
1,05	-	-	21,25	-	-	-
0,90	-	-	-	30,0	-	-
Асимметрия электрического сопротивления, Ом, не более	То же	0,19	0,17	0,17	0,17	$\sqrt{L/l}$
Сопротивление изоляции, 10^6 Ом*км, не менее	22	10000	15000	10000	12000	1000/L
Рабочая емкость пары жил, нФ/км, не более	- , -	-	-	-	-	L/1000
1*4	-	25,6	-	-	26,7	-
4*4	-	24,5	-	-	±1,0	-
7*4	-	25,0	31,5	27,7+1,3	-	-
14*4	-	-	31,5	26,7+1,0	-	-
Отклонение рабочей емкости пары жил,	0,8	±0,8	±0,8	±1,3	-	L/1000

уплотняемых системами K-60, ${\rm H}\Phi/{\rm KM}$						
Коэффициент	0,8	См.	0,417	0,391	0,391	L/1000
затухания, дБ/км, не более	110	табл. 20.15	1,781	1,749	1,749	-
Облес	150	20.13	-	2,173	2,173	-
	250		2,650	2,865	2,865	-
Переходное затухание на ближнем конце кабеля длиной 325 м, уплотняемого системой К-60, дБ:		1	-	-	-	-101g <u>L</u> 825
для 100%	-	59	59,2	58,3	59,1	-
значений						
для 90% значений	-	62	62,5	61,7	61,7	-
Защищенность на дальнем конце кабеля, уплотняемого системой К-60, дБ:	До 252	1	-	-	-	$-10 \lg \frac{L}{825}$
для 100% значений	-	68	66,0	67,8	67,8	-
для 90% значений	-	74	72,1	70,4	70,4	-
Емкостные связи, пФ, не более:	0,8	-	-	-	-	L/l
k_1 - для 100% значений	-	-	-	100	260	-
k_2 и k_3 - для 100% значений	-	580	800	800	-	-
Асимметрия емкостных связей, нФ, не более (для 100% значений)	0,8	1	-	1200	1000	-
Идеальный	0,05	-	0,70	0,10	0,20	-
коэффициент защитного действия металлических оболочек и брони	0,8	-	0,20	0,02	-	-
Испытательное напряжение, кВ:	0,05	-	-	-	-	-
между всеми жилами и оболочкой	-	2,0	5,0	1,8	1,8	-
между жилами в четверке	-	1,3	-	1,0	1,0	-
между жилами сигнальных пар и контрольной жилой и всеми четверками	-	-	5,0; 10,0	0,7	-	-
Сопротивление изоляции между алюминиевой оболочкой и водой, броней, 10 ⁶ Ом*км, не менее	Постоянный ток ток рактическая длина	20 кабеля, м;	100 1 – номинальн	ая длина кабе	100	1000/L

Таблица 20.15. Коэффициент затухания, дБ/км, кабелей с кордельно-полистирольной изоляцией

Частота,	1 * 4	4 * 4			7 * 4	* 4			
кГц	В	В	В	В	Централь	Чет	верки внешнег	о повива	
	алюминие вой оболочке	свинцовой оболочке	алюминие вой оболочке	стальной гофриро ванной оболочке	ной четверки	В свинцовой оболочке	В алюминиевой оболочке	В стальной гофрированной оболочке	
10	0,76	0,76	0,74	0,74	0,70	0,70	0,66	0,74	
20	0,88	0,88	0,85	0,89	0,85	0,88	0,79	0,89	
30	0,99	0,98	0,96	1,00	0,94	0,98	0,89	1,01	
50	1,19	1,19	1,15	1,19	1,15	1,19	1,09	1,20	
100	1,64	1,66	1,58	1,60	1,60	1,65	1,55	1,64	
150	2,01	2,05	1,94	1,95	1,92	2,04	1,82	1,99	
200	2,32	2,37	2,22	2,22	2,23	2,34	2,17	2,28	
250	2,59	2,65	2,48	2,49	2,49	2,61	2,43	2,54	
300	2,83	2,91	2,70	2,74	2,70	2,86	2,62	2,77	
350	3,01	2,14	2,91	2,95	2,94	3,08	2,86	2,99	
400	3,21	3,37	3,11	3,14	3,12	3,29	3,07	3,20	
450	3,43	3,58	3,29	3,33	3,32	3,49	3,18	3,39	
500	3,65	3,78	3,47	3,50	3,51	3,67	3,40	3,56	
550	3,82	3,98	3,64	3,67	3,67	3,84	3,60	3,73	

Таблица 20.16. Средняя рабочая емкость, нФ/км, кабелей с кордельно-полистирольной изоляцией

оболочкеоболочкегофрированной оболочкегофрированной оболочки023,5-23,723,0-23,2I23,2-25,424,8-25,023,7-23,923,2-23,4II25,4-25,625,0-25,223,9-24,123,4-23,6III25,6-25,825,2-25,424,1-24,323,6-23,8IV25,8-26,025,4-25,624,3-24,523,8-24,0V26,0-26,225,6-25,824,5-24,724,0-24,2VI26,2-26,425,8-26,024,7-24,924,2-24,4VII26,4-26,626,0-26,224,9-25,124,4-24,6VIII26,6-26,826,2-26,425,1-25,324,6-24,8	Номер группы	1 * 4		4 * 4 * 1,2 и 7 * 4 * 1,2	7 * 4 * 1,2
I 23,2-25,4 24,8-25,0 23,7-23,9 23,2-23,4 II 25,4-25,6 25,0-25,2 23,9-24,1 23,4-23,6 III 25,6-25,8 25,2-25,4 24,1-24,3 23,6-23,8 IV 25,8-26,0 25,4-25,6 24,3-24,5 23,8-24,0 V 26,0-26,2 25,6-25,8 24,5-24,7 24,0-24,2 VI 26,2-26,4 25,8-26,0 24,7-24,9 24,2-24,4 VII 26,4-26,6 26,0-26,2 24,9-25,1 24,4-24,6 VIII 26,6-26,8 26,2-26,4 25,1-25,3 24,6-24,8				гофрированной	гофрированной
II 25,4-25,6 25,0-25,2 23,9-24,1 23,4-23,6 III 25,6-25,8 25,2-25,4 24,1-24,3 23,6-23,8 IV 25,8-26,0 25,4-25,6 24,3-24,5 23,8-24,0 V 26,0-26,2 25,6-25,8 24,5-24,7 24,0-24,2 VI 26,2-26,4 25,8-26,0 24,7-24,9 24,2-24,4 VII 26,4-26,6 26,0-26,2 24,9-25,1 24,4-24,6 VIII 26,6-26,8 26,2-26,4 25,1-25,3 24,6-24,8	0	-	-	23,5-23,7	23,0-23,2
III 25,6-25,8 25,2-25,4 24,1-24,3 23,6-23,8 IV 25,8-26,0 25,4-25,6 24,3-24,5 23,8-24,0 V 26,0-26,2 25,6-25,8 24,5-24,7 24,0-24,2 VI 26,2-26,4 25,8-26,0 24,7-24,9 24,2-24,4 VII 26,4-26,6 26,0-26,2 24,9-25,1 24,4-24,6 VIII 26,6-26,8 26,2-26,4 25,1-25,3 24,6-24,8	Ι	23,2-25,4	24,8-25,0	23,7-23,9	23,2-23,4
IV 25,8-26,0 25,4-25,6 24,3-24,5 23,8-24,0 V 26,0-26,2 25,6-25,8 24,5-24,7 24,0-24,2 VI 26,2-26,4 25,8-26,0 24,7-24,9 24,2-24,4 VII 26,4-26,6 26,0-26,2 24,9-25,1 24,4-24,6 VIII 26,6-26,8 26,2-26,4 25,1-25,3 24,6-24,8	II	25,4-25,6	25,0-25,2	23,9-24,1	23,4-23,6
V 26,0-26,2 25,6-25,8 24,5-24,7 24,0-24,2 VI 26,2-26,4 25,8-26,0 24,7-24,9 24,2-24,4 VII 26,4-26,6 26,0-26,2 24,9-25,1 24,4-24,6 VIII 26,6-26,8 26,2-26,4 25,1-25,3 24,6-24,8	III	25,6-25,8	25,2-25,4	24,1-24,3	23,6-23,8
VI 26,2-26,4 25,8-26,0 24,7-24,9 24,2-24,4 VII 26,4-26,6 26,0-26,2 24,9-25,1 24,4-24,6 VIII 26,6-26,8 26,2-26,4 25,1-25,3 24,6-24,8	IV	25,8-26,0	25,4-25,6	24,3-24,5	23,8-24,0
VII 26,4-26,6 26,0-26,2 24,9-25,1 24,4-24,6 VIII 26,6-26,8 26,2-26,4 25,1-25,3 24,6-24,8	V	26,0-26,2	25,6-25,8	24,5-24,7	24,0-24,2
VIII 26,6-26,8 26,2-26,4 25,1-25,3 24,6-24,8	VI	26,2-26,4	25,8-26,0	24,7-24,9	24,2-24,4
	VII	26,4-26,6	26,0-26,2	24,9-25,1	24,4-24,6
IX - 25,3-25,5 24,8-25,0	VIII	26,6-26,8	26,2-26,4	25,1-25,3	24,6-24,8
	IX	-	-	25,3-25,5	24,8-25,0

Примечание. Номера групп 0 и IX относятся к кабелям в стальной гофрированной оболочке и с круглой проволочной броней.

Таблица 20.17. Механические характеристики свинцовых, алюминиевых и стальных оболочек

Параметр	1 * 4 * 1,2	4 * 4 * 1,2	7 * 4 * 1,2
Прочность оболочек на раздавливание, Н/мм, не менее:		-	-
свинцовой	-	2	-
алюминиевой	17,6	10,8	8,8

стальной	-	24,5	-
Число двойных перегибов оболочек вокруг цилиндра $D=750$ мм:	-	-	-
свинцовой	-	12	6
алюминиевой	18	10	5
стальной	-	25	25
Допустимые растягивающие усилия кабеля в оболочках, Н:	ı	ı	1
свинцовой	-	735	980
свинцовой и в броне Б	-	1225	1470
алюминиевой	1470	2450	3185
алюминиевой и в броне Б	2450	2940	3675
стальной	-	2940	3675

20.8. СИММЕТРИЧНЫЕ КАБЕЛИ С КОРДЕЛЬНО-ТРУБЧАТОЙ ПЭ ИЗОЛЯЦИЕЙ

Симметричные магистральные кабели связи с кордельно-трубчатой ПЭ изоляцией в алюминиевой (МКПА) или свинцовой (МКП) оболочке предназначены для прокладки вдоль железных дорог и устройства вводов. Высокочастотные цепи кабелей уплотняются системами К-60, обеспечивают передачу дистанционного питания промежуточной аппаратуры постоянным напряжением до 1000 В или переменным до 690 В.

Токопроводящие жилы из медной проволоки диаметром 1,05 мм обматывают ПЭ корделем диаметром 0,65 мм и накладывают ПЭ трубку толщиной стенки 0,23 мм (внешний диаметр жилы 2,8 мм). Четыре изолированные жилы разного цвета корделя или трубки скручивают вокруг ПЭ корделя диаметром 1,05 мм в четверку (диаметр четверки 6,7 мм) с шагом не более 300 мм. Жилы сигнальных пар изготовляют из медной проволоки диаметром 0,7 мм со сплошной ПЭ изоляцией толщиной 0,45 мм (диаметр по изоляции 1,6 мм). Контрольная жила диаметром 0,7 мм имеет прерывистую ПЭ изоляцию толщиной 0,45 мм. Все высокочастотные четверки имеют различные шаги скрутки и цвета пряжи, применяемые для расцветки четверок, отличные от шагов скрутки низкочастотных четверок. В несмежных низкочастотных четверках допускаются одинаковые шаги скрутки. Жилы, скрученные в сигнальные пары с шагом не более 100 мм, имеют различную расцветку изоляции.

Четверки, сигнальные пары и контрольная жила скручиваются в кабель с шагом

не более 25 D. Конструкции кабелей 4*4, 7*4, 14*4 приведены в табл. 20.18. Кабели 4*4 имеют высокочастотные четверки, одну сигнальную пару и одну контрольную жилу. Кабели 7*4 изготовляют с четырьмя высокочастотными и тремя низкочастотными четверками, пятью сигнальными парами и одной контрольной жилой. Допускается изготовление кабелей без сигнальных пар. Кабели 14*4 изготовляют с пятью высокочастотными и девятью низкочастотными четверками, пятью сигнальными парами и одной контрольной жилой. Поверх скрученных элементов накладывают поясную изоляцию, состоящую из одной ПЭ ленты толщиной 0,1 мм, одной ленты бумаги К-120, повива из шести — восьми нитей бумажного корделя К-081, трех бумаг КМП-120 толщиной 1,45 мм. Поверх поясной изоляции кабеля 4*4 накладывают алюминиевую оболочку толщиной 2,4 мм, а на кабели 7*4 и 14*4 — 1,8 мм или свинцовую оболочку и защитные покровы по ГОСТ 7006-72.

Кабель МКПГ поверх поясной изоляции имеет оболочку из сурьмянистого свинца толщиной 1,32 - 1,79 мм в зависимости от диаметра кабеля и смазку поверх оболочки.

Внешний диаметр и масса кабелей приведены в табл. 20.18, а электрические параметры кабелей — в табл. 20.14. Допускается для 2% измеренных значений в низкочастотных четверках:

 k_1 , $\pi\Phi$, не более 120 $k_{2,3}$, $\pi\Phi$, не более 1500 e_1 - e_2 , $\pi\Phi$, не 1200 более

Кабель при прокладке не должен испытывать более двух двойных изгибов диаметром менее 30 D.

Кабели выпускают длиной 425±5 или 850±10 м. Допускается сдача кабеля длиной 500 - 839 и 100 - 419 м в количестве до 5% кабелей МКПАБ и МКПАК и до 15% кабелей МКПАП, МКПАБП и МКПАПКП. Кабели должны транспортироваться и храниться на барабанах, обшитых досками, при внутреннем избыточном давлении под металлической оболочкой 0,06 - 0,11 МПа. Воздушная среда, в которой хранятся или транспортируются барабаны с кабелем, не должна содержать паров щелочей, кислот, органических растворителей и других химических веществ, вредно действующих на покровы кабелей. При хранении кабели должны быть защищены от действия прямых солнечных лучей, а при хранении более 1 мес. - от непосредственного соприкосновения с грунтом. Температура окружающей среды, при которой должны храниться кабели МКПАБ и МКПАБ, должна быть в пределах от -50 до +40°C, а МКПАП, МКПАБП и МКПАПКП - от -40 до +40°C.

Таблица 20.18. Внешний диаметр D, мм, и масса g, кг/км, кабелей с кордельно-трубчатой ПЭ изоляцией в алюминиевой или свинцовой оболочке

Конструкция кабеля	МКПАШ п	МКПАБл	МКПАБп	МКПАБп Шп	МКПАКл	МКПАКп	МКПАКп Шп	MKIII
D								
4*4*1,05±1*2*0,70±1*0,70	29,4	37,4	39,6	38,6	-	-	-	21,2
7*4*1,05±1*0,70	32,2	40,2	42,4	41,4	47,2	48,4	47,4	25,4
7*4*1,05±5*2*0,70±1*0,70	32,2	40,2	42,4	41,4	47,2	48,4	47,4	25,4
14*4*1,05±5*2*0,7±1*0,70	40,9	48,9	51,5	50,5	55,9	57,5	56,5	34,7
g								
4*4*1,05±1*2*0,7±1*0,70	933	1790,9	2147	1970	-	-	-	1280
7*4*1,05±1*0,70	1020	1857,1	2338	2148	4429	4646	4429	1683
7*4*1,05±5*2*0,70±1*0,70	1071	2249	2489	2199	4429	4697	4480	1734
14*4*1,05±5*2*0,70±1*0,70	1608	3084	3282	3050	5825	6008	5748	2918

20.9. СИММЕТРИЧНЫЕ ЭКРАНИРОВАННЫЕ ПОДВОДНЫЕ КАБЕЛИ

Симметричные экранированные подводные кабели со сплошной ПЭ изоляцией предназначены для телефонно-телеграфной связи с уплотнением в диапазоне частот до 176 кГц.

Токопроводящие жилы кабеля скручивают из семи медных проволок диаметром 0,52 мм, накладывают ПЭ изоляцию диаметром 7,6±0,4мм, обматывают медной лентой толщиной 0,1 мм с перекрытием не менее 15%. Четыре экранированные жилы разной расцветки изоляции скручивают в четверку с заполнением пластмассовой нитью или кабельной пряжей, пропитанной противогнилостным составом, обматывают прорезиненной тканевой или пластмассовой лентой с перекрытием не менее 15% и кабельной пряжей, пропитанной противогнилостным составом, толщиной не менее 1,6 мм. Поверх подушки накладывают броню из оцинкованных стальных проволок диаметром 2,4 или 6 мм и покрывают битумом. В кабеле СЭПК-4-2 поверх подушки допускается наложение обмотки профилированной бронелентой толщиной 0,5 мм и ПЭ оболочки толщиной не менее 2,0 мм. Поверх брони накладывают наружный покров из предварительно пропитанной кабельной пряжи толщиной не менее 1,6 мм, слой битума и меловой состав.

Кабель СЭПК-4-2 предназначен для прокладки на береговых участках трассы, СЭПК-4-4 и СЭПК-4-6 — для прокладки на глубинах до 1000 м, а СЭПК-4-4+4, СЭПК-4-4+6 и СЭПК-4-6+6 - для прокладки в прибрежной части трассы на глубинах до 150 м.

Внешний диаметр кабеля СЭПК-4, расчетная масса и длины приведены в табл. 20.19. Допускается сдача отрезков кабеля СЭПК-4-2 длиной не менее 450 м. Длина кабеля 25 км состоит из отдельных отрезков не менее 2 км. Допускаются отрезки длиной не менее 0,25 км, чтобы максимальное число сростков в длине 25 км не превышало 20. На длину кабеля 25 км допускается не более двух сращиваний брони, не считая сращиваний с береговыми участками. Места сращиваний отмечают по наружному покрову кабеля отличительными бандажами, ярлыками и оговаривают в паспорте.

Электрические параметры	
Электрическое сопротивление каждой пары жил на длине 1 км, приведенное к 20°C, Ом, не более	24,0
Асимметрия электрического сопротивления жил любой пары кабеля на длину до 25 км, Ом, не более	1,7
То же для пар кабеля	3,0
То же на длину 1,0 км	0,5
Рабочая емкость пары кабеля, мкФ/км, не более	0,04
Разность рабочих емкостей отдельных пар, %, на всю длину кабеля, не более	5,0
Сопротивление изоляции жил кабеля, Ом*км, не	5000*10 ⁶
менее	
Переходное затухание, дБ, на ближнем конце кабеля 25 км при частотах 60, 108 и 176 кГц, не менее	69,5
То же на длине 1 - 2 км при частоте 60 кГц	73,8
То же на частотах 108 и 176 кГц	69,5
Защищенность, дБ, на дальнем конце на длине 25 км на частотах 60 , 108 и 176 кГц, не менее	56,5
То же на длине 1 - 2 км, не менее	65,1
Волновое сопротивление кабеля, Ом на частотах 60, 108 и 176 к Γ ц	140 ± 14
Испытательное переменное напряжение в течение 2 мин кабеля, κB	2

Допускается понижение переходного затухания и защищенности на 4,34 дБ и коэффициента затухания на 10% в 15% годового заказа кабеля и симметрирование отдельных участков на длине 25 км.

Кабели СЭПК-4+4 и СЭПК-4+6 поставляют в бухтах, в трюме судна, баржи или полувагонах. Укладка кабеля должна быть рядовой и производиться по часовой стрелке кругами или эллипсами внутренним диаметром не менее 1,0 м. Скорость перемотки кабеля при укладке должна быть не более 2 км/ч и должна производиться при температуре окружающей среды не ниже -10°С. Кабель СЭПК-4-2 поставляют на деревянных барабанах. Транспортирование кабеля допускается при температуре от -30 до +40°С, хранение — при температуре от -40 до +40°С, с защитой от непосредственного воздействия солнечных лучей. Срок службы, включая срок хранения, 12 лет.

Таблица 20.19. Внешний диаметр D, масса g и длина кабелей СЭПК-4

Марка	D, мм	g, кг/км	L, км
СЭПК- 4-2	31,7±2,0	2020	1,0±0,005
СЭПК- 4-4	35,7±2,0	3072	25,0±0,5
СЭПК- 4-6	39,7±2,0	4740	25,0±0,5
СЭПК- 4-4±4	47,7±3,0	6596	2,0±0,1

СЭПК- 4-4±6	51,7±3,0	8390	2,0±0,1	
СЭПК- 4-6±6	55,7±3,0	10732	2,0±0,1	

20.10. СИММЕТРИЧНЫЕ ВЫСОКОЧАСТОТНЫЕ КАБЕЛИ С ПЭ ИЗОЛЯЦИЕЙ

Симметричные высокочастотные кабели с ПЭ изоляцией повышенной электрической прочности в алюминиевой оболочке марки МКПуА предназначены для вводов в электроподстанции, а также для прокладки на участках в зоне опасного влияния линий электропередачи. Кабель уплотняется системами К-60П в диапазоне частот до 252 кГц и обеспечивает передачу дистанционного питания промежуточной аппаратуры переменным напряжением до 1 кВ или постоянным до 1,5 кВ.

Токопроводящие медные жилы кабеля диаметром 1,2 мм имеют сплошную цветную ПЭ изоляцию толщиной 1,05 мм. Изолированные жилы различного цвета или цветной полосы на поверхности изоляции скручены в четверку вокруг ПЭ корделя диаметром 1,25 мм. Две жилы, расположенные по диагонали, образуют рабочие пары [красная и натуральная, желтая и зеленая (синяя)]. Шаги скрутки четверок различные, не превышающие 300 мм. Четверки, скрученные с различным шагом, обматывают цветной хлопчатобумажной пряжей различного цвета. Четыре или семь четверок скручены в кабель с шагом не более 20 D. Кабель 4*4 имеет расцветку четверок: красная, желтая, бело-синяя и синяя; семи четверочный кабель: в центре — бело-желтая, в повиве — красная, черная, желтая, бело-синяя, синяя и бело-красная. Поясная изоляция состоит из двух пластмассовых и четырех-пяти бумажных лент. Поверх поясной изоляции имеются алюминиевая оболочка и защитные покровы по ГОСТ 7006-72. Толщина ПЭ шланга равна 3,0±15%.

Внешний диаметр кабелей приведен в табл. 20.20, а электрические параметры даны в табл. 20.14. Зависимости коэффициента затухания и модуля волнового сопротивления от частоты приведены в табл. 20.21.

Срок службы кабелей МКПуАШп, МКПуАБп и МКПуАБпГ - 20 лет, а кабелей МКПуАШв — 15 лет, а фактический срок службы определяется техническим состоянием кабеля.

Таблица 20.20. Внешний диаметр и масса кабелей МКПуА

Марка	D, мм		g, кг/км		
	4*4*1,2	7*4*1,2	4*4*1,2	7*4*1,2	
МКПуАБп	43,7	48,5	2343	2871	
МКПуАБпГ	40,7	45,5	2075	2569	
МКПуАШв	32,7	37,5	1155	1531	
МКПуАШп	32,7	37,5	1041	1399	

Таблица 20.21. Частотная зависимость коэффициента затухания и модуля волнового сопротивления кабеля МКПуА от частоты

f,	α,	Z ,	f,	α,	Z ,
кГц	δБ/км	Ом	кГц	δБ/км	Ом
0,8	0,382	440	80,0	1,390	160
10,0	0,782	180	90,0	1,555	160
20,0	0,851	172	100,0	1,633	160
30,0	0,947	168	150,0	1,981	158
40,0	1,042	163	200,0	2,276	157
50,0	1,129	162	250,0	2,563	157
60,0	1,216	161	300,0	2,781	157
70,0	1,303	161	-	-	-

20.11. МАГИСТРАЛЬНЫЕ ВЫСОКОЧАСТОТНЫЕ КАБЕЛИ СВЯЗИ С КОРДЕЛЬНО-БУМАЖНОЙ ИЗОЛЯЦИЕЙ

Магистральные симметричные высокочастотные кабели с кордельно-бумажной изоляцией по ТУ 16.505.275-78 предназначены для магистральных линий связи с уплотнением цепей системами K-60 (до 252 кГц) и K-24 (до 108 кГц), работающих при напряжении дистанционного питания до 500 В переменного напряжения при частоте 50 Гц.

Токопроводящие жилы кабелей изготовляют из медной отожженной проволоки диаметром 1,20 мм, обмотанными бумажным корделем диаметром 0,81 мм (шаг 7 мм) и лентой кабельной бумаги K-170 в один или два слоя с перекрытием 15 - 20%. Изолированные жилы скручивают в четверки с различным шагом — от 100 до 200 мм — и обматывают цветной хлопчатобумажной пряжей. Скрученные в кабель четверки обмотаны тремя-четырьмя лентами кабельной бумаги с перекрытием 15 — 20%. Поверх поясной изоляции наложены свинцовая оболочка с присадкой сурьмы 0,4 - 0,8% и защитные покровы по ГОСТ 7006-72.

Внешний диаметр и масса кабелей серии МК приведены в табл. 20.22. Строительная длина кабелей $850\pm10\,$ м, допускается поставка кабеля МКГ длиной до $870,\ 420$ - 839 и 100 - 419 м. Электрические параметры кабеля приведены в табл. 20.14. Срок службы кабелей не менее 20 лет, а фактический срок службы определяется техническим состоянием кабелей.

Кабели 4*4 предназначены для магистралей с уплотнением цепей системами К-60 и К-24, а кабели 7*4 — системой К-24. По согласованию изготовляются по три четверки, предназначенные для уплотнения системой К-60.

Кабели поставляются на барабанах, обшитых досками, при внутреннем избыточном давлении под свинцовой оболочкой 0.05 - 0.11 МПа, транспортирование может производиться любым способом при температуре от -30 до +40°C, хранение — от -50 до +40°C. Кабели должны быть предохранены от действия прямых солнечных лучей, а при хранении более одного месяца — от непосредственного соприкосновения с грунтом. Кабель при прокладке не должен подвергаться более двух двойных изгибов на диаметр, равный 25 D

Магистральные кабели связи с кордельно-бумажной изоляцией в алюминиевой оболочке (ТУ 16.505.189-76) предназначены для прокладки вдоль линий железных дорог, электрифицированных на переменном напряжении. Основные токопроводящие жилы изготовляют из отожженной медной проволоки диаметром 1,20 мм, обмотанной бумажным корделем диаметром 0,81 мм и лентой кабельной бумаги К-170, сигнальные и вспомогательная жилы — из проволоки диаметром 0,90 мм, обмотанной бумажным корделем диаметром 0,60 мм и лентой К-120, или бумажным корделем диаметром 0,40 мм и лентой К-120, или двумя лентами К-120.

Одну сигнальную жилу изготовляют из эмалированного провода диаметром 0.93 мм с обмоткой корделем 0.40 - 0.60 мм и лентой K-120.

Расцветку жил осуществляют применением окрашенной бумажной ленты. Четыре основные изолированные жилы разного цвета скручивают в четверку с шагом не более 300 мм и обматывают хлопчатобумажной пряжей или бумажной лентой. Высокочастотные четверки имеют различные шаги скрутки, отличные от шагов скрутки низкочастотных четверок. Сигнальные смежные жилы имеют различную расцветку. Одна сигнальная жила изготовлена из эмалированного провода. Кабели 7*4 изготовляют с тремя высокочастотными и четырьмя низкочастотными четверками, шестью или пятью парами и одной сигнальной жилой, скрученными в кабель концентрическими повивами. Кабели 14*4 изготовляют с пятью высокочастотными четверками и девятью низкочастотными четверками и пятью сигнальными жилами. Высокочастотные четверки уплотняются до 150 кГц и обеспечивают передачу дистанционного питания промежуточной аппаратуры постоянным напряжением до 450 В.

Четверки и сигнальные жилы скручивают в кабель концентрическими повивами. В каждом повиве две смежные четверки имеют расцветку, отличающуюся друг от друга и от всех остальных четверок данного повива. Скрутку смежных повивов производят в противоположные стороны, шаг общей скрутки элементов в кабель не превышает 25 D. Повивы, кроме внешнего, обматывают хлопчатобумажной пряжей или бумажной лентой. Скрученный кабель обматывают четырьмя лентами КНП-120 и на него накладывают алюминиевую оболочку толщиной 1,8 мм и защитные покровы по ГОСТ 7006-72 (Шп, Бл, Бп, БпШп, Кл, Кп и КпШп). Внешний диаметр и масса кабелей приведены в табл. 20.23. Длина кабелей 850 и 425 м. Электрические параметры кабелей приведены в табл. 20.14.

Коаксиальный кабель с кордельно-бумажной изоляцией ФКБ предназначен для фидеров высокочастотных каналов связи, работающих вдоль высоковольтных линий электропередачи напряжением 110 - 220 кВ в диапазоне частот 40 - 300 кГц.

Внутренний проводник кабеля ФКБ из медной отожженной проволоки диаметром 1,3 мм обматывают тремя слоями бумажного корделя и бумажной лентой с перекрытием, на которую накладывают свинцовую оболочку толщиной 1,15 мм (являющуюся внешним проводником кабеля) и защитный покров типа Б по ГОСТ 7006-72. Кабель изготовляют длинами не менее 250 м. Допускается сдача маломерных отрезков длиной не менее 100 м.

Электрическое сопротивление внутреннего проводника на длине 1	13,8
км, Ом, не более	
Сопротивление изоляции, Ом*км, не менее	10^{10}
Электрическая емкость кабеля на частоте 800 - 1200 Гц, нФ/км, не	50
более	
Волновое сопротивление кабеля на частоте 300 кГц, Ом	100±10
Коэффициент затухания, дБ/км, не более	3,48
Испытательное напряжение частотой 50 Гц в течение 2 мин, кВ	2
Избыточное давление при транспортировании и хранении, МПа	0,03-
	0,08

Таблица 20.22. Внешний диаметр D и масса g кабелей дальней связи с кордельно-бумажной изоляцией в свинцовой или алюминиевой оболочке

Конструкция кабеля	MKT	МКГШп	MKB	МКБл	MKBL	МКБлГ	MKK	MKAIIIn	МКАБп	МКАБпГ	МКАБпШ п	МКАКпШ п
D, мм												
4*4*1,2	19,8	25,7	29,9	30,9	25,5	26,5	37,4	26,6	34,0	29,6	35,8	41,8
7*4*1,2	24,8	30,5	34,7	35,7	30,3	31,3	42,4	31,5	38,9	34,5	40,7	46,7
g, кг/км												
4*4*1,2	1165	1262	1845	1951	1630	1704	3995	670	1510	1242	1564	3556
7*4*1 ,2	1694	1744	2434	2557	2183	2269	4937	954	1935	1625	1995	4307

Таблица 20.23. Внешний диаметр D и масса g кабелей дальней связи симметричных высокочастотных с кордельно-бумажной изоляцией в алюминиевой оболочке

Конструкция кабеля	МКБАШп	МКБАБл	МКБАБп	МКБАБпШп	МКБАКл	МКБАКп	МКБАКлШп
D, мм							
7*4*1,20±6*0,90	32,5	40,5	42,7	41,7	47,5	48,7	47,7
7*4*1,20±5*2*0,9±1*0,90	32,5	40,6	42,7	41,7	47,5	48,7	47,7
14*4*1,20±5*0,90	41,3	49,3	51,9	50,9	55,3	57,9	56,9
g, кг/км							
7*4*1,20±6*0,90	1140	2301	2488	2307	5142	4687	4482
7*4*1,20±5*2*0,9±1*0,90	1175	2366	2523	2342	5177	4722	4516
14*4*1,20±5*0,90	1745	3202	3459	3237	6516	6174	5929

20.12. ОДНОЧЕТВЕРОЧНЫЕ СИММЕТРИЧНЫЕ КАБЕЛИ ДЛЯ ЗОНОВОЙ СВЯЗИ

Высокочастотные одночетверочные кабели с ПЭ изоляцией предназначены для кабельных линий зоновой связи с уплотнением цепей системами K-60 для частот до 250 кГц. Кабели обеспечивают передачу дистанционного питания переменного напряжения до 690 В.

Токопроводящие жилы из медной проволоки диаметром 1,2 мм со сплошной ПЭ изоляцией наружным диаметром $3,4\pm0,1$ мм скручены в четверку с шагом 150 ± 10 мм вокруг ПЭ корделя диаметром $1,3\pm0,1$ мм. Две жилы по диагонали образуют рабочую пару. Жилы одной пары — красного и желтого (натурального) и другой — синего и зеленого цветов. Поверх скрученной четверки имеется заполнение из композиции ПЭ и бутилкаучука. Диаметр кабелей в пластмассовой оболочке диаметром 11,4 мм, а в алюминиевой оболочке — 11,2 мм с отклонением — 0,2 мм.

Кабели ЗКП, ЗКПБ, ЗКПК, ЗКВ, ЗКВБ, ЗКБК, МККШп и МККШв поверх ПЭ заполнения имеют экран из двух отожженных медных лент толщиной 0,1 мм и шириной не менее 25 мм или двух отожженных алюминиевых лент толщиной 0,15 мм, шириной не менее 25 мм, наложенных с зазором от 1 до 3 мм. Между верхней и нижней алюминиевыми лентами или под ними продольно пропускается одна луженая медная проволока диаметром 0,3 - 0,5 мм. Все ленты накладывают в одном направлении, верхняя лента перекрывает зазор нижней ленты. Соединение лент экрана производится только пайкой или сваркой.

Кабели ЗКАШп, ЗКАБп и ЗКАКпШп поверх заполнения имеют алюминиевую прессованную или сварную оболочку. Поверх алюминиевого экрана кабелей ЗКП, ЗКПБ, ЗКПК, ЗКВ, ЗКВБ, МККШп и МККШв нанесен битумный состав толщиной 0,25 мм хрупкостью не выше -15°С и размягчением не ниже 60°С, некоррозионно-активный по отношению к металлическим оболочке и броне.

Кабели МККШп и МККШв поверх битумного состава или медного экрана имеют ПВХ ленту толщиной 0,19-0,27 мм с перекрытием не менее 20%, повив из 24 оцинкованных стальных проволок диаметром 1,8 мм наложенных с шагом 200 мм.

Кабели ЗКП, ЗКПБ и ЗКПК поверх битумного слоя имеют оболочку из светостабилизированного ПЭ, а кабели ЗКВ, ЗКВБ и ЗКВК - из ПВХ пластиката толщиной не менее 2,0 мм. Оболочка герметична и испытана на отсутствие разрывов и повреждений.

Кабели ЗКАШп, ЗКАБп, ЗКАКпШп поверх алюминиевой оболочки, кабели ЗКПБ и ЗКВБ поверх пластмассовой оболочки, а кабели МККШп и МККШв поверх повива из стальных проволок имеют защитные покровы по ГОСТ 7006-72, но без пластмассовой ленты в кабелях ЗКАШп, ЗКАКпШп, МККШп и МККШв при толщине шланга 2,5*0,5 мм.

Внешний диаметр и масса кабелей приведены в табл. 2.24, электрические параметры кабелей - в табл. 20.25. Коэффициент затухания в зависимости от частоты приведен ниже.

Коэффициент затухания кабелей для зоновой связи, дБ/км

Частота,	ЗКП, ЗКПБ, ЗКПК, ЗКВ,	
кГц	ЗКВК, МККШв, МККШп	ЗКАКпШп
10	0,951	0,87
20	1,064	0,96
30	1,168	1,07
40	1,263	1,17
50	1,358	1,28
60	1,444	1,37
70	1,540	1,47
80	1,617	1,55
90	1,714	1,65
100	1,782	1,75
110	1,860	1,82
120	1,937	1,90
130	2,007	1,99
140	2,076	2,07
150	2,145	2,12
160	2,214	2,19
170	2,245	2,25
180	2,335	2,30
190	2,396	2,37
200	2,456	2,42

210	2.500	2.47
210	2,508	2,47
220	2,560	2,52
230	2,621	2,57
240	2,673	2,62
250	2,716	2,68

Отклонение фактического коэффициента затухания от номинального не превышает $\pm 0,0870$ дБ/км. Идеальный коэффициент защитного действия при продольной ЭДС 40 - 150 В при частоте 50 Γ ц на 1 км кабелей ЗКП и ЗКВ 0,98, ЗКПБ и ЗКВБ 0,85, МККШп и МККШв 0,90, ЗКАШп 0,65 и ЗКАБп 0,3.

Строительным длинам кабелей присваивается группа по средним значениям рабочей емкости.

Средние значения рабочей емкости, нФ/км, кабелей для зоновой связи

Номер	ЗКП, ЗКВ, ЗКВБ, ЗКПБ,	ЗКВК, ЗКАШп, ЗКАБп,
группы	ЗКПК, МККШв, ЗККШп	ЗКАКпШп
I	35,8-36,0	35,2-35,4
II	36,0-36,2	35,4-35,6
III	36,2-36,4	35,6-35,8
IV	36,4-36,6	35,8-36,0
V	36,6-36,8	36,0-36,2
VI	36,8-37,0	36,2-36,4
VII	37,0-37,2	36,4-36,6
VIII	37,2-37,4	36,6-36,8
IX	37,4-37,6	36,8-37,0
X	37,6-37,8	37,0-37,2
XI	37,8-38,0	37,2-37,4

Таблица 20.24. Внешний диаметр D и масса g кабелей для зоновой связи

Марка	С мед	ным экра	ном	С алюминиевым экраном		
	D, мм		g, кг/км	D, мм		g, кг/км
-	$D_{\scriptscriptstyle{HOM}}$	D_{max}		D_{hom}	D_{max}	
ЗКАБп	-	-	-	26,1	28,5	1105
ЗКАКпШп	-	-	-	27,0	29,8	-
ЗКАШп	-	-	-	18,9	20,1	400
ЗКВ	16,7	17,6	313	16,9	17,8	339
ЗКВБ	23,9	26,3	839	24,1	26,5	835
ЗКВК	24,8	27,8	-	25,0	28,0	-
ЗКП	16,7	17,4	297	16,9	17,6	270
ЗКПБ	23,9	26,3	797	24,1	26,5	790
ЗКПК	24,8	27,6	2572	25,0	27,8	-
МККШв	210	22,0	-	21,5	22,2	-
МККШп	21,0	22,0	-	21,2	22,2	=

Таблица 20.25. Электрические параметры кабелей с ПЭ изоляцией для зоновой и сельской связи

Параметр	Частота, кГц	3КВ, 3КП	КСПП, КСПЗП	Коэффициент пересчета на другук длину L
Электрическое сопротивление на длине 1 км, Ом, не более:	Постоянный ток	-	-	-

	1	1		
жил диаметром, мм				
1,2	-	15,95	15,8	L/1000
1,05	-	21,25	-	-
0,9	-	-	28,4	\[\begin{align*} \L \\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
экрана	-	-	15,0	$\sqrt{\frac{2}{1000}}$
Асимметрия электрического сопротивления жил в рабочей паре. Ом/км, не более, значений:	То же	-	-	-
для 100%	-	0,21	0,5	-
для 95 %	-	-	0,3	-
Сопротивление изоляции, 10^6 Ом*км, не менее:	27	-	-	-
каждой жилы относительно других, соединенных с экраном	-	20000	15000	1000 L
между экраном или оболочкой и водой в шланге:	-	-	-	-
ПЭ	-	10	-	-
ПВХ	-	0,05	-	-
Рабочая емкость, пФ/км:	0,8	-	-	L/1000
кабелей в пластмассовой оболочке с жилами диаметром, мм:	-	-	-	-
1,2	-	36,9	43,5	-
1,05	-	31,0	38,0	-
кабелей в алюминиевой оболочке	-	36,3	-	-
Отклонение рабочей емкости от номинального значения, пФ/км, для строительных длин партии:	0,8	-	-	-
100%	-	+1,1	±3,0	-
90%	-	±0,8	-	-
Переходное затухание на ближнем конце, дБ/км, не менее для строительных длин партий:	F 1	57,3	56,0	$-10 \lg \frac{L}{1000}$
100%	-	-	-	-
90%	-	62,5	-	-
Защищенность на дальнем конце, дБ/км, не менее, для строительных длин партии:	До 550	-	53	$-10\lg\frac{L}{1000}$
100%	До 250	65,7	-	-
90%	До 250	71,3	<u>-</u>	-
100%	До 550	-	66,0	- 4,34 ln <u>L</u> 750
90%	До 550	-	67	-
Испытательное напряжение в течение 2 мин, кВ:	0,05	4,0	2,0	-
между жилами и между жилами и экраном	Постоянное напряжение	-	3,0	-
между жилами и экраном или алюминиевой оболочкой	0,05	3,0	-	-
Сопротивление изоляции ПЭ оболочки (шланга) 106 Ом*км, не		-	5,0	1000/L

менее				
Коэффициент защитного действия при наведенной ЭДС 30 В	0,05	0,95	0,99	-

Предприятие-изготовитель должно производить симметрирование линии длиной 10-12 км, составленной из отдельных строительных длин.

Изоляция жил и заполнение устойчивы к растрескиванию. Разрушающее напряжение при растяжении и относительное удлинение при разрыве пластмассовой оболочки не менее 75% этих параметров, указанных в стандартах или ТУ на материал соответствующей марки. Срок службы кабелей 20 лет. Фактический срок службы определяется техническим состоянием кабелей.

20.13. ВЫСОКОЧАСТОТНЫЕ КАБЕЛИ МЕСТНОЙ СВЯЗИ

Высокочастотные кабели местной связи предназначены для линий межстанционной связи телефонных сетей при уплотнении системами с амплитудной модуляцией и частотным разделением каналов в спектре частот до $550~\rm k\Gamma$ ц и системами передачи с временным делением каналов и импульсно-кодовой модуляцией в спектре частот до $2000~\rm k\Gamma$ ц при напряжении дистанционного питания постоянным напряжением до $350~\rm B$.

Токопроводящие медные жилы диаметром 0.9 и 1.2 мм изолированы полиэтиленом толщиной 0.7 и 0.8 мм (соответственно) с допуском ± 0.1 мм. Четыре изолированные жилы скручивают в четверку с шагом 150 и 170 мм. Две жилы, расположенные по диагонали, образуют рабочую пару. Первая пара имеет натуральный, а вторая — синий цвет изоляции. Промежутки между жилами кабелей КСПЗП, КСПЗПБ и КСПЗПК заполнены гидрофобной массой. Поверх скрученных жил наложены ПЭ поясная изоляция толщиной 0.80 ± 0.20 мм, спирально или продольно экран из алюминиевой ленты толщиной 0.10-0.15 мм с перекрытием не менее 10% и медная луженая проволока диаметром 0.30-0.40 мм, битумный состав и ПЭ герметичная и холодостойкая оболочка толщиной 1.8-0.3 мм.

В кабелях КСППБ, КСПЗПБт, КСПЗПБт поверх экрана спирально с зазором не более 3 мм наложены броня стальной лентой толщиной 0,10 мм, битумный состав и ПЭ оболочка толщиной 1,8-0,3 мм.

В кабеле КСПЗПК поверх экрана наложены слой ПЭ, ПВХ или ПЭТФ лент толщиной 0,20—0,30 мм с перекрытием 15—20%, повив оцинкованными стальными проволоками диаметром 1,20 мм и ПЭ оболочка толщиной 1,8—0,30 мм.

В кабелях КСППБт и КСПЗПБт ПЭ оболочка наложена на кабель и несущий стальной трос диаметром 2,6 мм с соединительной перемычкой 4*4 мм с отклонением \pm 1,0 мм.

Кабели КСППБ и КСПЗПБ изготовляют одно- и двухчетверочными. В двухчетверочных (2*4) кабелях цвет изоляции жил второй пары второй четверки отличается от цвета изоляции жил второй пары первой четверки. Оболочка этих кабелей накладывается на две параллельно уложенные бронированные четверки. Максимальный внешний диаметр (размер) и расчетная масса приведены в табл. 20.26, электрические параметры — в табл. 20.25. Волновое сопротивление и коэффициент затухания кабелей на разных частотах приведены в табл. 20.27. Строительная длина кабелей КСПП, КСПЗП, КСППБ, КСПЗПБ не менее 750 м и кабелей КСППБт, КСПЭПБт и КСПЗПК не менее 500 м. Допускается сдача кабелей длиной не менее 100 м в количестве не более 10% партии.

Усадка ПЭ оболочки (шланга) не более 3%, и удлинение не менее 200%. Разрушающее напряжение при растяжении ПЭ оболочки не менее 4,9 МН/м², разрушающая нагрузка при растяжении кабелей КСПП, КСППБ и КСППБ 1*4*0,9 мм не менее 588 Н, 1*4*1,2-882 Н, а кабеля КСПЗПК 10466 Н. Срок службы кабелей с гидрофобным заполнением 15 лет, а без заполнения 12 лет.

Кабели для сельской связи предназначены для эксплуатации при температуре от -50 до +50°C, для прокладки и монтажа — при температуре не ниже -10°C. Допустимый радиус изгиба кабелей не более 15 D.

Таблица 20.26. Диаметр и масса кабелей местной связи

Конструкция	КСПП	КСПЗП	КСППБ	КСПЗПБ	КСППБт	КСПЗПБТ	КСПЗПк
D, мм							
1*4*0,9	12,8	12,8	13,0	13,0	13*23,8	13*23,8	-

1*4*1,2	14,0	14,0	14,2	14,2	14,2*25,0	14,2*25,0	17,0
2*4*0,9	-	-	13,0*24,0	13,0*24,0	-	-	-
2*4*1,2	-	-	14,2*26,0	14,2*26,0	-	-	-
g, кг/км							
1*4*0,9	111,0	125,0	130,0	145,0	199,0	213,0	-
1*4*1,2	145,0	161,0	167,0	184,0	236,0	252,0	440,0
2*4*0,9	-	-	250,0	280,0	-	-	-
2*4*1,2	-	-	320,0	350,0	-	-	-

Таблица 20.27. Частотная зависимость волнового сопротивления и коэффициента затухания кабелей КСПП и КСПЗП

Частота, кГц	Волновое кабеля, Ом (с жи	сопротивление илами)	Коэффициен кабеля, дБ/км (с х	•
	0,9 мм	1,20 мм	0,9 мм	1,20 мм
120	136±6	119±5	3,28±0,26	3,0±0,26
350	132±5	115±5	5,01±0,37	4,73±0,37
550	130±5	113±5	6,34±0,43	5,64±0,43
700	129-5	113-5	7,03±0,43	6,16-0,43

20.14. СИММЕТРИЧНЫЕ НИЗКОЧАСТОТНЫЕ КАБЕЛИ С КОРДЕЛЬНО-ПОЛИСТИРОЛЬНОЙ ИЗОЛЯЦИЕЙ

Токопроводящие жилы диаметром 1,2 мм кабелей ТЗСА, ТЗС имеют изоляцию из полистирольных нити и лент, наложенную методом обмотки. Четыре изолированные жилы скручены в четверку с шагом не более 300 мм. Смежные четверки имеют разные шаги скрутки. Две жилы, расположенные по диагонали, образуют рабочую пару (красная и желтая, синяя и зеленая). Скрученные четверки обматывают цветной пряжей или лентой (красная и зеленая). Сигнальные жилы размещены между четверками. Поверх скрученных четверок и сигнальных жил наложена поясная изоляция из четырех — восьми лент кабельной бумаги.

В кабелях ТЗСтШп поверх поясной изоляции имеется экран из алюминиевой ленты толщиной 0,2 мм, а под экраном проложена медная проволока диаметром 0,3-0,4 мм. Поверх экрана имеется одна лента ПЭТФ, ПЭ или бумажная и опознавательная нить или лента.

В кабелях ТЗСГ, ТЗСБ, ТЗСБШп, ТЗСБГ, ТЗСБл, ТЗСКл, ТЗСКл, ТЗСС, ТЗСТпШп поверх поясной изоляции имеется свинцовая оболочка, ТЗСАШп, ТЗСАБпШп, ТЗСАБпШп, ТЗСАБп, ТЗСАБпГ, ТЗСАКпШп, ТЗСАСтпШп - алюминиевая оболочка, ТЗСАСБп и ТЗСАБпШп — алюминиевая и свинцовая оболочки, ТЗССтШп — стальная гофрированная оболочка и ТЗСГп - свинцовая и полиэтиленовая оболочки. Защитные покровы кабелей соответствуют ГОСТ 7006-72. Расчетные внешний диаметр и масса кабелей приведены в табл. 20.28., Кабели поставляют длинами не менее 300 м. Допускается поставка длинами 100-300 м. Электрические параметры кабелей приведены в табл. 20.29. Кабели допускают высокочастотное уплотнение отдельных четверок до 252 кГц. Кабель в свинцовой оболочке при прокладке не должен испытывать более двух двойных изгибов по дуге окружности радиусом 12,5 D, алюминиевые — 15 D и в стальной гофрированной оболочке — не менее 10 D. Наружный ПЭ шланг кабеля ТЗСГп холодостоек. Срок службы кабелей не менее 30 лет с момента поставки их потребителям.

Таблица 20.28. Внешний диаметр и масса кабелей ТЗС, ТЗСА и ТЗССт

Марка	n*4 + m	D, мм	g, кг/км	Марка	n*4 + m	D, мм	g, кг/км
ТЗСАШп	1*4	16,4	271	ТЗСБГ	1*4	17,7	775
-	4*4	24,7	588	-	4*4	25,1	1595
-	7*4	29,8	861	-	4*4 + 5	25,9	1717
ТЗСАБп	4*4	32,2	1433	-	7*4	30,1	2143
-	7*4	37,9	1907	-	7*4 + 6	30,3	2198
ТЗСАБпГ	1*4	20,2	561	ТЗСБл	4*4	30,3	1936

-	4*4	28,3	1160	-	4*4 + 5	31,1	2068
-	7*4	34,0	1582	-	7*4	35,3	2542
ТЗСАБпШп	1*4	25,5	866	-	7*4 + 6	35,5	2597
-	4*4	33,4	1389	ТЗСК	4*4	37,4	4294
-	7*4	39,1	1853	-	4*4 + 5	38,3	4571
ТЗСАКпШп	4*4	40,4	3361	-	7*4	42,5	5388
-	7*4	46,1	4138	-	7*4 + 6	42,7	5446
ТЗСАСтБп	4*4	35,4	2519	ТЗСКл	4*4	38,8	4467
ТЗСАСтБпШп	4*4	36,6	2546	-	4*4 + 5	39,7	4748
ТЗСАСтпШп	1*4	27,5	773	-	7*4	43,9	5574
-	4*4	33,2	1145	-	7*4 + 6	44,1	5631
T3CT	1*4	10,9	492	ТЗСГп	7*4	27,4	1580
-	4*4	18,7	1113	ТЗСБШп	1*4	20,5	821
-	4*4 + 5	19,6	1256	-	-	-	-
-	7*4	24,0	1696	ТЗССтШп	4*4	28,5	791
-	7*4 + 6	24,2	1747	-	7*4	34,2	1134
ТЗСБ	4*4	29,0	1842	-	-	-	-
- 1	4*4+5	23,8	1964	-	-	-	-
-	7*4	34,0	2429	-	-	-	-
-	7*4 + 6	34,2	2484	-	-	-	-

Таблица 20.29. Электрические параметры низкочастотных кабелей дальней связи

Параметр	Частота, кГц	ТЗС, ТЗСА, ТЗССт	ТЗПкА	ТЗПА	T3, T3Э	ТДС	Коэффициент пересчета на другую длину L
Электрическое сопротивление жил на длине	Постоянный ток	-	-	-	-	-	L/1000
1 км, Ом, не более диаметром, мм:	-	-	-	-	-	-	-
1,4	-	-	-	-	11,9	11,9	-
1,2	-	16,4	-	16,0	16,0	16,4	-
1,05	-	-	22,5	-	-	-	-
0,9	-	28,5	-	28,5	28,5	28,5	-
0,8	-	-	-	-	36,1	36,1	-
0,7	-	-	57,0	-	-	-	-
Сопротивление изоляции, 106 Ом*км, не менее	То же	10000	10000	10000	10000	10000	1000/L
Рабочая емкость, нФ/км, не более	0,8	30	23,2	31*; 33	-	-	L/1000
Отклонения рабочей емкости, нФ/км, не более	0,8	3	2,5	3	-	-	L/1000
Емкостные связи и емкостная асимметрия, пФ, не более:		-	-	-	-	-	L/425 (L/850)
k1	-	80	250	200	260	280	-
k9-12	-	180	160	150	180	200	-

ea1, ea2	-	450	1500	800	1000	400	-
КЗД при продольной ЭДС 50-250 В/км, ТЗСАБП, ТЗСАСБП, ТЗСАСБП, ТЗСАСБПШП, 4*4 и 7*4	0,05	0,3	-	0,7-0,3	-	-	-
Испытательное напряжение, В:	0,05	-	-	-	-	-	-
между жилами и оболочкой	-	2000	2000	2000	1800	1800	-
Между жилами в четверках	-	1500	2000	1500	1000	1000	-
между сигнальными жилами	-	700	700	-	-	-	-
Коэффициент	0,8	-	-	0,57*	-	-	-
затухания, дБ/км, не более		-	-	0,44	-	-	-
ne oonee	150	-	-	3,48*	-	-	-
		-	-	2,74	-	-	-
Волновое	0,8	-	-	590±5%*	-	-	-
сопротивление, Ом		-	-	425±5%	-	_	-
	150	-	-	150±5%*	-	-	-
		=	-	140±5%	-	-	-
Сопротивление изоляции ПЭ оболочки, 106 Ом*км	Постоянный ток	-	-	20	-	-	1000/L
* Жила диаметром 0	,9 мм.						

Идеальный коэффициент защитного действия кабеля

пдешьный коэффициент защитного денетым п	tuo Ciin
При наведенной ЭДС 70-250 В/км ТЗПАШп:	-
4*4*0,9 и 7*4*0,9	0,75
4*4*1,2 и 7*4*1,2	0,7
14*4*0,9 и 19*4*0,9	0,65
14*4*1,2 и 19*4*1,2	0,6
ТЗПАуШп:	-
4*4*0,9 и 7*4*0,9	0,44
14*4*0,9 и 19*4*0,9	0,33
4*4*1,2 и 7*4*1,2	0,30
ТЗПАБпШп:	-
4*4*0,9	0,4
7*4*0,9	0,25
14*4*0,9	0,30
19*4*0,9	0,20
4*4*1,2	0,35
7*4*1,2	0,25
14*4*1,2	0,30
19*4*1,2	0,20
При наведенной ЭДС 30 В/км	-
ТЗПАуБпШп	0,1
ТЗПАБп и ТЗПАБпГ:	-
4*4*0,9 и 7*4*0,9	0,45

с жилами диаметром 1,2 мм — 0,4 и 0,3 соответственно.

20.15. СИММЕТРИЧНЫЕ НИЗКОЧАСТОТНЫЕ КАБЕЛИ С ПЭ ИЗОЛЯЦИЕЙ

Симметричные низкочастотные кабели с пористой ПЭ изоляцией имеют токопроводящие жилы диаметром 0,9 и 1,2 мм, диаметр поверх изоляции 1,9 и 2,4 мм. Четыре жилы с изоляцией различного цвета скручены в четверку вокруг ПЭ корделя — заполнителя с шагом не более 300 мм. Рабочая пара (жилы, расположенные по диагонали) имеют цвет изоляции красный и желтый (натуральный), синий (черный) и зеленый. Скрученная четверка имеет обмотку цветной пряжей, лентой или цветным корделем. Каждая четверка имеет различные шаги скрутки и расцветку. Четверки скручены в кабель с шагом до 25 D. Внутренние повивы обмотаны пряжей. Смежные четверки в одном повиве имеют различные шаги скрутки. В каждом повиве имеется счетная четверка — красная и направляющая четверка — зеленая. Поверх скрученных четверок в кабель наложена поясная изоляция из шести — восьми лент кабельной бумаги. Допускается замена первой бумажной ленты ПВХ лентой или обмотка ее бумажным корделем диаметром 0,8 — 1 мм. Поверх поясной изоляции наложены алюминиевая оболочка и защитные покровы по ГОСТ 7006-72. Число четверок с жилами различного диаметра и наружный диаметр кабеля приведены в табл. 20.30. Строительная длина кабеля 850-10 м. Допускается сдача кабеля длиной не менее 425 м в количестве не более 30%, длиной не менее 300 м в количестве не более 5% партии.

Электрические параметры кабелей типа ТЗПА приведены в табл. 20.29. Сопротивление изоляции ПЭ шланга не менее $20*10^6$ Ом * км. Срок службы кабелей ТЗПА не менее 20 лет, а фактический срок службы определяется техническим состоянием кабелей.

Токопроводящие жилы кабелей типа ТЗПкА изготовляют из медной проволоки диаметром 1,05 мм, обмотаны ПЭ корделем, заключены в ПЭ трубку. Вспомогательные жилы диаметром 0,7 мм — с прерывистой ПЭ изоляцией. Четыре изолированные жилы различного цвета скручены в четверку вокруг ПЭ корделя с шагом до 300 мм. Жилы в четверке по диагонали образуют рабочие пары. Изолированные жилы скручивают в пару с шагом до 100 мм. Четверки, вспомогательные пары и жилы скручивают концентрическими повивами с шагом не более 30 D. Смежные четверки в одном повиве имеют различные шаги скрутки. В каждом повиве имеются две смежные четверки различной расцветки. Не менее четырех четверок допускают уплотнение спектра частот до 150 кГц. Поверх скрученного кабеля наложена поясная изоляция из одной пластмассовой и одной бумажной ленты, шесть — восемь бумажных корделей диаметром 0,81 мм, одной или двух лент бумаги. Поверх поясной изоляции наложены алюминиевая оболочка и защитные покровы по ГОСТ 7006-72. Строительная длина кабеля 425 ± 5 , 850 ± 10 или 1000 ± 10 м. Допускается сдача кабеля длинами от 100 до 419 м, от 431 до 839 м и от 81 до 81 м не более 81 партии. Расчетный внешний диаметр кабелей типа 81 приведен в табл. 81 срок службы кабелей 81 пет, фактический срок службы определяется техническим состоянием кабеля.

Таблица 20 30. Внешний диаметр кабелей типа ТЗПА

Марка	4*4	4*7	4*14	4*19						
d= 0,9 мм	d= 0,9 мм									
ТЗПАБп	27,4	30,1	36,8	39,4						
ТЗПАБпГ	23,4	26,1	32,8	35,4						
ТЗПАБпШп	26,9	29,9	37,3	39,9						
ТЗПАКпШп	33,4	36,1	43,8	46,4						
ТЗПАуБпШп	29,2	33,5	39,5	42,0						
ТЗПАуШп	22,3	26,0	31,5	34,1						
ТЗПАШп	20,1	22,8	29,9	32,5						
d=1,2 мм										
ТЗПАБп	30,2	34,0	42,8	46,1						
ТЗПАБпГ	25,7	29,5	38,3	41,6						
ТЗПАБпШп	30,2	35,0	43,8	47,1						
ТЗПАКпШп	36,2	41,0	49,8	57,1						

ТЗПАуБпШп	34,0	36,4	44,4	47,7
ТЗПАуШп	26,5	29,1	36,9	40,2
ТЗПАШп	22,9	26,1	35,5	38,8

Таблица 20.31. Внешний диаметр кабелей типа ТЗПкА

Марка	4*4	4*7	4*14
ТЗПкАБл	38,3	42,6	51,5
ТЗПкАБп	39,1	43,4	52,7
ТЗПкАБпШп	36,4	40,7	50,0
ТЗПкАШп	27,4	31,7	40,6

20.16. СИММЕТРИЧНЫЕ НИЗКОЧАСТОТНЫЕ КАБЕЛИ СВЯЗИ С КОРДЕЛЬНО-БУМАЖНОЙ ИЗОЛЯЦИЕЙ

Симметричные низкочастотные кабели связи с кордельно-бумажной изоляцией предназначены для соединения телефонных и телеграфных узлов, устройств кабельных вводов и вставок в воздушные линии связи, устройств соединительных линий между АТС, а также АТС и МТС.

Токопроводящие жилы однородных симметричных кабелей из медной отожженной проволоки диаметром 0,8; 0,9 и 1,2 мм обматывают бумажным корделем и лентой кабельной бумаги. Четыре изолированные жилы разной расцветки скручивают в четверку с шагом не более 300 мм и обматывают хлопчатобумажной пряжей или бумажной лентой, цвет которых для четверок с различными шагами скрутки принимают различным. Расчетные размеры и масса четверок приведены в табл. 20.32.

В экранированных кабелях (ТЗЭБ, ТЗЭГ) четверку обматывают лентой металлизированной бумаги или металлической фольги. Четверки скручивают концентрическими повивами в кабель, причем скрутку смежных повивов производят в противоположные стороны с шагом не более 25 D. Повивы, кроме верхнего, обматывают хлопчатобумажной пряжей или лентой кабельной бумаги. Смежные четверки в одном повиве имеют различные шаги скрутки. Две смежные четверки (счетная четверка и четверка направления) имеют расцветку, отличающую их друг от друга и от всех остальных четверок данного повива. Количество четверок однородных низкочастотных кабелей приведено в табл. 20.33. Экранированные четверки размещают в повиве, чередуя с неэкранированными четверками.

Схема расположения контрольных четверок в низкочастотных кабелях изображена

на рис. 20.8. Скрученный кабель обматывают четырьмя лентами кабельной бумаги K-120 с перекрытием, образующими поясную изоляцию, и накладывают свинцовую оболочку с присадкой сурьмы 0,4 — 0,8% или алюминиевую оболочку. Поверх металлической оболочки в зависимости от условий прокладки и эксплуатации накладывают защитные покровы. Внешний вид кабеля ТЗБ изображен на рис. 20.9. Внешний диаметр и

Таблица 20.32. Размеры и масса четверок симметричных низкочастотных кабелей дальней связи

Конструкция	Размеры	жил, мм	Л				D,мм		g, кг/км	
	Кордельно-бумажная изоляция						нормальной четверки	усиленной четверки	нормальной четверки	усиленной четверки
	корделя	бумаги	жилы	зазора	бумаги	жилы				
1*4*0,80	0,4	0,12	1,9	-	-	-	3,9	4,8	21,40	26,72
1*4*0,80	-	-	-	0.45	0,24	2,25	4,6	5,5	24,34	30,52
1*4*0,9	0,4	0,12	2,0	_	_		4,4	5,3	26,35	32,04
1*4*0,9	-	=	-	0,45	0,24	2,35	4,8	5,7	29,41	35,88
1*4*1,2	0,6	0,12	2,7	-	-	-	5,5	6,4	45,79	53,10

Таблица 20 33 Количество четверок однородных низкочастотных кабелей связи с кордельнобумажной изоляцией

Марка	Количество диаметре жил, м	четверок при м
-	0,80 и 0,90	1,20
ТЗГ, ТЗБ, ТЗБл, ТЗБп, ТЗБГ, ТЗБлГ		
ТЗЭГ, ТЗЭБ, ТЗЭБл ТЗЭБн, ТЗЭБГ, ТЗЭБлГ	3, 4, 7, 12, 14, 19, 27, 37	3, 4, 7, 12, 14, 19, 27, 37
ТЭК, ТЗКл, ТЗЭК, ТЗЭКл	7, 12, 14, 19, 27, 37	3, 4, 7, 12, 14, 19, 27, 37

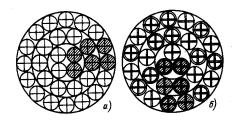


Рисунок 20.8. Схема расположения контрольных четверок в низкочастотных кабелях Т3: а — кабель из однородных четверок, б — кабель с экранированными четверками

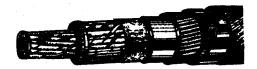


Рисунок 20.9. Низкочастотный кабель ТЗБ

массы кабелей в свинцовой оболочке приведены в табл. 20.34 - 20.37, а в алюминиевой оболочке — в табл. 20.38.

Электрические параметры низкочастотных кабелей с кордельно-бумажной изоляцией приведены в табл. 20.29. Электрические параметры кабелей в алюминиевой оболочке соответствуют данным табл. 20.29, за исключением следующих:

Электрическое сопротивление на длине 1 км жил диаметром d=1,2 мм, Ом Коэффициент емкостной связи, пФ, на длину кабеля 425 м:	16,4
\mathbf{k}_1	280
k_{9-12}	200
Коэффициенты асимметрии емкостных связей, п Φ , на длину 425 м e_1 и e_2	110
Сопротивление изоляции ПЭ шланга, наложенного поверх алюминиевой оболочки, Ом * км, не менее	10*10 ⁶
Коэффициент затухания кабелей, дБ/км, 4*4и7*4на частоте до 150 кГц, не более	2,78
Волновое сопротивление, Ом	160 ± 10
Кабели поставляют длинами, м	425 ± 5 или
850	0 ± 10
Допускается сдача кабелей длиной, м, не менее	300 и 100

Транспортирование и хранение кабелей с кордельно-бумажной изоляцией производятся при внутреннем избыточном давлении под алюминиевой оболочкой, равным 0.06 - 0.11 МПа. Хранение кабеля должно производиться на барабанах, установленных на площадках, предохраняющих их. от непосредственного касания грунта, при температуре от -40 до +50°C и при условии защиты

Таблица 20.34. Внешний диаметр D, мм, низкочастотных кабелей дальней связи с кордельнобумажной изоляцией

Число четверок	ТЗГ, ТЗГуп	ТЗБ, ТЗупБ	ТЗБл, ТЗупБл	ТЗБн, ТЗупБН	ТЗБГ, ТЗупБГ	ТЗБлГ, ТЗупБлГ	ТЗК, ТЗупК	ТЗКл, ТЗупКл
d = 0.8		ТЭУПЬ	ТЭУПЬЛ	1 Jylibii	ТЭУПЫ	ТЭУПЬЛІ	Toylik	ТЭУПКЛ
3	11,4	20,9	21,9	20,9	16,5	17,5	_	_
4	12,3	21,8	22,8	24,8	17,4	18,4	-	_
7	14,6	24,8	25,8	24,8	20,4	21,4	32,4	33,4
12	18,8	28,9	29,9	28,9	24,5	25,5	36,5	37,5
14	19,8	29,9	30,9	29,9	25,5	26,5	37,5	38,5
27,7	28,7	39,6	40,6	- ,-				
27	26,8	36,7	37,7	36,7	32,3	33,3	44,2	45,2
37	30,3	40,1	41,1	40,1	35,7	36,7	47,7	48,7
52	35,7	45,6	46,6	45,6	41,2	42,2	-	-
61	38,2	48,0	49,0	48,0	43,6	44,6	-	-
80	43,5	53,2	54,2	53,2	48,8	49,8	-	-
102	49,6	59,4	60,4	59,4	55,0	56,2	-	-
114	51,6	62,6	63,6	62,6	58,2	59,2	-	-
d = 0.9M	ſМ			•				
3	11,7	21,7	22,2	21,2	16,8	17,8	-	-
4	13,0	22,4	23,4	22,4	18,0	19,0	-	-
7	15,9	26,1	27,1	26,1	21,7	22,7	33,6	34,6
12	20,1	30,2	31,2	30,2	25,8	26,8	37,8	38,8
14	21,5	31,5	32,5	31,5	27,1	28,1	39,0	40,0
19	24,5	34,5	35,5	34,5	30,1	31,1	42,0	43,0
27	28,9	38,7	39,7	38,7	34,3	35,3	46,3	47,3
37	33,0	42,8	43,8	42,8	38,4	39,4	50,4	51,4
52	38,6	48,4	49,4	48,4	44,0	45,0	-	-
61	41,8	5I,5	52,5	51,5	47,1	48,1	-	-
80	47,4	57,2	58,2	57,2	52,8	53,8	-	-
102	53,3	64,2	65,2	64,2	59,8	60,8	-	-
114	56,1	67,0	68,0	67,0	62,6	63,6	-	-
d = 1,2	ММ							
3	14,7	24,9	25,9	24,9	20,5	21,5	32,5	33,5
4	16,2	26,4	27,4	26,4	22,0	23,0	33,9	34,9
7	19,4	29,5	30,5	29,5	25,1	26,1	37,1	38,1
12	25,2	35,2	36,2	35,2	30,8	31,8	42,7	43,7
14	26,2	36,1	37,1	36,1	31,7	32,7	43,6	44,6
19	30,2	40,0	41,0	40,0	35,6	36,6	47,6	48,6
27	35,4	45,3	46,3	45,3	40,9	41,9	52,8	53,8
37	41,0	50,8	51,8	50,8	46,4	47,4	58,4	59,4
52	47,0	56,8	57,8	56,8	52,4	53,4	-	-
61	51,5	62,5	63,5	62,5	58,1	59,1	-	-

Таблица 20.35. Масса g, кг/км, низкочастотных кабелей дальней связи с кордельно-бумажной изоляцией

q_1	исло	Т3Γ,	ТЗБ,	ТЗБл,	ТЗБн,	ТЗБГ,	ТЗБлГ,	ТЗК,	ТЗКл,
-------	------	------	------	-------	-------	-------	--------	------	-------

четверок	ТЗГуп	ТЗупБ	ТЗупБл	ТЗупБН	ТЗупБГ	ТЗупБлГ	ТЗупК	ТЗупКл
d = 0.8	3 мм							•
3	529	916	977	878	855	808	-	-
4	591	998	1062	958	1067	885	-	-
7	778	1364	1440	1318	1331	1338	3113	3242
12	1152	1812	1900	1758	1805	1663	3860	3999
14	1246	1933	2022	1877	1930	1779	4048	4190
19	1512	2242	2337	2181	2248	2073	4490	4634
17	2056	2834	2943	2764	2833	2640	5405	5563
37	2545	3368	3487	3298	3542	3154	6221	6388
52	3376	4292	4428	4205	4551	4047	-	-
61	3824	4778	4919	4691	5002	4518	-	-
80	4826	5840	5995	5737	6397	5549	-	-
102	6204	7361	7532	7245	8739	7034	-	-
114	6634	8459	8646	8336	9473	8121	-	-
d = 0,9) _{MM}							
3	557	954	1013	915	791	841	-	-
4	658	1073	1138	1032	900	956	-	-
7	905	1515	1586	1467	1311	1372	3819	5450
12	1279	1979	2060	1923	1740	1811	4096	4239
14	1441	2162	2244	2101	1910	1985	4331	4475
19	1785	2555	2645	2489	2278	2361	4945	5101
27	2378	3177	3279	3103	2865	2958	5906	6069
37	2976	3855	3967	3772	3507	3611	6891	7067
52	3916	4889	5015	4795	4494	4612	-	-
61	4592	5581	7515	5480	5159	5285	-	-
80	5795	6919	7070	6808	6449	6590	-	-
102	7211	9075	9251	8950	8546	8712	-	-
114	7972	9903	10084	9770	9348	9520	-	-
d = 1,2	2 мм							
3	769	1362	1435	1317	1169	1232	3097	3228
4	919	1550	1611	1500	1339	1396	3362	3499
7	1197	1936	2013	1881	1703	1771	3996	4139
12	1874	2661	2757	2594	2378	2467	5063	5218
14	2085	2854	2954	2786	2565	2655	5359	5518
19	2619	3447	3556	3371	3124	3224	6272	6439
27	3482	4402	4525	4235	4033	4146	7626	7804
37	4514	5519	5656	5420	5103	5232	9188	9386
52	6046	7157	7309	7046	6690	6833	_	_
61	6986	8819	8992	8695	8303	8467	-	-

Таблица 20.36. Внешний диаметр D, мм, экранированных низкочастотных кабелей дальней связи с_кордельно-бумажной изоляцией

Число	Т3ЭΓ,	ТЗЭБ,	ТЗЭБл,	ТЗЭБн,	ТЗЭБГ,	ТЗЭБлГ,	ТЗЭК,	ТЗЭКл,
четверок	ТЗЭупГ	ТЗЭупБ	ТЗЭупБл	ТЗЭупБн	ТЗЭупБГ	ТЗЭупБлГ	ТЗЭупК	ТЗЭупКл
d = 0.8 mm								
3	14,0	24,2	25,2	24,2	19,8	20,8	-	-

4	15,3	25,5	26,5	25,5	21,1	22,1	-	_
7	18,	28,6	29,6	28,6	24,2	25,2	36,2	37,2
12	24,7	34,7	35,7	34,7	30,3	31,3	42,2	43,2
14	26,1	36,0	37,0	36,0	31,6	32,6	43,5	44,5
19	29,3	39,1	40,1	39,1	34,7	35,7	46,7	47,7
27	35,4	45,3	46,3	45,3	40,9	41,9	52,8	53,8
37	40,0	49,8	50,8	49,8	45,4	46,4	57,4	58,4
d = 0,9) _{MM}							
3	14,6	24,8	25,8	24,8	20,4	21,4	-	-
4	16,1	26,3	27,3	26,3	21,9	22,9	-	-
7	19,3	29,4	30,4	29,4	25,0	26,0	37,0	38,0
12	26,0	35,9	36,9	35,9	31,5	32,5	43,4	44,4
14	37,3	37,2	38,2	37,2	32,8	33,8	44,7	45,7
19	30,7	40,5	41,5	40,5	36,1	37,1	48,1	49,1
27	37,3	47,1	48,1	47,1	42,7	43,7	54,7	55,7
37	42,1	51,8	52,8	51,8	47,4	48,4	59,5	60,5
d = 1,2	2 мм							
3	17,8	27,9	28,9	27,9	23,5	24,5	35,5	36,5
4	19,5	29,6	30,6	29,6	25,2	26,2	37,2	38,2
7	23,8	33,8	34,8	33,8	29,4	30,4	41,3	42,3
12	32,1	41,9	42,9	41,9	37,5	38,5	49,5	50,5
14	33,9	43,8	44,8	43,8	39,4	40,4	51,3	52,3
19	38,1	47,9	48,9	47,9	43,5	44,5	55,4	56,4
27	46,4	56,1	57,1	56,1	51,7	52,7	63,8	64,8
37	52,7	63,6	64,6	63,6	59,2	60,2	74,1	75,1

Таблица 20.37. Масса g, кг/км, экранированных низкочастотных кабелей дальней связи с кордельно-бумажной изоляцией

Число	ТЗЭГ,		ТЗЭБл,	ТЗЭБн,	ТЗЭБГ,	ТЗЭБлГ,		ТЗЭКл,			
четверок	ТЗЭупГ	ТЗЭупБ	ТЗЭупБл	ТЗЭупБн	ТЗЭупБГ	ТЗЭупБлГ	ТЗЭупК	ТЗЭупКл			
d = 0.8	d = 0.8 MM										
3	687	1255	1324	1214	1070	1127	-	=			
4	808	1397	1469	1353	1201	1261	-	-			
7	1087	1742	1822	1692	1520	1588	3751	3956			
12	1262	2372	2473	2310	2100	2187	4832	5005			
14	1855	2614	2719	2552	2333	2420	5127	5301			
19	2261	3062	3173	2993	2753	2849	5835	6075			
27	3054	3964	4093	3883	3604	3715	7205	8230			
37	3859	4834	4974	4747	4438	4559	8444	8702			
d=0,9 M	им										
3	728	1318	1384	1273	1127	1182	-	-			
4	864	1479	1551	1430	1274	1336	-	-			
7	1159	1837	1917	1782	1606	1676	3899	4034			
12	1839	2603	2698	2534	2316	2402	5095	5251			
14	1985	2780	2882	2709	2483	2552	5363	5524			
19	2428	3267	3374	3189	2940	3038	6129	6296			
27	3380	4322	4448	4231	3941	4054	7704	7887			

37	4280	5278	5410	5173	4851	4978	9030	9253			
d = 1,2	d = 1,2 mm										
3	1006	1644	1719	1592	1425	1491	3601	3738			
4	1148	1833	1913	1777	1599	1670	3913	4055			
7	1630	2377	2473	2314	2110	2194	4744	4899			
12	2597	3458	3571	3377	3120	3223	6555	6639			
14	2914	3799	3916	3714	3445	3552	6955	7136			
19	3563	4524	4651	4430	4134	4250	8081	8268			
27	4970	6054	6199	5945	5594	5729	10190	10402			
37	6526	8379	8539	8252	7853	8004	14969	15235			

Таблица 20.38. Внешний диаметр D и масса g низкочастотных кабелей с кордельно-бумажной изоляцией в алюминиевой оболочке

Число четверок	D, мм				g, кг/км	g, кг/км				
	ТЗАШп	ТЗАБл	ТЗАБп	ТЗАБпШп	ТЗАШп	ТЗАБл	ТЗАБп	ТЗАБпШп		
d=0,9 мм										
3	18,6	25,0	26,4	27,5	363	1039	1106	1101		
4	19,7	26,1	27,5	28,6	415	1130	1197	1191		
7	22,3	28,7	30,1	31,2	565	1371	1441	1435		
12	28,0	33,4	35,4	36,5	860	1830	1946	1938		
14	29,4	34,8	36,8	37,9	971	1990	2109	2099		
19	32,2	37,6	39,6	40,7	1183	2229	2423	2415		
27	38,9	44,3	46,7	47,8	1831	3183	3953	3342		
37	42,7	48,1	50,5	51,6	2277	3761	3943	3931		
52	49,2	54,6	57,4	58,5	3009	4720	4959	4944		
d = 1,2 мм										
3	20,1	26,5	27,9	29,0	434	1034	1096	1091		
4	21,5	27,9	29,3	30,4	506	1145	1208	1203		
7	25,8	31,2	32,6	33,7	754	1442	1509	1503		
12	31,6	37,0	39,0	40,1	1139	1979	2008	2089		
14	32,7	38,1	40,1	41,2	1254	2122	2243	2235		
19	36,5	41,9	44,3	45,4	1599	2558	2726	2717		
27	43,2	48,6	51,0	52,1	2378	3524	3696	3684		
37	48,5	53,9	56,7	57,8	3009	4290	4518	4501		
52	54,5	59,8	62,6	63,9	3997	5425	5673	5628		

от прямого воздействия солнечных лучей и отсутствия в окружающем воздухе паров кислот, щелочей и других агрессивных веществ. Прокладка и монтаж кабелей должны производиться при температуре не ниже -10°С. При прокладке кабеля не должно быть более двух двойных изгибов на радиус не менее 15 D. Срок службы кабелей не менее 30 лет с момента поставки потребителю, включая время хранения на складе потребителя.

20.17. НИЗКОЧАСТОТНЫЕ КОМБИНИРОВАННЫЕ КАБЕЛИ ДАЛЬНЕЙ СВЯЗИ

Низкочастотные комбинированные симметричные кабели дальней связи с кордельно-бумажной изоляцией серии ТДС предназначены для соединения радиостанций с радиоцентрами, радиоцентров с междугородными телефонными станциями, а также для применения в радиотрансляционных сетях.

Жилы комбинированных кабелей изготовляют из медной проволоки диаметром 0,8; 0,9; 1,2 и 1,4 мм, изолированной бумажным корделем и лентой кабельной бумаги, наложенной в один или два слоя с перекрытием. Допускается изготовление жил диаметром 0,8 и 0,9 мм с изоляцией двумя лентами.

Изолированные жилы скручивают в пары, четверки и шестерки. Две жилы с изоляцией красного и желтого (или натурального) или синего и зеленого цветов скручивают в пары с шагом не более 300 мм и обматывают пряжей или бумажными лентами различного цвета. Усиленные пары обматывают бумажными лентами не менее чем в два слоя. В экранированных парах поверх бумажных лент не менее чем в два слоя накладывают один слой металлизированной бумаги. Под экраном пары допускается прокладка медной проволоки диаметром 0,4 мм.

Четыре изолированные жилы разного цвета скручивают в четверку с шагом не более 300 мм и обматывают хлопчатобумажной пряжей или бумажной лентой. Усиленные четверки обматывают бумажной лентой не менее чем в два слоя. В экранированных четверках поверх бумажных лент, наложенных не менее чем в два слоя, накладывают один слой металлизированной бумаги. Допускается под экраном четверки прокладка медной проволоки диаметром 0,4, мм.

Три пары, скрученные с разными шагами не более 300 мм и обмотанные каждая хлопчатобумажной пряжей, скручивают в шестерки с шагом не более 400 мм и обматывают бумажной лентой не менее чем в два слоя. Комбинированные кабели скручивают из разнородных экранированных и неэкранированных групп, различающихся диаметром или числом жил. Они могут быть одноповивными, состоящими из скрученных в один повив разнородных групп (рис. 20.10), и двухповивными, содержащими в центральном повиве экранированные пары, а во внешнем повиве - четверки или пары (рис. 20.11).

В одноповивных комбинированных кабелях экранированные пары, усиленные четверки и шестерки располагают, чередуя одну группу с другой. В двухповивных кабелях экранированные пары располагают в центральном повиве и обматывают бумажной лентой не менее чем в два слоя. Остальные пары и четверки располагают в наружном повиве. Шаг скрутки смежных пар, четверок и шестерок в каждом повиве принимают различным. В каждом повиве две смежные группы (контрольная и счетная) выполняют различной расцветки. Повивы (кроме внешнего) обматывают хлопчатобумажной пряжей или бумажной лентой, а скрученный кабель обматывают бумажной лентой не менее чем в два слоя.

Поверх обмотки бумажными лентами накладывают свинцовую оболочку и наружные защитные покровы. Диаметры жил, количество сочетаний групп и внешний диаметр комбинированных кабелей приведены в табл. 20.39.

Кабели изготовляют длиной 425±5 или 850±10 м, допускается поставка длиной не менее 100 м. Электрические параметры комбинированных кабелей приведены в табл. 20.29.

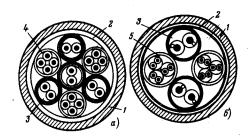


Рисунок 20.10. Схема одноповивных комбинированных низкочастотных кабелей ТДСГ: а - кабель ТДСГ 4*29кр*0,9 + 3*4ус*0,8; б - кабель ТДСГ 2*29кр*1,2 + 2(3*2*0,8); 1 - свинцовая оболочка; 2 - поясная изоляция; 3 - экранированные кабели; 4 - усиленные четверки; 5 - шестерки

Рисунок 20.11. Схема двухповивного комбинированного кабеля ТДСБ 4*2экр*1,4 + 15*4*0,9

Таблица 20.39. Внешний диаметр D, мм, и масса g, кг/км, комбинированных кабелей дальней связи кордельно-бумажной изоляции

-	D				g			
Конструкция кабеля	ТДСГ, ТДСГуп	ТДСБ, ТДСупБ	ТДСБГ, ТДСупБГ	ТДСК, ТДСупК	ТДСГ, ТДСГуп	ТДСБ, ТДСупБ	ТДСБГ, ТДСупБГ	ТДСК, ТДСупК
2*29*1,2 + 1*(3*2*0,8)	19,3	29,4	25,0	37,0	1037	1720	1485	3896
2*29*1,2 + 2*(3*2*0,8)	22,0	30,9	27,0	39,5	1259	1994	1737	4350
3*29*1,2 + 1*(3*2*0,8)	22,0	30,9	27,6	39,5	1254	1988	1731	4344
3*29*1,2 + 4*(3*2*0,8)	26,9	36,8	32,4	44,3	1774	2563	2265	5296
3*29*1,4 + 4*(3*2*0,8)	27,3	37,2	32,8	44,7	1829	2623	2323	5353
4*29*1,2 + 3*(3*2*0,8)	26,9	36,8	32,4	44,3	1768	2553	2255	5286
4*29*1,4 + 3*(3*2*0,8)	27,3	37,2	32,8	44,7	1829	2623	2323	5353
2*29*0,9 + 2*4yu*0,8	16,8	27,0	22,6	34,5	865	1503	1288	3480
4*29*0,9 + 3*4y4*0,8	20,5	30,5	26,1	38,0	1194	1890	1646	4148
3*29*0,9 + 4*4yu*0,8	19,7	29,8	25,4	37,4	1122	1817	1578	3994
2*29*0,9 + 13*2*0,9	25,1	35,1	30,7	42,6	1564	2347	2064	4985
3*29*1,4 + 18*2*0,8	30,6	39,0	36,1	48,0	2147	2982	-	6038
3*29*1,4 + 15*4*0,8	30,6	39,0	38,1	48,0	2277	3112	2654	6168
4*29*0,9 + 15*2*0,9	26,9	36,8	33,8	44,3	1810	2596	2784	5330
3*29*1,4 + 15*4*0,8	30,6	40,5	36,1	48,0	2277	3112	2299	6168
4*29*1,4 + 15*4*0,9	33,1	42,5	38,5	50,5	2568	3530	2784	6788
7*29*1,4 + 20*4*0,9	38,1	47,5	43,5	55,5	3448	4409	3180	7916
14*23*1,4 + 25*4*0,9	48,2	58,0	53,6	65,6	5184	6322	4017	10819