# СПЕЦИАЛИЗИРОВАННЫЕ ГИБКИЕ КАБЕЛИ И ПРОВОДА

### 9.1. НОМЕНКЛАТУРА

Помимо кабелей общего назначения, изготовляют специализированные кабели и провода, номенклатура которых приводится в табл. 9.1.

Таблица 9.1. Номенклатура гибких специализированных кабелей и проводов

| Марка (код<br>ОКП)       | Наименование и назначение                                                                                                                                                                                                                                                                                                                          | ГОСТ,<br>ТУ          |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|
| ,                        | Кабели высокого напряжения                                                                                                                                                                                                                                                                                                                         |                      |
| BP-25-2<br>(3548458201)  | С медной жилой, с изоляцией из износостойкой резины, экранированный в оплетке из медных луженых проволок на переменное напряжение 25 кВ частоты 50 Гц                                                                                                                                                                                              | ТУ<br>16.505.743-75  |
| КВГРЭ<br>(3581176001)    | Гибкий с медными жилами, с изоляцией и в оболочке из резины, экранированный для работы при температуре от $-60$ до $+85^{\circ}$ С                                                                                                                                                                                                                 | ТУ<br>16.505.594-74  |
| 3KBP-75<br>(3548430100)  | Трехжильный с двумя медными жилами низкого напряжения и медной жилой высокого напряжения, с резиновой изоляцией, с экраном и в ПВХ оболочке, для рентгеновских установок на напряжение 75 кВ, работающих в закрытых помещениях                                                                                                                     | TY<br>16.505.449-81  |
| 3KBP-150<br>(3548430200) | То же на напряжение 150 кВ                                                                                                                                                                                                                                                                                                                         | То же                |
| 3КВЭЛ<br>(3548530300)    | С медными жилами трехжильный, с изоляцией из фторопласта, вторая и последующие жилы в виде оплеток, разделенных изоляцией в экране и ПВХ оболочке для электронно-лучевых приборов на постоянное напряжение 110, 165 и 220 кВ                                                                                                                       | TУ<br>16.505.709-75  |
| 4КВЭЛ<br>(354853040)     | То же четырехжильный                                                                                                                                                                                                                                                                                                                               | То же                |
|                          | Провода для радиоустановок                                                                                                                                                                                                                                                                                                                         |                      |
| РПШ<br>(3543090001)      | С медными жилами, с резиновой изоляцией, в резиновой оболочке для монтажа электроустановок при температуре не ниже - 40°C                                                                                                                                                                                                                          | ГОСТ<br>5783-79      |
| РПШМ<br>(3543091300)     | То же в резиновой холодостойкой оболочке для монтажа при температуре не ниже -50°C                                                                                                                                                                                                                                                                 | То же                |
| РПШЭ<br>(3543090002)     | То же, что РПШ экранированный                                                                                                                                                                                                                                                                                                                      | ?? ??                |
| РПШЭМ<br>(3543091400)    | То же в дополнительной резиновой оболочке                                                                                                                                                                                                                                                                                                          | )) ))                |
|                          | Кабели аэродромные                                                                                                                                                                                                                                                                                                                                 |                      |
| KBOPH-3<br>(3548497000)  | С жилами из медных луженых проволок, с резиновой изоляцией в оболочке из маслобензостойкой резины на переменное напряжение 3 кВ для соединения первичных обмоток трансформаторов, питающих аэродромные огни, в общую последовательную цепь и присоединения к регуляторам яркости. Работают в стационарных условиях при температуре от –60 до +50°C |                      |
| KBOPH-6<br>(3548497100)  | То же на напряжение 6 кВ                                                                                                                                                                                                                                                                                                                           | То же                |
| НРШМ-Т<br>(3548497200)   | То же на напряжение 250 B                                                                                                                                                                                                                                                                                                                          | )) ))                |
| KP3<br>(3548452300)      | То же, но с жилами из медных проволок на напряжение 380 В для соединения аэродромных огней                                                                                                                                                                                                                                                         | ТУ 16-<br>505.662-74 |
|                          | Кабели для электросварки                                                                                                                                                                                                                                                                                                                           |                      |
| КПЭС<br>(3546450600)     | Полый с медными основной токопроводящей жилой и жилами дистанционного управления с полой стальной спиралью-каналом, в общей изоляционно-защитной резиновой оболочке для автоматической и полуавтоматической дуговой сварки и под флюсом при температуре от –10 до +40°C                                                                            | TУ<br>16.505.842-81  |

| КОГ1                     | Tubuni a varunu vuranu a naannanai vaaruusi ura                                                                                                                                                                                                                                                                                                                | ГОСТ                |
|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| (3546450100)             | Гибкий с медными жилами, с резиновой изоляцией для соединения при дуговой сварке электрододержателей, автоматических и полуавтоматических сварочных установок с источником номинального переменного напряжения до 220 В частоты 50 Гц или постоянного напряжения при температуре от –50 до +50°С в монтажных условиях (на открытых площадках, стапелях и т.п.) | 6731-77             |
| КОГ2<br>(3546450300)     | То же, но для дуговой сварки в стационарных условиях (сварочном цехе, на участке и т.д.) и для дистанционного регулирования процесса сварки                                                                                                                                                                                                                    | То же               |
|                          | Кабели различных назначений                                                                                                                                                                                                                                                                                                                                    |                     |
| АКРПТ<br>(3544411400)    | С алюминиевыми жилами, с резиновой изоляцией, в резиновой оболочке для присоединения передвижных машин и механизмов к электрическим сетям на переменное напряжение до 660 В частоты до 400 Гц или постоянное напряжение до 1000 В при температуре от –40 до +50°C                                                                                              | 16.705.078-79       |
| АКРПТН<br>(3544411500)   | То же, в резиновой маслобензостойкой оболочке, не распространяющей горение, при температуре от $-30$ до $+40$ °C                                                                                                                                                                                                                                               | То же               |
| ГКРЛ<br>(3548498602)     | Гибкий с медными жилами, с резиновой изоляцией, в резиновой оболочке с лавсановым сердечником для эксплуатации в составе атомного объекта в морской воде под гидростатическим давлением до 981 кПа при температуре от –2 до +35°C и в воздушной среде от –50 до +65°C при переменном напряжении до 380 В частоты 50 Гц или при постоянном напряжении до 700 В  | 16.505.188-77       |
| ГРЭ<br>(3541451200)      | Гибкий с медными жилами, с резиновой изоляцией, экранированный для присоединения самоходных вагонов с электрическим приводом к сети переменного напряжения 660 В частоты 50 Гц на основных жилах и 220 В на вспомогательной жиле                                                                                                                               | ТУ<br>16.505.593-74 |
| КВГВ<br>(3548459200)     | Гибкий с медными жилами, с резиновой изоляцией, с экранами по жилам, в общем экране, в резиновой оболочке для присоединения передвижных механизмов к сети с изолированной нейтралью                                                                                                                                                                            |                     |
| КГП<br>(3521300100)      | Гибкий плоский с медными жилами, с резиновой изоляцией, в резиновой оболочке для присоединения осветительных установок и передвижных механизмов к электрическим сетям (прожекторный) на номинальное переменное напряжение до 660 В частоты до 400 $\Gamma$ ц рпи температуре от $-50$ до $+50$ °C                                                              | 6106-80             |
| KCP<br>(3548450600)      | С медными жилами, спиральный, с резиновой изоляцией, в резиновой оболочке для питания осветительных приборов телецентров при переменном напряжении до 380 В частоты 50 Гц                                                                                                                                                                                      |                     |
| КПГУ<br>(3544412700)     | С медными жилами повышенной гибкости, с резиновой изоляцией, в резиновой оболочке для питания передвижных механизмов (портальных кранов)                                                                                                                                                                                                                       |                     |
| ШПЭП-УХЛ<br>(3555142000) | С медными жилами, с резиновой изоляцией, в резиновой оболочке на переменное напряжение до 660 В частоты до 400 Гц или постоянное напряжение 1000 В для питания передвижных электропил при температуре от –40 до +50°C                                                                                                                                          | 16.505.417-82       |

## 9.2.ГИБКИЕ КАБЕЛИ ВЫСОКОГО НАПРЯЖЕНИЯ

**Кабель высоковольтный ВР-25-2** для электропоездов предназначен для подвода переменного напряжения до  $25~\mathrm{kB}$  частоты  $50~\mathrm{\Gamma u}$  от пантографа к трансформатору электропоезда. Кабель работает в условиях фиксированного монтажа в металлорукаве при окружающей температуре от  $-50~\mathrm{дo}$   $+40^{\circ}\mathrm{C}$  и относительной влажности до 98% при температуре до  $+35^{\circ}\mathrm{C}$  и вертикальных колебаниях с частотой до  $6~\mathrm{\Gamma u}$  при амплитуде до  $10~\mathrm{mm}$  и частотой  $1~\mathrm{\Gamma u}$  при амплитуде до  $35~\mathrm{mm}$ .

Кабель состоит из одной жилы сечением 25 мм<sup>2</sup>, скрученной из медных проволок конструкции класса 4, и изоляции из последовательно чередующихся слоев электропроводящей и изоляционной озоностойкой резины общей толщиной 18,5 мм. Допустимое отклонение от номинальной толщины 2 мм.

Изоляцию обматывают лентой электропроводящей двухсторонней прорезиненной ткани и оплетают медной проволокой, луженой припоем марки ПОС-61 диаметром 0,20 - 0,30 мм, плотностью не менее 80%. Внешний диаметр кабеля не более 48 мм, масса 2750 кг/км. Кабель поставляют длиной 15 м или кратной ей.

Готовый кабель испытывают переменным напряжением 85 кВ в течение 5 мин.

**Кабель гибкий высоковольтный КВГРЭ** предназначен для монтажа подвижных электротехнических и радиоэлектронных устройств и передачи постоянного напряжения 40 кВ при токовой нагрузке 5 А. Допускается передача импульса тока 100 А длительностью 10 мкс не чаще чем 1 раз в 1 ч. Температурный диапазон эксплуатации кабеля от -60 до +85°C.

Кабель имеет одну жилу сечением  $2.5 \text{ мм}^2$ , состоящую из 323 медных проволок диаметром 0.1 мм с резиновой изоляцией типа РТИ-1 толщиной 4.0 мм (минимальная - 3.75 мм), оплетенной семипроволочными стренгами, скрученными из луженых медных проволок диаметром 0.12 мм, плотностью не менее 80 %. На экран накладывают оболочку из маслобензостойкой резины толщиной 1.5 мм с допуском - 20 %. Внешний диаметр кабеля 16.0 мм, масса 337 кг/км. Кабель поставляют длинами не менее 15 м. В готовом виде кабель испытывают переменным напряжением 20 кВ в течение 1 мин. Электрическое сопротивление изоляции  $100*10^6 \text{ Ом*км}$  при относительной влажности окружающего воздуха 98 % и температуре 40 °C. Кабель устойчив к вибрационным нагрузкам и выдерживает до  $10000 \text{ изгибов на угол} \pm 180 \text{ °C}$ .

**Кабели высоковольтные 3КВР-150 и 3КВР-75** для рентгеновских установок (рис. 9.1) предназначены для подвода тока наката и тока высокого напряжения к одно- или двухфокусным рентгеновским трубкам. Рентгеновские кабели работают в закрытых помещениях при температуре окружающей среды от -20 до +40°C и относительной влажности воздуха 98% при температуре + 35°C.

Минимально допустимый радиус изгиба кабеля 3КВР-75 при эксплуатации при температуре выше 0°C - 120 мм, а кабеля 3КВР-150 - 150 мм; при температуре ниже 0°C - соответственно 240 и 300 мм.

Преимущественным видом напряжения для кабеля марки 3КВР-75 является пульсирующее, а для кабеля марки 3КВР-150 - постоянное. В табл. 9.2 приведены номинальные рабочие напряжения, токи нагрузки и напряжение между жилами накала.

Конструктивно обе марки рентгеновских кабелей одинаковы, отличаются только толщиной изоляции жилы высокого напряжения. Предельное отклонение от номинального рабочего напряжения допускается  $\pm$  3%. Номинальные сечения жил накала 1,5 мм²; высокого напряжения 1,5 мм² (две секции сечением 0,75 мм² каждая). Номинальная толщина изоляции жил накала и основные конструктивные данные указаны в табл. 9.3. Предельное отклонение от толщины изоляции - 10%, оболочки  $\pm$ 20%. Кабели поставляют длинами: 3KBP-75 —  $7 \pm 0$ ,5 м, а 3KBP-150 —  $10 \pm 0$ ,5 м или кратными им.

Изолированные жилы накала испытывают на АСИ переменным напряжением 2 кВ. Высоковольтная изоляция кабелей в готовом виде в течение 15 мин проходит один из видов испытаний, указанных в табл. 9.4. Изоляцию жил накала кабелей в готовом виде испытывают переменным напряжением 500 В частоты 50 Гц в течение 1 мин.

**Кабели высоковольтные ЗКВЭЛ и 4КВЭЛ для электронно-лучевых приборов** предназначены для питания электронных микроскопов, электронографов и других электронно-лучевых приборов при температуре от -20 до +60°C.

Кабели изготовляют трехжильными (3КВЭЛ) и четырехжильными (4КВЭЛ) на постоянное напряжение 60, 110, 165 и 220 кВ при пульсации напряжения не более 10% (рис. 9.2). Между жилами 1 и 2 - не более 50 В переменного напряжения; между жилами 2 и 3 — не более 2 кВ переменного или постоянного напряжения; между жилами 3 и 4 - не более 10 кВ амплитудных. Ток накала — не более 20 А.

Первая жила сечением 1,5 мм<sup>2</sup> из медных проволок конструкции 19\*0,32 мм, изолированная фторопластом Ф-4, расположена в центре кабеля, последующие (2, 3, 4) жилы накладывают концентрически оплеткой медными проволоками на изоляцию предыдущей жилы. Конструкция кабеля завершается наружной оболочкой (рис. 9.4). В табл. 9.5 приведены внешние диаметр и масса кабелей ЗКВЭЛ и 4КВЭЛ. Кабели поставляются длинами не менее 10 м. Электрическое сопротивление постоянному току соединенных последовательно жил 1 и 2 не более 0,041 Ом/м, а сопротивление жил 3 и 4 — не более 0,015 Ом/м.

Электрическое сопротивление изоляции между жилами 3 и 4 — не менее  $10^5$  Ом\*м. Электрическая емкость между жилами 1 и 2, 2 и 3 не превышает 500 пФ/м; между жилами 3 и 4 — 510 пФ/м, а между жилой 4 и экраном — 150 пФ/м.

В готовом виде кабели проходят одно из испытаний напряжением, указанным в табл. 9.6. Кабель на напряжение 220 кВ допускается испытывать переменным напряжением 85 кВ частоты 50  $\Gamma$ ц в течение 15 мин. Допускается трехкратное испытание кабеля в составе аппаратуры заказчика постоянным напряжением, равным 1,5  $U_{\text{ном}}$ , в течение 1 мин.

Таблица 9.2. Электрические параметры рентгеновских кабелей марок ЗКВР-75 и ЗКВР-150

| Марка        | Подробное наименование                                                                                                                                                                | Рабочее напряж<br>напряжения и заз                  | -                                                                           |                                                 | между                    | Ток<br>нагрузки, |
|--------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------|--------------------------|------------------|
|              |                                                                                                                                                                                       | постоянное напряжение с коэффициентом пульсации 10% | пульсирующее напряжение с частотой пульсации между амплитудой и нулем 50 Гц | Переменное напряжение частоты 50 Гц амплитудное | жилами тока<br>накала, В | Α                |
| 3KBP-<br>75  | Кабель трехжильный с двумя медными жилами тока накала, с медной жилой высокого напряжения, с резиновой изоляцией, с заземляющим экраном, в оболочке из поливинилхлоридного пластиката |                                                     | 75                                                                          | 50                                              | До 250                   | До 6             |
| 3КВР-<br>150 | То же                                                                                                                                                                                 | 150                                                 | 110                                                                         | 75                                              | До 250                   | До 6             |

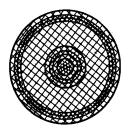



Рисунок 9.1. Схема рентгеновского кабеля

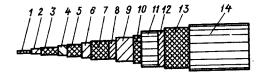



Рисунок 9.2. Схема кабелей марок ЗКВЭЛ и 4КВЭЛ: 1 - жила 1; 2, 4, 6, 9 - изоляция из фторопласта Ф-4; 3 - жила 2; 5 - жила 3; 7 - жила 4; 8 - слой из проводящей пленки фторопласта Ф-4; 10 - оплетка из лавсановых нитей; 11 - внешняя изоляция из резины; 12 - обмотка из проводящей двухсторонней тканевой ленты; 13 — экран; 14 — оболочка из ПВХ пластиката; в кабеле ЗКВЭЛ указанные элементы отсутствуют

Таблица 9.3. Конструктивные данные рентгеновских кабелей марок ЗКВР-75 и ЗКВР-150

|     | Марка | Толщина, м                  | M                          |                      | Внешний               | Macca         |  |
|-----|-------|-----------------------------|----------------------------|----------------------|-----------------------|---------------|--|
|     |       | изоляции<br>жил тока накала | высоковольтной<br>изоляции | наружный<br>оболочки | диаметр кабеля,<br>мм | кабеля, кг/км |  |
| 75  | 3КВР- | 0,6                         | 6,1                        | 1,0                  | 24                    | 624           |  |
| 150 | 3КВР- | 0,6                         | 8,6                        | 1,0                  | 30                    | 939           |  |

Таблица 9.4. Испытательное напряжение рентгеновских кабелей

|     | Марка | Испытатель | Испытательное напряжение, кВ |                                 |         |  |  |  |  |  |  |  |  |
|-----|-------|------------|------------------------------|---------------------------------|---------|--|--|--|--|--|--|--|--|
|     |       | постоянное | 3 13 1                       | Переменное<br>50 Гц амплитудное | частоты |  |  |  |  |  |  |  |  |
| 75  | 3КВР- | 120        | 90                           | 60                              |         |  |  |  |  |  |  |  |  |
| 150 | 3КВР- | 180        | 130                          | 90                              |         |  |  |  |  |  |  |  |  |

Таблица 9.5. Внешний диаметр и масса кабелей марок ЗКВЭЛ и 4КВЭЛ

| Напряжение (постоянное), кВ | D, мм |       | g, кг/км |       |  |
|-----------------------------|-------|-------|----------|-------|--|
|                             | 3КВЭЛ | 4КВЭЛ | 3КВЭЛ    | 4КВЭЛ |  |
| 60                          | 16,1  | 17,5  | 444      | 479   |  |
| 110                         | 19,1  | 20,5  | 569      | 600   |  |
| 165                         | 23,7  | 25,1  | 839      | 871   |  |
| 220                         | 29,1  | 30,5  | 1197     | 1229  |  |

Таблица 9.6. Варианты электрических испытаний кабелей марок ЗКВЭЛ и 4КВЭЛ

| Схема испытаний                                                             | Испыт<br>мин        | Испытательное напряжение, кВ, и продолжительность испытания, мин |                       |               |                          |     |  |  |  |  |
|-----------------------------------------------------------------------------|---------------------|------------------------------------------------------------------|-----------------------|---------------|--------------------------|-----|--|--|--|--|
|                                                                             | постоя пульсацией н |                                                                  | пульс<br>частоты 50 1 | ирующее<br>Гц | переменное частоты 50 Гц |     |  |  |  |  |
|                                                                             | кВ                  | мин                                                              | кВ                    | МИН           | кВ                       | мин |  |  |  |  |
| Между центральной жилой и первой оплеткой                                   | -                   | -                                                                | -                     | -             | 1,0                      | 1   |  |  |  |  |
| Между первой и второй оплетками (кабель 3КВЭЛ)                              | -                   | -                                                                | -                     | 1             | 5,0                      | 1   |  |  |  |  |
| Между второй и третьей обмотками                                            | -                   | -                                                                | 20                    | 1             | 5,0                      | 1   |  |  |  |  |
| Между второй или третьей обмоткой и внешним экраном кабеля напряжением, кВ: |                     |                                                                  |                       |               |                          |     |  |  |  |  |
| 60                                                                          | 70                  | 30                                                               | 50                    | 30            | 30                       | 10  |  |  |  |  |
| 110                                                                         | 130                 | 20                                                               | 90                    | 30            | 55                       | 10  |  |  |  |  |
| 165                                                                         | 190                 | 30                                                               | 135                   | 30            | 80                       | 10  |  |  |  |  |
| 220                                                                         | 260                 | 30                                                               | 180                   | 30            | 110                      | 10  |  |  |  |  |

#### 9.3. ПРОВОДА ДЛЯ РАДИОУСТАНОВОК

Провода для радиоустановок марок РПШ, РПШМ, РПШЭ и РПШЭМ предназначены для работы при переменных напряжениях 380, 660 и 3000 В при температуре окружающей среды от -40 до +60°С — РПШ и РПШЭ и от -50 до +60°С -РПШМ и РПШЭМ и относительной влажности до 98% при температуре +35°С. Монтаж проводов может производиться без предварительного прогрева при температуре до -15°С.

Провода изготовляют сечением от 0,35 до 10 мм<sup>2</sup> с числом жил до 14. В табл. 9.7 приведен сортамент проводов (рис. 9.3). Допускается изготовление проводов с жилами разных сечений и на разные напряжения с числом жил не более 7, но число жил разных сечений может быть не более 3.

Токопроводящие жилы проводов сечением 0,35 и 0,5 мм<sup>2</sup> изготовляют из медных проволок конструкций класса 5, остальных сечений — классов 4 или 5. Изоляция из резины типа РТИ-1 в соответствии с данными табл. 9.8. Допустимые отклонения от номинальной толщины — 10%. Изолированные жилы скручивают с шагом не более 14 D, причем допускается скрутка с сердечником и заполнением из резины, ПВХ пластиката или волокнистых материалов, затем обматывают лентой из ПЭТФ пленки. При многоповивной скрутке внутренние повивы скручивают с шагом не более 25 D, а внешние - не более 14 D.

Поверх скрученных жил проводов РПШ и РПШЭ накладывают оболочку из резины. Толщина оболочки кабеля с диаметром под оболочкой до 10 мм — 1,5 мм, диаметром свыше 10мм — 2,0мм. Предельно допустимое отклонение от номинальной толщины изоляции - 10%, оболочки - 20%.

На провода марок РПШМ и РПШЭМ накладывают оболочку повышенной хладостойкости с опознавательной продольной выпуклой риской. На провода марок РПШЭ и РПШЭМ поверх оболочки накладывают экранирующую оплетку оцинкованными или лужеными стальными проволоками диаметром 0,3 мм плотностью не менее 70%. Такой покров одновременно защищает провода от механических воздействий. По желанию заказчика экран может быть выполнен из луженых медных проволок.

Внешние диаметр и масса проводов для радиоустановок приведены в табл. 9.9, 9.10, 9.10a. Допустимое отклонение от расчетного внешнего диаметра + 10%. Провода поставляют длинами не менее 50 м

Изолированные жилы испытывают на АСИ напряжением, указанным в табл. 9.11. В готовом виде провода на напряжение 380 В испытывают переменным напряжением 2,0 кВ в течение 5 мин; провода на напряжение 660 В — напряжением 2,5 кВ, а на напряжение 3 кВ — напряжением 7 кВ. Электрическое сопротивление изоляции проводов — не менее 75\*10<sup>6</sup> Ом\*км.

Таблица 9.7. сортамент проводов для радиоустановок

| Марка        | Число жил       | $S$ , мм $^2$ , при $U_{\text{ном}}$ , $B$ |          |         |  |  |
|--------------|-----------------|--------------------------------------------|----------|---------|--|--|
|              |                 | 380                                        | 660      | 3000    |  |  |
| РПШ, РПШМ    | 2-8, 10, 12, 14 | 0,35-2,5                                   | 0,75-2,5 | 1,5-2,5 |  |  |
| РПШЭ и РПШЭМ | 2 и 3           | 4 и 6                                      | 4-10     | 4-10    |  |  |

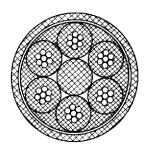



Рисунок 9.3. Схема кабеля РПШ для радиоустановок

Таблица 9.8. Толщина изоляции проводов для радиоустановок

| S, mm <sup>2</sup> | Толщина изоляции, мм, при $U_{\mbox{\tiny HOM}}, B$ |     |      |  |  |  |  |  |  |  |
|--------------------|-----------------------------------------------------|-----|------|--|--|--|--|--|--|--|
|                    | 380                                                 | 660 | 3000 |  |  |  |  |  |  |  |
| 0,35 и 0,5         | 0,6                                                 | -   | -    |  |  |  |  |  |  |  |
| 0,75-6             | 0,8                                                 | 1,0 | 1,8  |  |  |  |  |  |  |  |
| 10                 | -                                                   | 1,2 | 2,0  |  |  |  |  |  |  |  |

Таблица 9.9.Внешний диаметр проводов для радиоустановок

| Марка         | U, B | Числ | иж оі | Л    |      | 1    |      |      |      |      |      |      |
|---------------|------|------|-------|------|------|------|------|------|------|------|------|------|
|               |      | 1    | 2     | 3    | 4    | 5    | 6    | 7    | 8    | 10   | 12   | 14   |
| S = 0.35  mm2 |      |      |       |      |      |      |      |      |      |      |      |      |
| РПШ, РПШМ     | 380  | 5,0  | 6,9   | 7,2  | 7,7  | 8,3  | 8,9  | 8,9  | 9,4  | 10,8 | 11,1 | 11,6 |
| РПШЭ, РПШЭМ   |      | 6,2  | 8,1   | 8,4  | 8,9  | 9,5  | 10,1 | 10,1 | 10,6 | 12,0 | 12,3 | 12,8 |
| S = 0.5  mm2  |      |      |       |      |      |      |      |      |      |      |      |      |
| РПШ, РПШМ     | 380  | 5,2  | 7,3   | 7,6  | 8,2  | 8,8  | 9,4  | 9,4  | 10,1 | 11,6 | 11,9 | 12,4 |
| РПШЭ, РПШЭМ   |      | 6,3  | 8,5   | 8,8  | 9,4  | 10,0 | 10,6 | 10,6 | 11,3 | 12,8 | 13,1 | 13,6 |
| S = 0.75  mm2 |      |      |       |      |      |      |      |      |      |      |      |      |
| РПШ, РПШМ     | 380  | 5,8  | 8,6   | 9,0  | 9,7  | 10,6 | 11,4 | 11,4 | 12,2 | 15,2 | 15,6 | 16,3 |
| РПШЭ, РПШЭМ   |      | 7,0  | 9,8   | 10,2 | 10,9 | 11,8 | 12,6 | 12,6 | 13,4 | 16,4 | 16,8 | 17,5 |
| РПШ, РПШМ     | 660  | 6,2  | 9,4   | 9,9  | 10,7 | 11,6 | 12,6 | 12,6 | 14,6 | 16,8 | 17,3 | 18,1 |
| РПШЭ, РПШЭМ   |      | 7,4  | 10,6  | 11,1 | 11,9 | 12,8 | 13,8 | 13,8 | 15,6 | 18,0 | 18,5 | 19,3 |
| S = 1,0  mm2  |      |      |       |      |      |      |      |      |      |      |      |      |
| РПШ, РПШМ     | 380  | 6,0  | 8,9   | 9,3  | 10,1 | 10,9 | 11,8 | 11,8 | 12,7 | 15,8 | 16,2 | 17,0 |
| РПШЭ, РПШЭМ   |      | 7,2  | 10,1  | 10,5 | 11,3 | 12,1 | 13,0 | 13,0 | 13,9 | 17,0 | 17,4 | 18,2 |
| РПШ, РПШМ     | 660  | 6,4  | 9,7   | 10,2 | 11,0 | 12,0 | 13,0 | 13,0 | 15,0 | 17,4 | 17,9 | 18,7 |
| РПШЭ, РПШЭМ   |      | 7,6  | 10,9  | 11,4 | 12,2 | 13,2 | 14,2 | 14,2 | 16,2 | 18,6 | 19,1 | 19,9 |
| S = 1,5  mm2  |      |      |       |      |      |      |      |      |      |      |      |      |
| РПШ, РПШМ     | 380  | 6,3  | 9,5   | 10,0 | 10,9 | 11,8 | 12,8 | 12,8 | 14,8 | 17,1 | 17,6 | 18,4 |
| РПШЭ, РПШЭМ   |      | 7,5  | 10,7  | 11,2 | 12,1 | 13,0 | 14,0 | 14,0 | 16,0 | 18,3 | 18,8 | 19,6 |
| РПШ, РПШМ     | 660  | 6,7  | 10,3  | 10,9 | 11,9 | 12,9 | 15,0 | 15,0 | 16,1 | 18,7 | 19,2 | 20,2 |
| РПШЭ, РПШЭМ   | 7,9  | 11,5 | 12,1  | 13,0 | 14,1 | 16,2 | 16,2 | 17,3 | 19,9 | 20,4 | 21,4 |      |
| РПШ, РПШМ     | 3000 | 8,3  | 14,5  | 15,3 | 16,7 | 18,2 | 19,8 | 19,8 | 21,4 | 25,1 | 25,9 | 27,2 |
| РПШЭ, РПШЭМ   |      | 9,5  | 15,7  | 16,5 | 17,9 | 19,4 | 21,0 | 21,0 | 22,6 | 26,3 | 27,1 | 28,4 |
| S = 2,5  mm2  |      |      |       |      |      |      |      |      |      |      |      |      |
| РПШ, РПШМ     | 380  | 7,0  | 10,9  | 11,5 | 12,5 | 14,0 | 15,8 | 15,8 | 17,0 | 19,8 | 20,4 | 21,6 |
| РПШЭ, РПШЭМ   |      | 8,2  | 12,1  | 12,7 | 13,7 | 15,8 | 17,0 | 17,0 | 18,2 | 21,0 | 21,4 | 22,6 |
| РПШ, РПШМ     | 660  | 7,4  | 11,7  | 12,3 | 14,5 | 15,7 | 17,0 | 17,0 | 18,3 | 21,4 | 22,0 | 23,1 |
| РПШЭ, РПШЭМ   |      | 8,6  | 12,9  | 13,5 | 15,7 | 16,9 | 18,2 | 18,2 | 19,5 | 22,6 | 23,2 | 24,2 |
| РПШ, РПШМ     | 3000 | 9,0  | 15,9  | 16,8 | 18,3 | 20,0 | 21,8 | 21,8 | 23,6 | 27,8 | 28,7 | 30,2 |
| РПШЭ, РПШЭМ   |      | 10,2 | 17,1  | 18,0 | 19,5 | 21,2 | 23,0 | 23,0 | 24,8 | 29,0 | 29,9 | 31,4 |
| S = 4.0  mm2  |      |      |       |      |      |      |      |      |      |      |      |      |
| РПШ, РПШМ     | 380  | -    | 12,0  | 12,6 | -    | -    | -    | -    | -    | -    | -    | -    |
| РПШЭ, РПШЭМ   | -    | 13,2 | 13,8  |      | -    | -    | -    | -    | -    | -    | -    |      |
| РПШ, РПШМ     | 660  | -    | 12,8  | 14,5 | -    | -    | -    | -    | -    | -    | -    | ı    |
| РПШЭ, РПШЭМ   |      | -    | 14,0  | 15,7 | -    | -    | -    | -    | -    | -    | -    | -    |
| РПШ, РПШМ     | 3000 | -    | 17,0  | 17,9 | -    | -    | -    | -    | -    | -    | -    | -    |

| РПШЭ, РПШЭМ   |      | - | 18,2 | 19,1 | - | - | - | - | - | - | - | - |
|---------------|------|---|------|------|---|---|---|---|---|---|---|---|
| S = 6.0  mm2  |      |   |      |      |   |   |   |   |   |   |   |   |
| РПШ, РПШМ     | 380  | - | 15,2 | 16,0 | - | - | - | - | - | - | - | - |
| РПШЭ, РПШЭМ   |      | - | 16,4 | 17,2 | - | - | - | - | - | - | - | - |
| РПШ, РПШМ     | 660  | - | 16,0 | 16,9 | - | - | - | - | - | - | - | - |
| РПШЭ, РПШЭМ   |      | - | 17,2 | 18,1 | - | - | - | - | - | - | - | - |
| РПШ, РПШМ     | 3000 | - | 19,2 | 20,3 | - | - | - | - | - | - | - | - |
| РПШЭ, РПШЭМ   |      | - | 20,4 | 21,5 | - | - | - | - | - | - | - | - |
| S = 10,0  mm2 |      |   |      |      |   |   |   |   |   |   |   |   |
| РПШ, РПШМ     | 660  | - | 18,6 | 19,7 | - | - | - | - | - | - | - | - |
| РПШЭ, РПШЭМ   |      | - | 19,8 | 20,9 | - | - | - | - | - | - | - | - |
| РПШ, РПШМ     | 3000 | - | 21,8 | 23,1 | - | - | - | - | - | - | - | - |
| РПШЭ, РПШЭМ   |      | - | 23,0 | 24,3 | - | - | - | - | - | - | - | - |

Таблица 9.10. Масса проводов, кг/км, с жилами сечением 0,35-2,5  $\mathrm{mm}^2$  для радиоустановок

| Марка       |     | Чис | ло ж | ил  |     |     |     |     |     |     |     |     |
|-------------|-----|-----|------|-----|-----|-----|-----|-----|-----|-----|-----|-----|
|             |     | 1   | 2    | 3   | 4   | 5   | 6   | 7   | 8   | 10  | 12  | 14  |
| S = 0.35  M | им2 |     |      |     |     |     |     |     |     |     |     |     |
| РПШ         | 380 | 29  | 60   | 69  | 80  | 93  | 108 | 114 | 122 | 148 | 167 | 188 |
| РПШМ        |     | 28  | 58   | 66  | 77  | 90  | 105 | 111 | 119 | 144 | 163 | 183 |
| ЕШПЯ        |     | 73  | 113  | 122 | 138 | 160 | 176 | 182 | 190 | 226 | 253 | 274 |
| РПШЭМ       |     | 72  | 111  | 119 | 135 | 157 | 173 | 179 | 187 | 222 | 249 | 269 |
| S = 0.5  MM | и2  |     |      |     |     |     |     |     |     |     |     |     |
| РПШ         | 380 | 33  | 69   | 80  | 94  | 111 | 127 | 134 | 145 | 177 | 201 | 226 |
| РПШМ        |     | 32  | 67   | 77  | 91  | 107 | 123 | 131 | 141 | 173 | 196 | 222 |
| РПШЭ        |     | 80  | 123  | 134 | 161 | 178 | 196 | 203 | 221 | 263 | 288 | 314 |
| РПШЭМ       |     | 79  | 121  | 130 | 158 | 174 | 192 | 199 | 217 | 259 | 283 | 310 |
| S = 0.75  M | им2 |     |      |     |     |     |     |     |     |     |     |     |
| РПШ         | 380 | 43  | 98   | 114 | 135 | 162 | 187 | 200 | 214 | 296 | 339 | 380 |
| РПШМ        |     | 42  | 94   | 110 | 131 | 158 | 182 | 195 | 209 | 288 | 331 | 372 |
| ЕШПЯ        |     | 92  | 165  | 182 | 207 | 239 | 272 | 286 | 301 | 406 | 450 | 496 |
| РПШЭМ       |     | 91  | 161  | 178 | 203 | 235 | 267 | 281 | 296 | 398 | 442 | 488 |
| РПШ         | 660 | 50  | 116  | 136 | 161 | 192 | 225 | 239 | 286 | 350 | 397 | 448 |
| РПШМ        |     | 48  | 112  | 132 | 157 | 187 | 219 | 233 | 279 | 342 | 388 | 439 |
| ЕШПЯ        |     | 99  | 185  | 212 | 239 | 279 | 316 | 330 | 394 | 468 | 522 | 576 |
| РПШЭМ       |     | 97  | 181  | 208 | 235 | 274 | 310 | 324 | 387 | 460 | 513 | 567 |
| S = 1.0  mm | и2  |     |      |     |     |     |     |     |     |     |     |     |
| РПШ         | 380 | 48  | 108  | 127 | 152 | 180 | 209 | 226 | 242 | 330 | 378 | 426 |
| РПШМ        |     | 46  | 104  | 123 | 148 | 176 | 204 | 221 | 238 | 325 | 370 | 418 |
| ЕШПЯ        |     | 97  | 176  | 195 | 227 | 259 | 296 | 312 | 334 | 441 | 494 | 544 |
| РПШЭМ       |     | 95  | 172  | 191 | 223 | 255 | 291 | 307 | 330 | 436 | 488 | 536 |
| РПШ         | 660 | 54  | 127  | 149 | 177 | 213 | 249 | 266 | 317 | 389 | 442 | 499 |
| РПШМ        |     | 52  | 123  | 145 | 173 | 208 | 243 | 260 | 310 | 380 | 433 | 490 |
| ЕШПЧ        |     | 104 | 198  | 226 | 262 | 300 | 345 | 362 | 426 | 514 | 569 | 629 |
| МЕШПЧ       |     | 102 | 194  | 222 | 258 | 295 | 339 | 356 | 419 | 505 | 560 | 620 |
| S = 1,5  mm | и2  |     |      |     |     |     |     |     |     |     |     |     |

| 380        | 55                 | 128                                                                                                                                                                   | 153 | 186 | 221 | 258                                                                                                                                                                                                                                                                                                                                                                  | 279                                                                                                                                                                                                                                                                                                                                                                       | 332                                                                                                                                                                                                                                                                                                                                                                          | 408                                                                                                                                                                                                                                                                                                                                                                            | 466                                                                                                                                                                                                                                                                                                                                                                               | 527                                                                                                                                                                                                                                                                                                                                                                                 |
|------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|-----|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | 54                 | 123                                                                                                                                                                   | 149 | 181 | 216 | 253                                                                                                                                                                                                                                                                                                                                                                  | 274                                                                                                                                                                                                                                                                                                                                                                       | 325                                                                                                                                                                                                                                                                                                                                                                          | 399                                                                                                                                                                                                                                                                                                                                                                            | 458                                                                                                                                                                                                                                                                                                                                                                               | 517                                                                                                                                                                                                                                                                                                                                                                                 |
|            | 105                | 197                                                                                                                                                                   | 229 | 264 | 308 | 400                                                                                                                                                                                                                                                                                                                                                                  | 371                                                                                                                                                                                                                                                                                                                                                                       | 441                                                                                                                                                                                                                                                                                                                                                                          | 532                                                                                                                                                                                                                                                                                                                                                                            | 592                                                                                                                                                                                                                                                                                                                                                                               | 656                                                                                                                                                                                                                                                                                                                                                                                 |
|            | 104                | 192                                                                                                                                                                   | 225 | 259 | 303 | 395                                                                                                                                                                                                                                                                                                                                                                  | 366                                                                                                                                                                                                                                                                                                                                                                       | 434                                                                                                                                                                                                                                                                                                                                                                          | 523                                                                                                                                                                                                                                                                                                                                                                            | 584                                                                                                                                                                                                                                                                                                                                                                               | 646                                                                                                                                                                                                                                                                                                                                                                                 |
| 660        | 62                 | 148                                                                                                                                                                   | 178 | 213 | 257 | 333                                                                                                                                                                                                                                                                                                                                                                  | 355                                                                                                                                                                                                                                                                                                                                                                       | 388                                                                                                                                                                                                                                                                                                                                                                          | 481                                                                                                                                                                                                                                                                                                                                                                            | 535                                                                                                                                                                                                                                                                                                                                                                               | 637                                                                                                                                                                                                                                                                                                                                                                                 |
|            | 60                 | 143                                                                                                                                                                   | 173 | 207 | 251 | 324                                                                                                                                                                                                                                                                                                                                                                  | 346                                                                                                                                                                                                                                                                                                                                                                       | 380                                                                                                                                                                                                                                                                                                                                                                          | 473                                                                                                                                                                                                                                                                                                                                                                            | 525                                                                                                                                                                                                                                                                                                                                                                               | 597                                                                                                                                                                                                                                                                                                                                                                                 |
|            | 112                | 225                                                                                                                                                                   | 256 | 299 | 349 | 442                                                                                                                                                                                                                                                                                                                                                                  | 464                                                                                                                                                                                                                                                                                                                                                                       | 500                                                                                                                                                                                                                                                                                                                                                                          | 611                                                                                                                                                                                                                                                                                                                                                                            | 674                                                                                                                                                                                                                                                                                                                                                                               | 751                                                                                                                                                                                                                                                                                                                                                                                 |
|            | 110                | 220                                                                                                                                                                   | 251 | 293 | 343 | 433                                                                                                                                                                                                                                                                                                                                                                  | 455                                                                                                                                                                                                                                                                                                                                                                       | 492                                                                                                                                                                                                                                                                                                                                                                          | 603                                                                                                                                                                                                                                                                                                                                                                            | 664                                                                                                                                                                                                                                                                                                                                                                               | 741                                                                                                                                                                                                                                                                                                                                                                                 |
| 3000       | 94                 | 275                                                                                                                                                                   | 324 | 388 | 465 | 545                                                                                                                                                                                                                                                                                                                                                                  | 585                                                                                                                                                                                                                                                                                                                                                                       | 631                                                                                                                                                                                                                                                                                                                                                                          | 788                                                                                                                                                                                                                                                                                                                                                                            | 826                                                                                                                                                                                                                                                                                                                                                                               | 998                                                                                                                                                                                                                                                                                                                                                                                 |
|            | 92                 | 265                                                                                                                                                                   | 314 | 377 | 454 | 533                                                                                                                                                                                                                                                                                                                                                                  | 573                                                                                                                                                                                                                                                                                                                                                                       | 620                                                                                                                                                                                                                                                                                                                                                                          | 775                                                                                                                                                                                                                                                                                                                                                                            | 863                                                                                                                                                                                                                                                                                                                                                                               | 984                                                                                                                                                                                                                                                                                                                                                                                 |
|            | 161                | 383                                                                                                                                                                   | 434 | 506 | 593 | 687                                                                                                                                                                                                                                                                                                                                                                  | 727                                                                                                                                                                                                                                                                                                                                                                       | 780                                                                                                                                                                                                                                                                                                                                                                          | 969                                                                                                                                                                                                                                                                                                                                                                            | 1073                                                                                                                                                                                                                                                                                                                                                                              | 1203                                                                                                                                                                                                                                                                                                                                                                                |
|            | 159                | 373                                                                                                                                                                   | 424 | 495 | 582 | 675                                                                                                                                                                                                                                                                                                                                                                  | 715                                                                                                                                                                                                                                                                                                                                                                       | 769                                                                                                                                                                                                                                                                                                                                                                          | 956                                                                                                                                                                                                                                                                                                                                                                            | 1060                                                                                                                                                                                                                                                                                                                                                                              | 1189                                                                                                                                                                                                                                                                                                                                                                                |
| <b>1</b> 2 |                    |                                                                                                                                                                       |     |     |     |                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                     |
| 380        | 73                 | 176                                                                                                                                                                   | 214 | 260 | 340 | 396                                                                                                                                                                                                                                                                                                                                                                  | 431                                                                                                                                                                                                                                                                                                                                                                       | 469                                                                                                                                                                                                                                                                                                                                                                          | 58                                                                                                                                                                                                                                                                                                                                                                             | 660                                                                                                                                                                                                                                                                                                                                                                               | 751                                                                                                                                                                                                                                                                                                                                                                                 |
|            | 71                 | 171                                                                                                                                                                   | 208 | 254 | 332 | 388                                                                                                                                                                                                                                                                                                                                                                  | 423                                                                                                                                                                                                                                                                                                                                                                       | 461                                                                                                                                                                                                                                                                                                                                                                          | 571                                                                                                                                                                                                                                                                                                                                                                            | 649                                                                                                                                                                                                                                                                                                                                                                               | 740                                                                                                                                                                                                                                                                                                                                                                                 |
|            | 125                | 255                                                                                                                                                                   | 300 | 351 | 448 | 507                                                                                                                                                                                                                                                                                                                                                                  | 542                                                                                                                                                                                                                                                                                                                                                                       | 587                                                                                                                                                                                                                                                                                                                                                                          | 723                                                                                                                                                                                                                                                                                                                                                                            | 804                                                                                                                                                                                                                                                                                                                                                                               | 900                                                                                                                                                                                                                                                                                                                                                                                 |
|            | 123                | 250                                                                                                                                                                   | 294 | 345 | 440 | 499                                                                                                                                                                                                                                                                                                                                                                  | 434                                                                                                                                                                                                                                                                                                                                                                       | 579                                                                                                                                                                                                                                                                                                                                                                          | 713                                                                                                                                                                                                                                                                                                                                                                            | 793                                                                                                                                                                                                                                                                                                                                                                               | 889                                                                                                                                                                                                                                                                                                                                                                                 |
| 660        | 81                 | 199                                                                                                                                                                   | 239 | 323 | 384 | 448                                                                                                                                                                                                                                                                                                                                                                  | 485                                                                                                                                                                                                                                                                                                                                                                       | 527                                                                                                                                                                                                                                                                                                                                                                          | 656                                                                                                                                                                                                                                                                                                                                                                            | 739                                                                                                                                                                                                                                                                                                                                                                               | 842                                                                                                                                                                                                                                                                                                                                                                                 |
|            | 79                 | 193                                                                                                                                                                   | 233 | 315 | 375 | 438                                                                                                                                                                                                                                                                                                                                                                  | 475                                                                                                                                                                                                                                                                                                                                                                       | 518                                                                                                                                                                                                                                                                                                                                                                          | 645                                                                                                                                                                                                                                                                                                                                                                            | 728                                                                                                                                                                                                                                                                                                                                                                               | 830                                                                                                                                                                                                                                                                                                                                                                                 |
|            | 134                | 285                                                                                                                                                                   | 327 | 431 | 495 | 566                                                                                                                                                                                                                                                                                                                                                                  | 603                                                                                                                                                                                                                                                                                                                                                                       | 655                                                                                                                                                                                                                                                                                                                                                                          | 805                                                                                                                                                                                                                                                                                                                                                                            | 902                                                                                                                                                                                                                                                                                                                                                                               | 1011                                                                                                                                                                                                                                                                                                                                                                                |
|            | 132                | 279                                                                                                                                                                   | 321 | 423 | 486 | 556                                                                                                                                                                                                                                                                                                                                                                  | 593                                                                                                                                                                                                                                                                                                                                                                       | 646                                                                                                                                                                                                                                                                                                                                                                          | 794                                                                                                                                                                                                                                                                                                                                                                            | 891                                                                                                                                                                                                                                                                                                                                                                               | 999                                                                                                                                                                                                                                                                                                                                                                                 |
| 3000       | 117                | 341                                                                                                                                                                   | 406 | 486 | 582 | 682                                                                                                                                                                                                                                                                                                                                                                  | 739                                                                                                                                                                                                                                                                                                                                                                       | 797                                                                                                                                                                                                                                                                                                                                                                          | 996                                                                                                                                                                                                                                                                                                                                                                            | 1121                                                                                                                                                                                                                                                                                                                                                                              | 1283                                                                                                                                                                                                                                                                                                                                                                                |
|            | 114                | 329                                                                                                                                                                   | 394 | 747 | 569 | 667                                                                                                                                                                                                                                                                                                                                                                  | 724                                                                                                                                                                                                                                                                                                                                                                       | 785                                                                                                                                                                                                                                                                                                                                                                          | 982                                                                                                                                                                                                                                                                                                                                                                            | 1106                                                                                                                                                                                                                                                                                                                                                                              | 1267                                                                                                                                                                                                                                                                                                                                                                                |
|            | 184                | 453                                                                                                                                                                   | 524 | 614 | 725 | 833                                                                                                                                                                                                                                                                                                                                                                  | 890                                                                                                                                                                                                                                                                                                                                                                       | 968                                                                                                                                                                                                                                                                                                                                                                          | 1190                                                                                                                                                                                                                                                                                                                                                                           | 1323                                                                                                                                                                                                                                                                                                                                                                              | 1504                                                                                                                                                                                                                                                                                                                                                                                |
|            | 181                | 441                                                                                                                                                                   | 512 | 602 | 712 | 818                                                                                                                                                                                                                                                                                                                                                                  | 875                                                                                                                                                                                                                                                                                                                                                                       | 956                                                                                                                                                                                                                                                                                                                                                                          | 1176                                                                                                                                                                                                                                                                                                                                                                           | 1308                                                                                                                                                                                                                                                                                                                                                                              | 1488                                                                                                                                                                                                                                                                                                                                                                                |
|            | 3000<br>380<br>660 | 3000 94<br>105<br>104<br>660 62<br>60<br>112<br>110<br>3000 94<br>92<br>161<br>159<br>123<br>71<br>125<br>123<br>660 81<br>79<br>134<br>132<br>3000 117<br>114<br>184 | 54  | 54  | 54  | 54 123 149 181 216   105 197 229 264 308   104 192 225 259 303   660 62 148 178 213 257   60 143 173 207 251 112 225 256 299 349   110 220 251 293 343   3000 94 275 324 388 465   92 265 314 377 454   161 383 434 506 593   159 373 424 495 582   380 73 176 214 260 340   71 171 208 254 332   125 255 300 351 448   123 250 294 345 440   660 81 199 239 323 384 | 54 123 149 181 216 253   105 197 229 264 308 400   104 192 225 259 303 395   660 62 148 178 213 257 333   60 143 173 207 251 324   110 220 251 293 349 442   110 220 251 293 343 433   3000 94 275 324 388 465 545   92 265 314 377 454 533   161 383 434 506 593 687   159 373 424 495 582 675   380 73 176 214 260 340 396   71 171 208 254 332 388   125 255 300 351 < | 54 123 149 181 216 253 274   105 197 229 264 308 400 371   104 192 225 259 303 395 366   660 62 148 178 213 257 333 355   60 143 173 207 251 324 346   112 225 256 299 349 442 464   110 220 251 293 343 433 455   3000 94 275 324 388 465 545 585   92 265 314 377 454 533 573   161 383 434 506 593 687 727   159 373 424 495 582 675 715   322 380 73 176 214 260 340 396 | 54 123 149 181 216 253 274 325   105 197 229 264 308 400 371 441   104 192 225 259 303 395 366 434   660 62 148 178 213 257 333 355 388   60 143 173 207 251 324 346 380   110 220 256 299 349 442 464 500   110 220 251 293 343 433 455 492   3000 94 275 324 388 465 545 585 631   92 265 314 377 454 533 573 620   161 383 434 506 593 687 727 780   380 73 176 214 260 340 | 54 123 149 181 216 253 274 325 399   105 197 229 264 308 400 371 441 532   660 62 148 178 213 257 333 355 388 481   60 143 173 207 251 324 346 380 473   112 225 256 299 349 442 464 500 611   110 220 251 293 343 433 455 492 603   3000 94 275 324 388 465 545 585 631 788   92 265 314 377 454 533 573 620 775   161 383 434 506 593 687 727 780 969   159 373 424 495 582 675 | 54 123 149 181 216 253 274 325 399 458   105 197 229 264 308 400 371 441 532 592   104 192 225 259 303 395 366 434 523 584   660 62 148 178 213 257 333 355 388 481 535   60 143 173 207 251 324 346 380 473 525   110 220 251 293 343 433 455 492 603 664   3000 94 275 324 388 465 545 585 631 788 826   92 265 314 377 454 533 573 620 775 863   161 383 434 506 593 687 727 780 |

Таблица 9.10а. Масса проводов с жилами сечения 4-10  $\mathrm{mm}^2$  для радиоустановок

| Марка                  | U, B                  | Чис. | ло жил |   |  |  |  |  |  |
|------------------------|-----------------------|------|--------|---|--|--|--|--|--|
|                        |                       | 1    | 2      | 3 |  |  |  |  |  |
| S = 4.0  mm            | <b>1</b> <sup>2</sup> |      |        |   |  |  |  |  |  |
| РПШ                    | 380                   | 224  | 274    | - |  |  |  |  |  |
| РПШМ                   |                       | 217  | 267    | - |  |  |  |  |  |
| ЕШПЧ                   |                       | 311  | 365    | - |  |  |  |  |  |
| НЕШПЧ                  |                       | 304  | 358    | - |  |  |  |  |  |
| РПШ                    | 660                   | 249  | 334    | - |  |  |  |  |  |
| РПШМ                   |                       | 242  | 325    | - |  |  |  |  |  |
| ЕШПЧ                   |                       | 341  | 442    | - |  |  |  |  |  |
| РПШЭМ                  |                       | 334  | 433    | - |  |  |  |  |  |
| РПШ                    | 3000                  | 403  | 481    | - |  |  |  |  |  |
| РПШМ                   |                       | 390  | 468    | - |  |  |  |  |  |
| ЕШПЧ                   |                       | 521  | 608    | - |  |  |  |  |  |
| МЕШПЧ                  |                       | 508  | 595    | - |  |  |  |  |  |
| $S = 6.0 \text{ mm}^2$ |                       |      |        |   |  |  |  |  |  |
| РПШ                    | 380                   | 347  | 423    | - |  |  |  |  |  |
| РПШМ                   |                       | 336  | 412    | - |  |  |  |  |  |
| РПШЭ                   |                       | 456  | 535    | - |  |  |  |  |  |

| РПШЭМ       |                 | 445 | 524 | -   |
|-------------|-----------------|-----|-----|-----|
| РПШ         | 660             | 380 | 461 | -   |
| РПШМ        |                 | 367 | 449 | -   |
| ЕШПЧ        |                 | 492 | 579 | -   |
| МЕШПЧ       |                 | 479 | 567 | -   |
| РПШ         | 3000            | 524 | 630 | -   |
| РПШМ        |                 | 507 | 615 | -   |
| ЕШПЧ        |                 | 663 | 774 | -   |
| РПШЭМ       |                 | 646 | 759 | -   |
| S = 10.0  M | IM <sup>2</sup> |     |     |     |
| РПШ         | 660             | -   | 536 | 660 |
| РПШМ        |                 | -   | 520 | 645 |
| ЕШПЧ        |                 | -   | 666 | 801 |
| МЕШПЧ       |                 | -   | 650 | 786 |
| РПШ         | 3000            | _   | 668 | 815 |
| РПШМ        |                 | -   | 647 | 796 |
| ЕШПЧ        |                 |     | 819 | 974 |
| МЕШПЧ       |                 | -   | 798 | 955 |

Таблица 9.11. Испытательное напряжение на АСИ проводов для радиоустановок

| Рабочее напряжение, В | Испытательное напряжение, В, при толщине изоляции, мм |      |      |      |       |       |  |
|-----------------------|-------------------------------------------------------|------|------|------|-------|-------|--|
|                       | 0,6                                                   | 0,8  | 1,0  | 1,2  | 1,8   | 2,0   |  |
| 380                   | 2000                                                  | 4000 | -    | -    | -     | -     |  |
| 660                   | -                                                     | -    | 6000 | 7000 | -     | -     |  |
| 3000                  | -                                                     | -    | -    | -    | 14000 | 16000 |  |

#### 9.4. АЭРОДРОМНЫЕ КАБЕЛИ

**Кабели КВОРН и НРШМ-Т армированные и неармированные для аэродромных огней,** предназначены для применения в системах электросветосигнального оборудования аэродромов в стационарных условиях при температуре от -60 до  $+50^{\circ}$ С в различных грунтах на высоте над уровнем моря до 3000 м.

Кабели серии КВОРН применяют для соединения первичных обмоток изолирующих трансформаторов, питающих аэродромные огни, в общую последовательную цепь и для присоединения к регуляторам яркости, а кабели НРШМ-Т — для подключения аэродромных огней или светосигнальных знаков. Кабели КВОРН-3 и КВОРН-6 на переменные напряжения 3 и 6 кВ являются базовыми (со свободными концами), варианты армирования которых придают им те или иные монтажные функции. Таким же базовым является и кабель НРШМ-Т на напряжение 0,25 кВ.

Кабели армируют в трех вариантах исполнения. Им присваиваются дополнительные индексы: BP — армированные с одного конца вилкой, с другого — розеткой; В - то же с одного конца вилкой; Р — то же с одного конца розеткой (табл. 9.12).

Токопроводящие жилы сечением 6 и  $10~\text{мm}^2$  скручивают из медных луженых прополок конструкции класса 4 и сечения  $2,5~\text{мm}^2$  класса 5. Жилы изолируют резиной типа РТИ-1 или РТЭПИ-1 по ОСТ 16.0.505.015-79.

Толщина изоляции кабелей: КВОРН на напряжение 3 кВ — 3.0 мм; на напряжение 6 кВ - 4.8 мм, а кабеля НРШМ-Т — 1.2 мм. В кабелях серии КВОРН допускается обмотка изоляции прорезиненной тканевой лентой или ПЭТФ лентой. На кабели КВОРН на напряжение 6 кВ накладывают оболочку из маслобензостойкой резины типа РШН-2 толщиной 2.8 мм, на напряжение 3 кВ — 2.0 мм и на кабель НРШМ-Т толщиной 2.0 мм (предельно допустимое отклонение от номинальной толщины изоляции - 10%, а

оболочки — 20%). Внешние диаметр и масса кабелей приведены в табл. 9.13. Предельное отклонение допускается  $-10 \div +5\%$  для кабеля КВОРН и  $\pm 10\%$ -для НРШМ-Т. Кабели поставляют длинами от 0,5 до 140 м в зависимости от исполнения. За длину армированного кабеля принимается расстояние от плоской части торца вилки или розетки до конца кабеля или до плоской части торца розетки или вилки. По согласованию с заказчиком допускается сдача кабелей любыми длинами.

Конструкции и размеры вилок и розеток армированных кабелей соответствуют чертежам, утвержденным в установленном порядке (рис. 9.4 — 9.7). Вилки и розетки имеют защитные резиновые колпачки. Контакты розеток и вилок присоединяют к токопроводящим жилам кабелей методом бескислотной пайки оловянно-свинцовым припоем, они должны иметь электролитическое никелевое покрытие по ГОСТ 9.073-77. Концы кабелей с присоединенными контактами опрессовывают резиной. В местах сращивания концевых муфт допускается увеличение диаметра кабеля на 15% номинального.

Изолированные жилы испытывают на АСИ переменным напряжением 16 кВ – кабели КВОРН-3 и КВОРН-6 и 5,0 кВ – кабели НРШМ-Т. При одновременном наложении изоляции и оболочки испытание кабелей осуществляется переменным напряжением только в готовом виде после 6 ч пребывания в воде. Испытывают переменным напряжением: 15 кВ в течение 5 мин — кабель КВОРН-6; 9 кВ в течение 5 мин — кабель КВОРН-3; 2 кВ в течение 10 мин — кабель НРШМ-Т.

Электрическое сопротивление изоляции, измеряемое в готовом виде в нормальных климатических условиях, не менее  $1000*10^6$  Ом\*км у кабеля КВОРН-6 и не менее  $750*10^6$  Ом\*км у кабеля КВОРН-3.

Армированные кабели КВОРН и НРШМ-Т на напряжение 6, 3 и 0,25 кВ в сочлененном виде испытывают переменным напряжением соответственно: 12 кВ в течение 5 мин; 9 кВ в течение 5 мин и 2 кВ в течение 10 мин.

**Низковольтный аэродромный кабель с резиновой изоляцией КРЗ** предназначен для последовательного соединения аэродромных огней, для освещения площадок посадки самолетов. Кабель применяется в низковольтных цепях аэродромных огней углубленного типа переменного напряжения до 660 В при температуре от -50 до +50г°C и относительной влажности до  $(98 \pm 2)\%$  при температуре +40°C.

Кабель изготовляют одножильным сечением 4 мм². Токопроводящую жилу скручивают из медных проволок конструкции класса 4 и изолируют резиной типа РТИ-1 толщиной 0,6 мм, а на нее накладывают оболочку из резины типа РШН-1 толщиной 0,8 мм. Внешний диаметр кабеля 5,5 мм, масса 67 кг/км. Кабели поставляют длинами не менее 125 м. Допускается поставка отрезков длинами не менее 20 м в количестве не более 10% сдаваемой партии.

Изолированные жилы испытывают напряжением 2 кВ на аппарате сухого испытания. Электрическое сопротивление изоляции после 6 ч пребывания в воде не менее  $100*10^6$  Ом\*км. В готовом виде кабель испытывают напряжением 2,5 кВ в течение 5 мин.

Таблица 9.12. Сортамент армированных кабелей для аэродромных огней

| Марка      | Наименование                                                             |
|------------|--------------------------------------------------------------------------|
| КВОРН-ВР-3 | Кабели КВОРН-3, армированные на одном конце вилкой, на другом – розеткой |
| КВОРН-В-3  | То же, армированные на одном конце вилкой, другой конец свободный        |
| КВОРН-Р-3  | То же, армированные на одном конце розеткой, другой конец свободный      |
| КВОРН-ВР-6 | Кабели КВОРН-6, армированные на одном конце вилкой, на другом – розеткой |
| КВОРН-В-6  | То же, армированные на одном конце вилкой, другой конец свободный        |
| КВОРН-Р-6  | То же, армированные на одном конце розеткой, другой конец свободный      |
| НРШМ-Т-ВР  | НРШМ-Т, армированные на одном конце вилкой, на другом – розеткой         |
| НРШМ-Т-В   | То же, армированные на одном конце вилкой, другой конец свободный        |
| НРШМ-Т-Р   | То же, армированные на одном конце розеткой, другой конец свободный      |

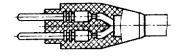



Рисунок 9.4. Вилка двухполюсная на 250 В кабеля НРШТМ

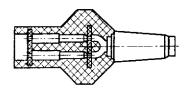



Рисунок 9.5. Розетка двухполюсная на 250 В кабеля НРШМТ

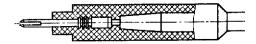



Рисунок 9.6. Вилка высоковольтная кабелей КВОРН-6 и КВОРН-3

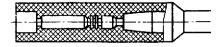



Рисунок 9.7. Розетка высоковольтная кабелей КВОРН-6 и КВОРН-3

Таблица 9.13. Внешний диаметр и масса кабелей КВОРН-3, КВОРН-6 и НРШМ-Т

| Марка   | n | S, mm <sup>2</sup> | $U_{\text{hom}}, B$ | D, мм | g, кг/км |
|---------|---|--------------------|---------------------|-------|----------|
| КВОРН-3 | 1 | 6                  | 3000                | 14,0  | 290      |
|         |   | 10                 |                     | 14,9  | 340      |
| КВОРН-6 | 1 | 6                  | 6000                | 19,2  | 580      |
|         |   | 10                 |                     | 20,1  | 640      |
| НРШМ-Т  | 2 | 2,5                | 250                 | 14,6  | 324      |

#### 9.5. КАБЕЛИ ДЛЯ ЭЛЕКТРОСВАРКИ

Кабели КОГ1 и КОГ2 для электрической дуговой сварки (рис. 9.8 и 9.9) предназначены для соединения электрододержателей автоматических и полуавтоматических сварочных установок с источником тока (переменное напряжение до 220 В частоты 50 Гц или постоянное напряжение).

Длительно допустимая температура нагрева жил кабелей до  $65^{\circ}$ С. Число, сечение, а также толщина изоляции жил кабелей указаны в табл. 9.14. Предельно допустимое отклонение от номинальной толщины изоляции — 10%.

Конструкции жил сечением 0.75, 50 - 150 мм $^2$  соответствуют классу 6 ГОСТ 22483-77, сечением 16 - 35 мм $^2$  — классу 5 с проволокой диаметром не более 0.31 мм. Скрутка элементов в кабель производится в одну сторону.

Изолированные вспомогательные жилы кабеля КОГ2 скручивают вместе со стренгами наружного повива основной жилы. Поверх токопроводящей жилы кабеля КОГ1 накладывают обмотку лентой ПЭТФ пленки, резиновую изоляцию (РТИ-2) и резиновую оболочку (РШ-1). между которыми допускается слой синтетической пленки. Толщина оболочки по категории Обр-2 ГОСТ 23286-78.

Токопроводящую жилу кабеля КОГ2 обматывают лентой ПЭТФ пленки, а поверх накладывают резиновую изоляцию, обладающую защитными свойствами. Толщины изоляции и оболочки кабелей приведены в табл. 9.15, а внешние диаметр и масса кабелей в табл. 9.16. Кабели поставляют длинами не менее 100 м. Допускается поставка отрезками длиной не менее 20 м к количестве не более 10% сдаваемой партии.

Изолированные жилы испытывают на АСИ переменным напряжением по категории ЭИ-2 ГОСТ 23286-78. При совмещении резиновой изоляции и оболочки кабель испытывают в готовом виде.

Готовые кабели всех марок испытывают переменным напряжением частоты 50  $\Gamma$ ц по категории ЭИ-2 (ГОСТ 23286-78). Кабели выдерживают количество циклов, указанных в табл. 9.17, знакопеременных изгибов на угол  $\pi$  рад при радиусе изгиба 50 мм и растягивающем усилии 98 H.

Полый электросварочный кабель КПЭС предназначен для подачи гибких электродов в зону сварки и для подвода сварочного переменного напряжения 42 или постоянного 48 В при температуре от -10 до +40°C.

Кабели изготовляют с основными жилами сечением от 25 до 70 мм<sup>2</sup> и с жилами управления. В центре кабеля расположен направляющий канал, имеющий внутреннее отверстие диаметром от 3,2 до 7,5 мм в зависимости от сечения основной жилы.

Направляющий канал представляет собой полую спираль из стальной пружинной проволоки, навитой с зазором не более 0,25 мм. Спираль обмотана с перекрытием лентой из прорезиненной ткани. Основные токопроводящие жилы скручивают согласно табл. 9.18. Жила управления сечением 1 мм² состоит из 14 медных проволок диаметром 0,3 мм. Ее изолируют резиной типа РТИ-1 толщиной 0,6 мм. Поверх изоляции накладывают оплетку капроновыми и лавсановыми нитями либо обмотку ПЭТФ пленкой.

Неизолированные стренги основной жилы и изолированные жилы управления скручивают вокруг обмотанного канала таким образом, чтобы три жилы управления были расположены в повиве рядом. Поверх скрученных жил накладывают обмотку суровой или прорезиненной тканью с перекрытием и наружную оболочку из резины типа РТИШ по ОСТ 16.0.505.015-79 толщиной по категории Обр-2 по ГОСТ 23286-78. Конструктивные данные направляющего канала, внешние диаметр и масса кабелей приведены в табл 9.19. Строительная длина кабеля  $(3,4\pm0,1)$  м.

Изолированные жилы управления испытывают на АСИ переменным напряжением по категории ЭИ-2. В готовом виде кабель испытывают переменным напряжением 500 В частоты 50 Гц в течение 1 мин между основной жилой и жилами управления.



Рисунок 9.8. Схема кабеля КОГ2 с четырьмя жилами управления для дуговой электросварки

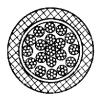



Рисунок 9.9. Схема одножильного кабеля КОГ2 для дуговой электросварки

Таблица 9.14. Номенклатура и толщина резиновой изоляции кабелей для дуговой электросварки

| Марка | Жила     | Число<br>жил | Номинальное сечение, мм <sup>2</sup> | Толщина<br>изоляции, мм |
|-------|----------|--------------|--------------------------------------|-------------------------|
| КОГ1  | Основная | 1            | 16                                   | 0,8                     |
|       |          |              | 25 и 35                              | 0,8                     |
|       |          |              | 50 и 70                              | 1,0                     |
|       |          |              | 95 и 120                             | 1,2                     |
|       |          |              | 150                                  | 1,4                     |
| КОГ2  | "        | 1            | 16, 25, 35                           | 0,8                     |
|       |          |              | 50 и 70                              | 1,0                     |
|       | "        | 1            | 95 и 120                             | 1,2                     |

|                |        | 150  | 1,4 |
|----------------|--------|------|-----|
| Вспомогательна | म 2; 4 | 0,75 | 0,6 |

Таблица 9.15. Толщина резиновой изоляции и оболочки кабелей для дуговой сварки

| S, mm <sup>2</sup> | Толщина изоляции, мм          | Толщина обо         | лочки, мм, кабелей                         |
|--------------------|-------------------------------|---------------------|--------------------------------------------|
|                    |                               | КОГ1                | КОГ2                                       |
| 16                 | 0,8                           | 1,2                 | 1,6                                        |
| 25                 | 0,8                           | 1,2                 | 1,6                                        |
| 35                 | 0,8                           | 1,2                 | 1,6                                        |
| 50                 | 1,0                           | 1,4                 | 2,0                                        |
| 70                 | 1,0                           | 1,6                 | 2,0                                        |
| 95                 | 1,2                           | 1,8                 | 2,4                                        |
| 120                | 1,2                           | 2,0                 | 2,4                                        |
| 150                | 1,4                           | 2,0                 | 2,8                                        |
| Примеч             | ание. Толщина изоляции вспомо | гательных жил сечен | нием $0,75 \text{ мм}^2 - 0,6 \text{мм}$ . |

Таблица 9.16. Внешний диаметр и масса кабелей КОГ1 и КОГ2

| S,              | Марка кабеля |             |                     |             |                   |                  |  |  |  |  |  |
|-----------------|--------------|-------------|---------------------|-------------|-------------------|------------------|--|--|--|--|--|
| MM <sup>2</sup> | КОГ1         |             | КОГ2<br>одножильный |             | КОГ2 со<br>жилами | вспомогательными |  |  |  |  |  |
|                 | D,           | g,<br>кг/км | D,                  | g,<br>кг/км | D, мм             | g, кг/км         |  |  |  |  |  |
| 16              | 11,5         | 224         | 10,1                | 219         | -                 | -                |  |  |  |  |  |
| 25              | 13,3         | 317         | 11,9                | 312         | 14,8              | 376              |  |  |  |  |  |
| 35              | 15,7         | 429         | 13,7                | 423         | 15,5              | 491              |  |  |  |  |  |
| 50              | 18,2         | 623         | 16,2                | 621         | 18,0              | 674              |  |  |  |  |  |
| 70              | 19,8         | 852         | 17,8                | 835         | 19,7              | 883              |  |  |  |  |  |
| 95              | 21,9         | 1136        | -                   | -           | 22,4              | 1184             |  |  |  |  |  |
| 120             | 25,4         | 1434        | -                   | -           | 23,5              | 1427             |  |  |  |  |  |
| 150             | 27,5         | 1759        | -                   | -           | 26,3              | 1726             |  |  |  |  |  |

Таблица 9.17. Количество циклов знакопеременных изгибов кабелей КОГ1 и КОГ2

| Кабель                  |    | <b>MM</b> <sup>2</sup> | S,    | Количество изгибов для кабелей | циклов | знакопеременных |
|-------------------------|----|------------------------|-------|--------------------------------|--------|-----------------|
| Одножильный             |    |                        | 16-35 | 12000                          |        |                 |
|                         |    |                        | 50-   | 10000                          |        |                 |
|                         |    | 150                    |       |                                |        |                 |
| Одножильный             | co |                        | 25-35 | 10000                          |        |                 |
| вспомогательными жилами |    |                        | 50-   | 6000                           |        |                 |
|                         |    | 150                    |       |                                |        |                 |

Таблица 9.18. Конструкция основной токопроводящей жилы кабеля КПЭС

| $MM^2$ S, | _ | Диаметр<br>проволоки, мм | Число<br>проволок в жиле | Число проволок в стренге | Система<br>скрутки стренги | Число<br>стренг |
|-----------|---|--------------------------|--------------------------|--------------------------|----------------------------|-----------------|
| 25        | 5 | 0,26                     | 448                      | 112                      | 16(1+6)                    | 4               |
| 35        | 5 | 0,26                     | 672                      | 112                      | 16(1+6)                    | 6               |
| 50        | 0 | 0,30                     | 700                      | 140                      | 20(1+6)                    | 5               |

| 70 | 0,30 | 980 | 140 | 20(1+6) | 7 |
|----|------|-----|-----|---------|---|

Таблица 9.19. Конструктивные данные направляющего канала, внешние диаметры и масса кабеля КПЭС

| Жила     |          |                  |          | Диаметр кан         | ала, мм |            |      | Диаметр                          | стальной | D,    | g,   |
|----------|----------|------------------|----------|---------------------|---------|------------|------|----------------------------------|----------|-------|------|
| основная |          | управления       |          | внутренний наружный |         | предельное |      | проволоки для<br>навивки спирали | 1        | кг/км |      |
| Число    | Сечение, | Число            | Сечение, |                     |         | отклонение |      | канала, мм                       |          |       |      |
|          | мм2      |                  | мм2      |                     |         | ··_··      | "+"  | 1                                |          |       |      |
| 1        | 25       | 3 1,0 5,0 7,8 0, | 0,20     |                     |         |            | 20,5 | 654                              |          |       |      |
|          | 35       |                  |          | 6,0                 | 8,8     |            |      |                                  |          | 21,5  | 806  |
|          | 50       |                  |          | 6,0                 | 8,8     |            | 0,55 | 1,4                              |          | 22,5  | 948  |
|          | 70       |                  |          | 7,5                 | 10,3    |            |      |                                  |          | 24,0  | 1195 |
|          | 35       |                  |          | 7,5                 | 10,3    |            |      |                                  |          | 20,0  | 7887 |
|          | 70       |                  | 3,2 7,2  |                     | 0,45    | 2,0        |      | 21,0                             | 1119     |       |      |



Рисунок 9.10. Кабель для дуговой электросварки КОГ2

### 9.6. КАБЕЛИ И ПРОВОДА РАЗЛИЧНЫХ НАЗНАЧЕНИЙ

**Гибкий кабель ГКРЛ, работающий при растягивающей нагрузке** (рис. 9.11), предназначен для работы при переменном напряжении 380 и постоянном напряжении 700 В в условиях морской воды под гидростатическим давлением до 981 кПа при температуре от -2 до  $+30^{\circ}$ С и в воздушной среде при температуре от -50 до  $+65^{\circ}$ С.

Кабель ГКРЛ изготовляют 9- и 12-жильным сечением 0,5 мм². Токопроводящую жилу применяют класса 5, которую изолируют резиной типа РТИ-1 толщиной 0,8 мм. Двенадцать изолированных жил скручивают вокруг сердечника, диаметр которого приведен в табл. 9.20. Сердечник оплетен лавсановыми нитями с шагом не более 60. Две смежные жилы отличаются друг от друга и остальных жил по цвету. На скрученные жилы, обмотанные лентой ПЭТФ пленки, накладывают резиновую оболочку (типа РШ-1) толщиной согласно табл. 9.20. Предельно допустимое отклонение от номинальной толщины изоляции - 10%, оболочки - 20%. Внешний диаметр и масса кабелей указаны в табл. 9.20 с допуском + 5%. Кабели поставляют длинами, приведенными в табл. 9.20.

В готовом виде кабель испытывают переменным напряжением 2 кВ в течение 5 мин. Сопротивление изоляции при температуре  $20^{\circ}$ С не менее  $100*10^{6}$  Ом\*км, а после пребывания в морской воде при температуре  $35^{\circ}$ С -  $50*10^{6}$  Ом\*км. Электрическая емкость каждой жилы по отношению к остальным, соединенным вместе, не более 200 пФ/м.

Кабель ГКРЛ выдерживает не менее десяти перемоток на цилиндр диаметром 200 мм при температуре -50°C под воздействием растягивающей нагрузки 300 H.

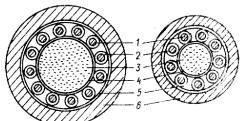



Рисунок 9.11. Схемы кабелей ГКРЛ сечением 12\*0,5

 $^2$  (а) и 9\*0.5 мм $^2$  (б):1 — токопроводящая жила; 2 — изоляция; 3 — сердечник из лавсановых нитей; 4 — оплетка сердечника; 5 — обмотка из пленки ПЭТФ; 6 — оболочка кабеля

Таблица 9.20. Конструктивные данные кабеля ГКРЛ

| Ī | n  | S,mm <sup>2</sup> | Толщина      | Толщина      | Диаметр     | D,   | g,    | Строительная    |
|---|----|-------------------|--------------|--------------|-------------|------|-------|-----------------|
|   |    |                   | изоляции, мм | оболочки, мм | лавсанового |      |       | длина кабеля, м |
|   |    |                   |              |              | сердечника, |      | более |                 |
| L |    |                   |              |              | MM          |      |       |                 |
|   | 9  | 0,5               | 0,8          | 2,0          | 5,3         | 14,4 | 274   | 75±5            |
|   | 12 |                   |              | 3,0          | 8,8         | 19,9 | 481   | 100± 53         |

**Гибкий кабель ГРЭ** (рис. 9.12) предназначен для присоединения самоходных вагонов с электрическим приводом к сети переменного напряжения 660 В частоты 50 Гц (основные жилы) и не более 220 В (вспомогательные жилы). Кабель состоит из трех основных, одной заземляющей и одной вспомогательной жил сечением согласно табл. 9.21.

Токопроводящие жилы кабеля скручивают из медных проволок по конструкции класса 4 в одну сторону, жилы заземления по конструкции класса 4 или 5. Скрутка стренг в жилу производится вокруг лавсанового упрочняющего сердечника с шагом не более 10 D. На основные и вспомогательную жилы сечением 10 мм² накладывают изоляцию из резины типа РТИ-1 толщиной 2,0 мм, а сечением 16 и 25 мм² - 2,2 мм с допуском - 10%. На упрочняющие жилы накладывают слой резины типа РШН-1 толщиной 0,8 мм. Поверх изоляции основных и вспомогательных жил накладывают экран из электропроводящей резины толщиной 0,5 мм (минимальная 0,3 мм).

Три экранированные основные и одну вспомогательную жилы скручивают вокруг заземляющей жилы в правом направлении с шагом не более 8 D. При скрутке кабеля между жилами укладывают заполнение из четырех упрочняющих жгутов. Поверх скрученных основных жил 3\*10 и 3\*16 мм² накладывают оболочку из резины типа РШН-1 толщиной 3,5 мм, а на кабели сечением 3\*25 мм² — 4,0 мм. Предельно допустимое отклонение - 20%.

Внешний диаметр и масса кабеля приведены и табл. 9.21. Допустимое отклонение от номинального диаметра + 10%. Кабель поставляют длинами ( $220\pm20$ ) м или кратными этой длине. Допускался поставка маломерных отрезков длиной не менее 50 м в количестве не более 10% партии.

Экранированные основные и вспомогательные жилы испытывают постоянным напряжением 10 кВ в течение 1 мин. Кабель в готовом виде испытывают переменным напряжением 2,5 кВ частоты 50 Гц в течение 5 мин. Электрическое сопротивление экранов готового кабеля — не более 3000 Ом. Кабели выдерживают не менее 15000 циклов перегибов вокруг системы роликов диаметром 200 мм при растягивающей нагрузке 735 Н. Разрывная прочность сердечника и каждого упрочняющего жгута — не менее 1230 Н.

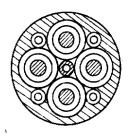



Рисунок 9.12. Схема кабеля ГРЭ

Таблица 9.21. Конструктивные данные кабеля ГРЭ

| n * S жил, | mm <sup>2</sup> |                 | Толщина      | Толщина      | D,   | g,    |
|------------|-----------------|-----------------|--------------|--------------|------|-------|
| основных   | заземления      | вспомогательных | изоляции, мм | оболочки, мм | MM   | кг/км |
| 3*10       | 1*6             | 1*10            | 2.0          | 3.5          | 30.9 | 1415  |
| 3*16       | 1*10            | 1*16            | 2.2          | 3.5          | 34.7 | 1870  |
| 3*25       | 1*10            | 1*25            | 2.2          | 4.0          | 38.7 | 2444  |

**Кабель повышенной гибкости с резиновой изоляцией в резиновой оболочке КПГУ** предназначен для питания передвижных портальных кранов при переменном напряжении до 0,66 кВ частоты до 400 Гц или постоянном напряжении до 1 кВ при температуре от -50 до +50°C.

Кабель КПГУ изготовляют трехжильным сечением от 95 до 150 мм $^2$  или трехжильным с четвертой заземляющей жилой сечением: 25 мм $^2$  при основных жилах 95 мм $^2$ ; 35 мм $^2$  при основных жилах 120 мм $^2$  и 50 мм $^2$  при основных жилах 150 мм $^2$ . Длительно допустимая температура нагрева жил до +65°C. Минимальный допустимый радиус изгиба в процессе эксплуатации 10 D.

Токопроводящие жилы из медных проволок скручивают по конструкции согласно табл. 9.22. На жилу сечением 95 и 120  $\text{мm}^2$  накладывают резиновую изоляцию типа РТИ-1 толщиной 1,8 мm, а сечением 150  $\text{mm}^2$  толщиной 2,0 мm и обматывают лентой прорезиненной ткани. Резиновая изоляция жил заземления сечением 25  $\text{mm}^2$  имеет толщину 5,0 mm; сечением 35  $\text{mm}^2$  — 5,5 mm и сечением 50  $\text{mm}^2$  — 6,5 mm.

Три или четыре изолированные жилы скручивают с заполнением кабельной пряжей с шагом не более 14 D в правом направлении и обматывают лентой прорезиненной ткани. Основные жилы имеют отличительную расцветку или другие виды отличия. Для заземляющей жилы допускается черный цвет. При скрутке четырехжильных кабелей допускается применение в центре профилированного резинового сердечника. На скрученные жилы кабеля сечением 95 мм² накладывают резиновую оболочку типа РШ-1 толщиной 4,0 мм, а на жилы кабелей остальных сечений — толщиной 4,5 мм. Допустимое отклонение от номинальной толщины изоляции — 10%, от толщины оболочки — 20%. Внешние диаметр и масса кабеля указаны в табл. 9.23. Кабели поставляют длинами не менее 125 м. Допускается поставка длинами не менее 20 м в количестве не более 20% поставляемой партии.

Изолированные жилы испытывают переменным напряжением 2,5 кВ в течение 5 мин или на АСИ по категории ЭИ-2. Готовые кабели испытывают переменным напряжением 2,5 кВ в течение 5 мин. Кабель устойчив к 6000 циклам знакопеременных изгибов вокруг роликов диаметром 400 мм на угол  $\pi$ /2 рад при растягивающей нагрузке 49 H.

Таблица 9.22. Внешний диаметр и масса кабеля КПГУ и конструкции основных и заземленных жил

| n*S, мм <sup>2</sup> | D,   | g,<br>кг/км | $_{\mathrm{MM}^2}$ Сечение жил, | Число<br>проволок | Диаметр<br>проволок, мм |
|----------------------|------|-------------|---------------------------------|-------------------|-------------------------|
| 3*95                 | 45,5 | 4742        | 25                              | 126               | 0,50                    |
| 3*120                | 52,8 | 5652        | 35                              | 189               | 0,49                    |
| 3*150                | 60,6 | 6815        | 50                              | 266               | 0,49                    |
| 3*95+1*25            | 52,2 | 5614        | 95                              | 361               | 0,58                    |
| 3*120+1*35           | 59,2 | 6938        | 120                             | 266               | 0,77                    |
| 3*150+1*50           | 66,6 | 8149        | 150                             | 405               | 0,68                    |

Таблица 9.23. Конструктивные данные, внешний диаметр и масса спирального кабеля КСК

| п*Ѕ, мм2    | D,<br>мм | g,<br>кг/км | Внутренний диаметр спирали, мм, не более | Внешний диаметр спирали, мм, не более |                | Длина спирали в растянутом состоянии, мм, не более | Шаг<br>растяжения<br>спирали, мм,<br>не более |
|-------------|----------|-------------|------------------------------------------|---------------------------------------|----------------|----------------------------------------------------|-----------------------------------------------|
| 3*4+12*0,75 | 22,1     | 9,46        | 71                                       | 120                                   | 880±50 100     | 6000                                               | 150                                           |
| 4*6+16*0,75 | 24,7     | 8,16        | 71                                       | 125                                   | 650±50 100     | 6000                                               | 150                                           |
| 4*6+16*0,75 | 24,7     | 10,9        | 71                                       | 125                                   | 850±50<br>100  | 6000                                               | 150                                           |
| 4*6+16*0,75 | 24,7     | 14,7        | 71                                       | 125                                   | 1150±50<br>120 | 8000                                               | 150                                           |
| 4*6+16*0,75 | 24,7     | 18,6        | 71                                       | 125                                   | 1450±50<br>120 | 8000                                               | 150                                           |
| 4*6+16*0,75 | 24,7     | 21,2        | 71                                       | 125                                   | 1650±50<br>120 | 10000                                              | 150                                           |

**Спиральный гибкий кабель** КСР (рис. 9.13, 9.14) предназначен для питания осветительных приборов студий телецентров при переменном напряжении до 380 В частоты 50  $\Gamma$ ц при температуре от +5 до +40 $^{\circ}$ С и относительной влажности до 70% при температуре +25 $^{\circ}$ С. Длительно допустимая температура нагрева жил до 65 $^{\circ}$ С.

Кабель КСР с резиновой изоляцией и оболочкой изготовляют в виде спирали, допускающей растягивание и сжатие его по мере опускания и подъема висящих светильников. Кабели имеют 15 или 20 жил (основных и управления) сечением от 0,75 до 6 мм² (табл. 9.23). Их изготовляют из медных проволок в соответствии с ГОСТ 22483-77: сечением 0,75 мм² класса 2; сечением 6 мм² класса 3; сечением 4 мм² класса 4. Жилы изолируют резиной типа РТИ-2 толщиной 1,0 мм. Поверх скрученных трех или четырех изолированных жил сечением 4 или 6 мм² накладывают повив из 12 или 16 жил управления сечением 0,75 мм²; обматывают лавсановой нитью с шагом 47 — 50 мм и накладывают внешнюю оболочку из резины типа РШТ-2 толщиной 3,0 мм. Допустимые отклонения от номинальных значений: толщины изоляции - 10%, оболочки - 20%. Допускается местное уточнение оболочки с внутренней стороны спирали и на прямых концах со стороны навивки до 1,6 мм.

Спираль кабеля формируют длинами согласно табл. 9.24 с прямыми окончаниями длиной с конусной стороны  $1,8\pm0,2$  м и с противоположной стороны  $0,6\pm0,1$  м.

Основные конструктивные данные и масса кабеля приведены в табл. 9.23.

Изолированные жилы и кабель в готовом виде испытывают переменным напряжением частоты 50 Гц по категории ЭИ-1 или ЭИ-2 (ГОСТ 23286-78).

Кабели выдерживают без обрыва жил и трещин оболочки не менее 10000 растяжений и сжатий частотой 4 цикла в минуту.

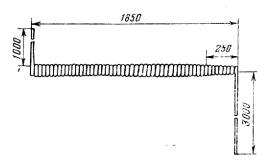



Рисунок 9.13. Схема спирального кабеля КСР

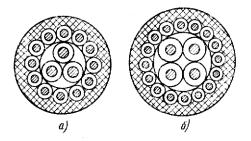



Рисунок 9.14. Схема спиральных кабелей КСР сечением 3\*4 + 12\*0,75 мм<sup>2</sup> (а) и 4\*6 + 16\*0,75 мм<sup>2</sup> (б)

Таблица 9.24. Внешние размеры и масса гибких кабелей КГП

| Без заземл           | яющей жилы |                         | С заземляющей жилой |           |             |  |  |
|----------------------|------------|-------------------------|---------------------|-----------|-------------|--|--|
| n*S, мм <sup>2</sup> | Размеры    | Размеры g, кг/км n*S, 1 |                     | Размеры   | g,<br>кг/км |  |  |
| 2*4,0                | 8,9*13,8   | 217                     | 2*4,0+1*2,5         | 8,9*18,1  | 238         |  |  |
| 2*6,0                | 10,0*16,0  | 292                     | 2*6,0+1*4,0         | 10,0*20,9 | 356         |  |  |
| 2*10                 | 12,3*19,6  | 448                     | 2*10+1*6,0          | 12,3*26,2 | 628         |  |  |

| 2*16  | 13,5*22,0 | 609  | 2*16+1*6,0 | 13,5*28,6 | 786  |
|-------|-----------|------|------------|-----------|------|
| 2*25  | 15,8*25,9 | 894  | 2*25+1*10  | 15,8*33,2 | 1140 |
| 2*35  | 17,5*29,3 | 1170 | 2*35+1*10  | 17,5*37,0 | 1430 |
| 2*50  | 19,6*33,6 | 1556 | 2*50+1*16  | 19,6*42,5 | 1971 |
| 2*70  | 22,2*38,4 | 2046 | 2*70+1*25  | 22,2*49,6 | 2670 |
| 2*95  | 24,1*42,2 | 2685 | 2*95+1*35  | 24,1*55,0 | 3482 |
| 2*120 | 27,6*48,2 | 3323 | 2*120+1*35 | 27,6*60,0 | 4014 |

Плоский кабель КГП (рис. 9.15-9.17) предназначен для присоединения прожекторных и других передвижных электроустановок к сети переменного напряжения до 660 В частоты 400 Гц. При эксплуатации кабелей не допускается осевое кручение, раздавливание и растягивающие нагрузки. Допустимая окружающая температура при эксплуатации от -40 до +50°C. Минимальный радиус изгиба — не менее 12 D по малой оси.

Кабели изготовляют двухжильными сечением от 4 до 120 мм<sup>2</sup> с заземляющей или без заземляющей жилы (табл. 9.24). Соотношение основных и заземляющих жил по табл. 9.25.

Токопроводящие жилы сечением 4—16 мм<sup>2</sup> изготовляют из медных проволок по ГОСТ 22483-77 класса 5 и сечением 25-120 мм<sup>2</sup> класса 4 с односторонней левой скруткой проволок в стренгу и стренг в жилу, которые изолируют резиной типа РТИ-1 толщиной согласно табл. 1 ГОСТ 23286-78 (категория Ир-2). Допускается применение неизолированной жилы заземления или изложение на нее изоляции профилированной формы. Допустимое отклонение от номинальной толщины изоляции - 10%. Поверх параллельно уложенных жил накладывают оболочку из резины типа РШ-2:

| Размер большой стороны оболочки, мм | До 10 | 10-12 | 12-20    |
|-------------------------------------|-------|-------|----------|
| Толщина оболочки, мм                | 1,7   | 2,0   | 2,5      |
| Размер большой стороны оболочки, мм | 20-30 | 30-40 | Свыше 40 |
| Толщина оболочки, мм                | 2,8   | 3,0   | 3,5      |

Допускается наложение поверх изолированных жил слоя синтетической пленки, а также замена изоляции и оболочки одним слоем изоляционной резины, обладающей защитными свойствами. Толщина оболочки в этом случае должна быть равна сумме толщин изоляции и оболочки, а расстояние между токопроводящими жилами — не менее двух толщин изоляции. Предельный допуск на толщину оболочки — 20%.

Номинальные внешние размеры и масса кабелей приведены в табл. 9.24. Кабели поставляют длинами не менее 250 м. Допускается поставка отрезков длиной не менее 20 м в количестве не более 20% партии, в том числе не менее 15% длиной до 150 м.



Рисунок 9.15. Прожекторный кабель КГП

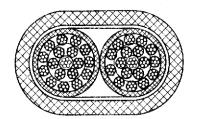



Рисунок 9.16. Схема прожекторного кабеля КГП без заземляющей жилы

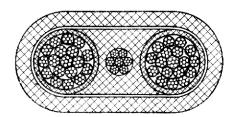



Рисунок 9.17. Схема прожекторного кабеля КГП с заземляющей жилой

Таблица 9.25. Конструктивные данные жил кабеля КВГВ

| 2               | n*S,  | Конструкция жил          | Конструкция жил          |    |                          |  |  |  |  |  |  |
|-----------------|-------|--------------------------|--------------------------|----|--------------------------|--|--|--|--|--|--|
| MM <sup>2</sup> |       | Диаметр<br>проволоки, мм | Число проволок<br>в жиле |    | Расчетный<br>диаметр, мм |  |  |  |  |  |  |
|                 | 3*150 | 0,68                     | 405                      | 15 | 19,66                    |  |  |  |  |  |  |
|                 | 1*50  | 0,49                     | 266                      | 19 | 10,80                    |  |  |  |  |  |  |
|                 | 7*2,5 | 0,26                     | 49                       | 7  | 2,34                     |  |  |  |  |  |  |

**Параметры кабелей КГП**. Изолированные основные жилы кабелей испытывают переменным напряжением по категории ЭИ-2 (ГОСТ 23286-78). Готовые кабели испытывают переменным напряжением в соответствии с категорией ЭИ-1. Кабели, изготовленные с одновременным наложением изоляции и оболочки или в оболочке из изоляционной резины, обладающей защитными свойствами, испытывают на АСИ переменным напряжением частоты  $50-10^6$  Гц: 10 кВ — при толщине изоляции 1,0 мм, 12 кВ — при толщине 1,2 мм, 14 кВ — при толщине 1,4 мм и 16 кВ — при толщине 1,6 и 1,8 мм. Кабели устойчивы к знакопеременным изгибам на угол  $\pm \pi/2$  рад вокруг роликов радиусом, равным восьми размерам кабеля по малой оси, с растягивающим усилием 98,1 Н. Кабели сечением основных жил 4-10 мм $^2$  выдерживают 6000 циклов изгиба; сечением 16-50 мм $^2-4000$  циклов; сечением 70-120 мм $^2-3000$  циклов.

Кабели устойчивы к вибрационным нагрузкам в диапазоне частот от 5 до  $5000~\Gamma$ ц с ускорением до  $342~\text{m/c}^2$ ; многократным ударам с ускорением до  $1370~\text{m/c}^2$  при длительности удара 10~mc; одиночным ударам с ускорением до  $9810~\text{m/c}^2$  при длительности удара до 2~mc и смене температур от -50~дo + 50~C.

**Кабель силовой гибкий со вспомогательными жилами КВГВ** предназначен для присоединения передвижных механизмов к электрической сети с изолированной нейтралью при номинальном переменном напряжении: основных цепей — 10 кВ частоты 50 Гц и токовой нагрузке до 500 А током однофазного замыкания на землю не более 10 А; вспомогательных цепей — 380 В частоты 50 Гц и при токовой нагрузке до 10 А.

Кабель имеет три основные жилы сечением 150 мм², одну жилу заземления сечением 50 мм² и семь вспомогательных — сечением 2,5 мм² каждая. Конструкции перечисленных жил приводятся в табл. 9.25. Между внутренним и внешним электропроводящими резиновыми экранами основных жил толщиной 0,6 мм каждый укладывают изоляцию из резины типа РТИ толщиной 6,0 мм. На жилу заземления накладывают резиновую электропроводящую оболочку толщиной 1,2 мм. Вспомогательные жилы изолируют резиной толщиной 1,3 мм. Изолированные жилы скручивают и обматывают ПЭТФ пленкой с перекрытием, а на них закладывают оболочку вулканизирующегося ПЭ толщиной 2,0 мм и ленту ПЭТФ с перекрытием. Допускается наложение по скрутке вспомогательных жил невулканизированной прорезиненной ткани, а вместо вулканизирующегося ПЭ наложение оболочки из резины.

Основные и защемляющую жилы и группу вспомогательных жил скручивают в кабель и обматывают прядью нитей из синтетического волокна. Поверх скрученных жил накладывают общий экран из электропроводящей резины толщиной 3,0 мм и оболочку из резины типа РШ-1 толщиной 5,0 мм с допуском  $\pm 20\%$ . Номинальный внешний диаметр кабеля 89,3 мм, масса 12144 кг/км. Кабель поставляют длинами не менее 200 м. Допускается сдача длинами не менее 50 м в количестве не более 10% партии.

Параметры кабеля КВГВ. Изолированные и экранированные жилы испытывают переменным напряжением 20 кВ частоты 50 Гц в течение 15 мин или в воде после 1 ч выдержки. Изолированные вспомогательные жилы испытывают на АСИ переменным напряжением 6 кВ частоты 50 Гц. Основные жилы готового кабеля испытывают переменным напряжением 20 кВ частоты 50 Гц в течение 5 мин, а вспомогательные жилы напряжением 2 кВ в течение 5 мин. Электрическое сопротивление изоляции основных жил не менее  $25*10^6$  Ом\*км. Электрическое сопротивление экранов кабелей не более 400 Ом.

**Кабели силовые гибкие с алюминиевыми жилами АКРПТ и АКРПТН** предназначены для присоединения передвижных механизмов к электрическим сетям на переменное напряжение до 660 В частоты до 400 Гц или постоянное напряжение до 1000 В. Кабели обеих марок имеют до трех основных жил, а двух- и трехжильные изготовляют также с жилой заземления (табл. 9.26).

Внешняя оболочка кабеля АКРПТН обладает маслобензостойкостью и сопротивлением распространению горения.

Токопроводящие жилы всех сечений, кроме 10 мм², соответствуют конструкции класса 4 (ГОСТ 22483-77); сечение 10 мм² -класса 3. Направление скрутки верхнего повива — левое, скрутка жилы сечением 10 мм² в одну сторону. Жилы изолируют резиной типа РТИ-2 толщиной по категории Ир-3 (ГОСТ 23286-78). Поверх скрученных с шагом не более 16 D изолированных жил накладывают обмотку синтетической пленкой и резиновую оболочку, соответствующую категории Обр-1 (ГОСТ 23286-78). В кабеле АКРПТ применяют резину типа РШТ-2, а в АКРПТН — типа РШН-1. Основные жилы кабелей имеют отличительную расцветку или другой способ различия. Заземляющая жила имеет черный или желтозеленый цвет.

Внешний диаметр и масса кабелей приведены в табл. 9.26 и 9.27. Допустимые отклонения от номинальной толщины изоляции - 10%, оболочки - 20%. Допустимые предельные отклонения от номинального внешнего диаметра кабелей + 10%. Кабели поставляют длинами 125 м. Допускается сдача длинами не менее 20 м и количестве не более 20% партии.

Изолированные жилы испытывают на АСИ в соответствии с категорией ЭИ-2 переменным напряжением. Допускается испытание по категории ЭИ-1 (ГОСТ 23286-78). В готовом виде кабель испытывают переменным напряжением по категории ЭИ-3 без погружения в воду, а одножильные кабели после 6 ч пребывания в воде. Кабели сечением 16 - 35 мм $^2$  выдерживают знакопеременные изгибы на угол  $\pi/2$  рад на ролике диаметром 200 мм при растягивающей нагрузке 49 H не менее 1000 циклов, а сечением 50 - 95 мм $^2$  на ролике диаметром 400 мм не менее 500 циклов.

Таблица 9.26. Внешний диаметр кабелей АКРПТ и АКРПТН

|    | S, | Внешни   | й диаметр каб | еля, мм              |          |                      | Сечение                            |
|----|----|----------|---------------|----------------------|----------|----------------------|------------------------------------|
| MM | [2 | Одна     | Две           | Две                  | Три      | Три                  | жил заземления,<br>мм <sup>2</sup> |
|    |    | основная | основные      |                      | основные | основные жилы        | 11111                              |
|    |    | жила     | ЖИЛЫ          | и жила<br>заземления | жилы     | и жила<br>заземления |                                    |
|    | 16 | 12,2     | 22,4          | 22,8                 | 230,6    | 24,9                 | 10                                 |
|    | 25 | 14,0     | 26,0          | 26,0                 | 28,5     | 29,3                 | 10                                 |
|    | 35 | 16,7     | 30,4          | 30,4                 | 34,1     | 35,0                 | 10                                 |
|    | 50 | 19,7     | 38,5          | 38,5                 | 41,7     | 42,9                 | 16                                 |
|    | 70 | 22,3     | 42,6          | 42,6                 | 45,0     | 46,3                 | 25                                 |
|    | 95 | 24,4     | 46,8          | 46,8                 | 49,5     | 51,0                 | 35                                 |

Таблица 9.27. Масса кабелей АКРПТ и АКРПТН

| S, мм2 | Масса ка     | абеля g, кг/і | км          |          |                         |        |             |          |                         |                           |
|--------|--------------|---------------|-------------|----------|-------------------------|--------|-------------|----------|-------------------------|---------------------------|
|        | Одна<br>жила | основная      | Две<br>жилы | основные | Две<br>жилы<br>заземлен |        | Три<br>жилы | основные | Три<br>жилы<br>заземлен | основные<br>и жила<br>ния |
|        | АКРПТ        | АКРПТН        | АКРПТ       | АКРПТН   | АКРПТ                   | АКРПТН | АКРПТ       | АКРПТН   | АКРПТ                   | АКРПТН                    |
| 16     | 183          | 195           | 590         | 642      | 635                     | 685    | 778         | 841      | 760                     | 812                       |
| 25     | 247          | 261           | 807         | 874      | 809                     | 870    | 986         | 1057     | 1056                    | 1128                      |
| 35     | 338          | 358           | 1077        | 1168     | 1096                    | 1182   | 1371        | 1476     | 1460                    | 1568                      |
| 50     | 459          | 424           | 1680        | 1828     | 1709                    | 1848   | 1986        | 2137     | 2122                    | 2279                      |
| 70     | 586          | 619           | 2062        | 2242     | 2103                    | 2270   | 2329        | 2499     | 2499                    | 2673                      |
| 95     | 729          | 753           | 2542        | 2755     | 2584                    | 2777   | 2903        | 3101     | 3104                    | 3303                      |

**Провод ШПЭП-УХЛ** предназначен для присоединения электропил к сети переменного напряжения до 0,66 кВ частоты 400  $\Gamma$ ц или постоянного напряжения 1 кВ. Провод изготовляют трехжильным сечением 2,5 и 4 мм² с жилой заземления и вспомогательной жилой и эксплуатируют при температуре от -60 до +50°C и относительной влажности (90  $\pm$  2)% при температуре 25°C. Длительно допустимая температура нагрева жилы до 65°C.

Токопроводящие жилы сечением 2.5 и 4 мм $^2$  изготовляют по конструкции класса 4 с резиновой изоляцией типа РТИ-2 толщиной 1.0 мм. Жилы должны быть светлых цветов, а заземляющая жила — черного цвета. Поверх скрученных изолированных жил накладывают резиновую оболочку типа РШМ-2 толщиной 2.0 мм. Допустимые отклонения от номинальной толщины: изоляции - 10%, оболочки - 20%. Внешний диаметр провода 3\*2.5 + 1\*1.5 - 13.3 мм, а провода 3\*4 + 1\*2.5 - 15.1 мм. Массы соответственно 297 и 361 кг/км. Провода поставляют длиной не менее 100 м. Допускается поставка отрезков длиной не менее 35 м в количестве не более 10% партии.

Для предприятий, изготовляющих электропилы, провода поставляют длиной  $(1,2\pm0,1)$  или  $(1,5\pm0,1)$  м или кратной указанным длинам.

Изолированные жилы испытывают переменным напряжением 6 кВ на АСИ. В готовом виде провод испытывают переменным напряжением 2,5 кВ в течение 5 мин. Провод устойчив к воздействию смен температур от -60 до +65°C.