

АЯ 45

ЭЛЕКТРОНАСОСЫ ТИПА ЦВЦ-Т

РУКОВОДСТВО ПО ЭКСПЛУАТАЦИИ 32 ТНП.00.000 РЭ

1 ОПИСАНИЕ И РАБОТА

1.1Назначение изделия

Центробежные циркуляционные электронасосы типа ЦВЦ-Т предназначены для обеспечения циркуляции воды при температуре до $60~^{\circ}$ С с содержанием твердых механических примесей до 0.01~% по массе и с размерами до 0.1~% мм в системах технического водоснабжения.

Электронасосы выпускаются в однофазном исполнении на напряжение 220 В и в трехфазном исполнении на напряжение 380 В.

Максимальная температура окружающей среды при эксплуатации $40\,^{\circ}$ С, относительная влажность воздуха до $80\,\%$.

По типу защиты от поражения электрическим током электронасосы соответствуют 1 классу.

Электронасосы не предназначены для эксплуатации во взрыво и пожароопасных помещениях.

Климатическое исполнение УЗ.1 по ГОСТ 15150-69.

Температурный класс электронасосов TF 60.

Степень защиты от влаги – ІР 54 по ГОСТ 14254-96.

Электронасос сертифицирован на соответствие ГОСТ Р МЭК 60335-2-51-2000.

Сертификат соответствия № РОСС RU.AЯ45.B05086.

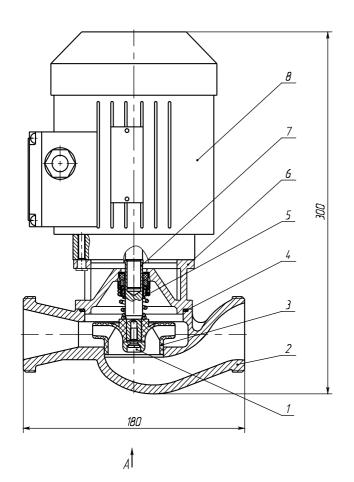
Действителен до 01.04.2011 г.

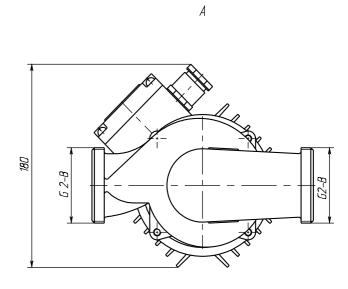
Выдан Сертификационным Центром НП «СЦ НАСТХОЛ».

1.2 Технические характеристики

1.2.1 Основные технические характеристики электронасосов на номинальном режиме указаны в таблице 1.

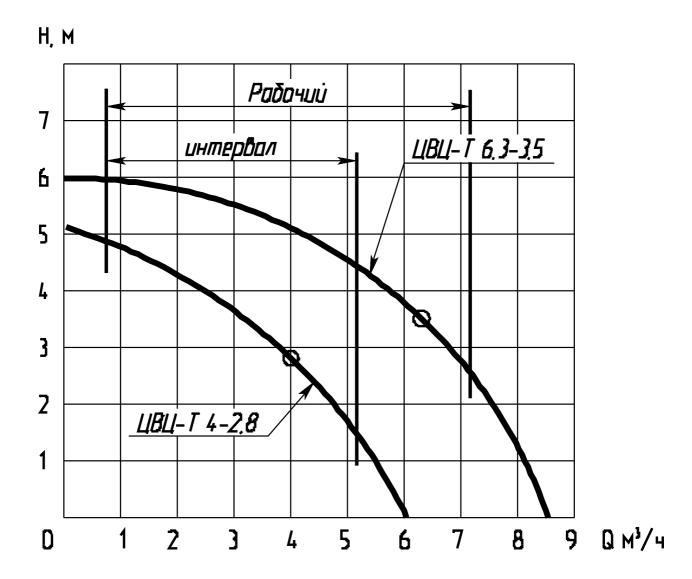
Таблица 1


Наименование	Типоразмер электронасоса		
показателя	ЦВЦ-Т 6,3-3,5		ЦВЦ-Т 4-2,8
Напряжение сети, В	3~380	1~220	1~220
Частота тока, Гц	50		
Подача, м ³ /ч	6,3		4,0
Напор, м	3,5		2,8
Ток, А	0,52	1,3	1,0
Потребляемая мощность, Вт	1	80	120
Подпор, м, не менее	0,5		
Максимальный напор, м		6	5
Максимальное давление в си-	1,0		
стеме, МПа			
КПД, %, не менее	27		21,5
Масса, кг, не более	6,3	7,0	6,0


Габаритные и присоединительные размеры приведены на рисунке 1. Величина подачи в зависимости от напора изображена в виде диаграммы на рисунке 2.

1.2 Технические характеристики

Номинальное напряжение, В		3 ~380	0
Ча	астота тока, Гц	50	
Н	оминальные параметры электронасоса:		
-	подача, м ³ /ч	6,3	
-	напор, м	3,5	
-	ток, А	0,52	
-	потребляемая мощность, Вт		220
-	подпор, м, не менее	0,5	
		•	
-	максимальный напор, м	6	
-	максимальный напор, м масса, кг, не более	6 7,2	
-			


Габаритные и присоединительные размеры приведены на рисунке 1. Величина подачи в зависимости от напора изображена в виде диаграммы на рисунке 2.

1-винт, 2-корпус насоса, 3-колесо рабочее, 4- кольцо, 5-уплотнение торцовое, 6-фонарь, 7-муфта, 8-двигатель.

Рисунок 1 - Устройство электронасоса

Рисунак 2 - Характеристика электронасасов

1.3 Комплектность

Электронасос	1 шт.
Муфта	2 шт.
Гайка накидная	2 шт.
Прокладка	2 шт.
Руководство по эксплуатации	1 шт.
Упаковка	1 шт.

1.4 Устройство

Устройство электронасоса представлено на рисунке 1.

Электронасос представляет собой моноблок, состоящий из асинхронного трехфазного или однофазного двигателя 8 с синхронной частотой вращения 50 с⁻¹ (3000 об/мин) и насосной части.

Насосная часть состоит из чугунного корпуса 2, рабочего колеса 3, фонаря 6 и соединительной муфты 7. Рабочее колесо на валу крепится винтом 1. Вал уплотняется торцовым уплотнением 5. По разъему корпус уплотняется резиновым кольцом 4.

- 1.5 Маркировка и пломбирование
- 1.5.1 Знаки и надписи на электронасосе означают :

товарный знак ОАО "Ливгидромаш"

-знак соответствия

ЦВЦ-Т 6,3-3,5 ТУ 3631-036-05747979-96 - условное обозначение электронасоса

3~380 B - номинальное напряжение

50 Гц - номинальная частота тока

0,52 А - номинальный ток

180 Вт - номинальная потребляемая мощность

TF 60 - температурный класс

1P54 -степень защиты

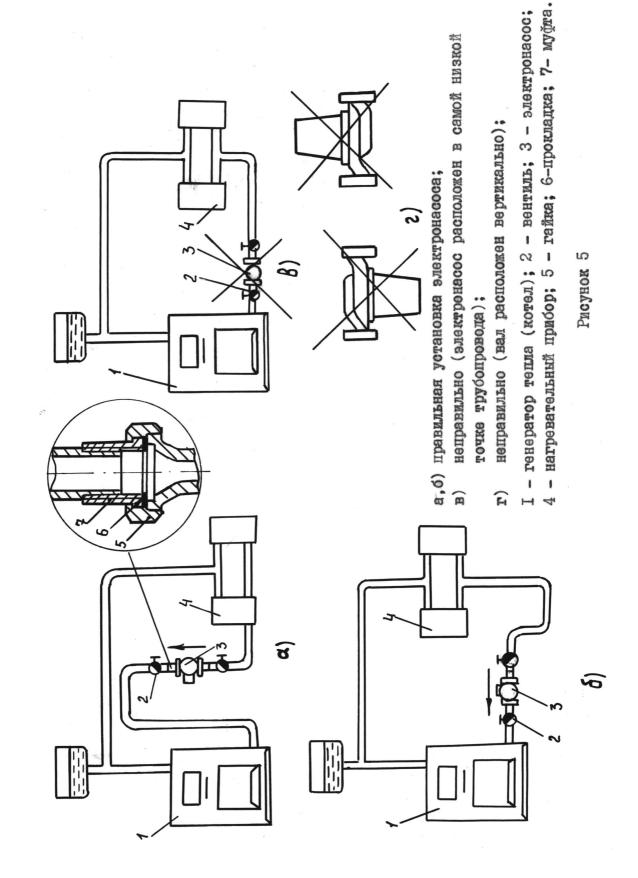
 $N_{\underline{0}}$ - номер электронасоса

- 1.5.2 Электронасос опломбирован. Красная метка на одном из крепежных болтов является гарантийной пломбой.
- 1.5.3 Направление вращения ротора обозначено стрелкой, закрепленной на фонаре двигателя.

2 ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

2.1 Эксплуатационные ограничения

ВО ИЗБЕЖАНИЕ ПОВРЕЖДЕНИЯ ТОРЦОВОГО УПЛОТНЕНИЯ РАБОТА ЭЛЕКТРОНАСОСА БЕЗ ВОДЫ НЕ ДОПУСКАЕТСЯ.


- 2.2 Подготовка к использованию и использование
- 2.2.1 Рекомендуемые схемы монтажа и ориентации электронасоса приведены на рисунке 3.
- 2.2.2. Направление потока жидкости указано стрелкой на корпусе насосной части.
- 2.2.3 Установку электронасоса можно производить горизонтально, вертикально, наклонно. При этом, во избежание образования воздушной пробки в зоне торцового уплотнения, вал насоса всегда должен располагаться горизонтально.
- 2.2.4 Перед монтажом выровнять трубопровод с патрубками электронасо-

Вблизи от электронасоса избегать изгиба трубопровода под острым углом.

- 2.2.5 Систему необходимо тщательно промыть для удаления остатков шлака от сварки трубопроводов, штукатурки и других примесей, которые могут оказаться в системе и забить проточную часть электронасоса.
- 2.2.6 Во избежание загрязнения проточной части электронасоса нельзя устанавливать его в самой низкой точке трубопровода.
- 2.2.7 Электронасос не должен устанавливаться клеммной коробкой вниз. Если необходимо изменить положение клеммной коробки, следует отвернуть четыре болта по разъему корпуса и развернуть электродвигатель в удобное положение. При этом, тщательно проверить установку уплотнительного резинового кольца по разъему.
- 2.2.8 Для удобства обслуживания или замены электронасоса у каждого патрубка рекомендуется установить запорные вентили.

НЕ СЛЕДУЕТ ДОПУСКАТЬ РАБОТУ ЭЛЕКТРОНАСОСА С ЗАКРЫТЫ-МИ ЗАПОРНЫМИ ВЕНТИЛЯМИ.

- 2.2.9 Если электронасос устанавливается вертикально, поток жидкости следует направить вверх. Если поток жидкости направлен вниз, необходимо установить кран для спуска воздуха на самой высокой точке трубопровода перед всасывающим патрубком.
- 2.2.10 Электронасос должен подсоединяться к имеющейся системе стандартными соединениями или посредством накидной гайки и муфты с прокладкой, входящих в комплект поставки.
- 2.2.11 ВНИМАНИЕ! ЭЛЕКТРОНАСОС ВКЛЮЧАТЬ ТОЛЬКО ПОСЛЕ ЗАПОЛНЕНИЯ СИСТЕМЫ ВОДОЙ.
 - 2.2.12 В случае наличия в перекачиваемой среде механических примесей, превышающих допустимые нормы, указанные в п1.1, в системе на входе электронасоса установить фильтр площадью не менее 450 см² с размером ячейки в свету не более 0,1 мм.
 - 2.2.13 Подключение электронасоса производить согласно схемы, указанной на клеммной коробке двигателя.
 - 2.2.14 В стационарной проводке необходимо установить автоматический выключатель с комбинированным максимальным расцепителем тока (электромагнитный и тепловой) на номинальное напряжение 380 В переменного тока частотой 50 Гц и номинальный ток главной цепи 1,6 А.

2.3 ВОЗМОЖНЫЕ НЕИСПРАВНОСТИ И СПОСОБЫ ИХ УСТРАНЕНИЯ

2.3.1 Перечень возможных неисправностей, которые может устранить потребитель, приведен в таблице 2.

Таблица 2

Возможная неисправность	Вероятная причина	Способ устранения
1 Электронасос работает но не подает жидкость	Воздух в системе	Провентилировать си- стему и электронасос
2 Электронасос не включается	Отсутствует напряжение в сети	Проверить наличие напряжения в сети
	Напряжение в сети ниже допустимого	Стабилизировать напря- жение в сети
	Заклинило вал	Провернуть вал отверт- кой через вентилятор
3 Шумная работа электронасоса	Недостаточен подпор жидкости	Увеличить подпор путем перемонтажа электронасоса в более низкую точку системы
	Воздух в системе	Провентилировать электронасос и систему

3 ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

3.1 Общие указания

Электронасос не требует технического обслуживания в течение всего срока службы при условии выполнения требований монтажа. Если ротор электронасоса заклинило в результате длительной работы и лишнего магнетизма или засорения, попытайтесь провернуть его отверткой через вентилятор.

3.2 Консервация

Электронасос подвергнут консервации на предприятии-изготовителе по варианту защиты B3-12 по ГОСТ9.014-78.