САМОВСАСЫВАЮЩИЙ **НАСОС 1СЦЛ-20-24Г**, САМОВСАСЫВАЮШИЙ **ЭЛЕКТРОНАСОСНЫЙ** АГРЕГАТ 1АСЦЛ-20-24Г

Каталог Н03000674

Самовсасывающий насос 1СЦЛ-20-24Г и самовсасывающий электронасосный агрегат 1АСЦЛ-20-24Г предназначены для перекачивания чистых, без механических примесей жидкостей: воды, бензина, керосина, спирта, продукта ТМ-185 и других нейтральных жидкостей вязкостью не более 2.10^{-5} м²/с и температурой от минус 40 до 50 °C.

Насосы и электронасосные агрегаты предназначены для работы в районах с умеренным климатом.

Структура условного обозначения

1АСЦЛ-[*]-[*]Г-[*]-[*][*]:

1 модификация;

Α агрегат;

С самовсасывающий;

Ц центробежный;

Л лопастной; [*] подача, м³/ч;

напор, м; [*]

индекс модернизации;

[*] направление вращения электронасосного агрегата, если

смотреть со стороны привода (Π – левое, Π – правое);

климатическое исполнение (У) и категория размещения [*][*]

(2, 3) no FOCT 15150-69.

Особенности конструкции

Самовсасывающие насосы 1СЦЛ-20-24Г выпускаются левого и правого вращения, если смотреть со стороны конца вала. Направление вращения вала должно совпадать с направлением указательной стрелки на насосе (проверяется кратковременным пробным пуском привода насоса).

Конструкция насосов левого и правого вращения представлена на рис. 1. Основными деталями насосов являются: корпус насоса, центробежное колесо, промежуточная крышка, крышка корпуса, торцовое уплотнение, вихревое колесо, воздухопровод, колпак, вал.

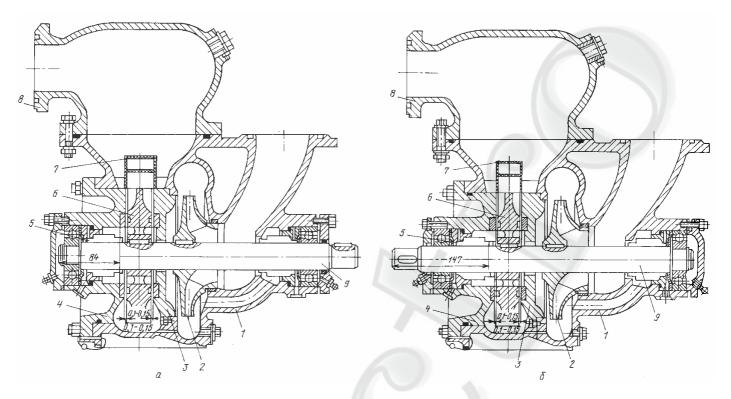


Рис. 1. Конструкция электронасоса 1СЦЛ-20-24Г:

- а левого вращения;
- б правого вращения
- 1 корпус насоса;
- 2 центробежное колесо;
- 3 промежуточная крышка;
- 4 крышка корпуса;
- 5 торцовое уплотнение;
- 6 вихревое колесо;
- 7 воздухопровод;
- 8 колпак;
- 9 вал

Всасывающий фланец насоса выполнен в корпусе насоса, напорный – в колпаке, который крепится к корпусу насоса. Корпус колеса имеет осевой подвод к центробежному колесу. Отвод от вихревого колеса обеспечивают крышка корпуса и промежуточная крышка, которая разделяет внутреннюю полость корпуса на две части. Вал опирается на шарикоподшипники, которые закрываются крышками (задней глухой и передней с расточкой под вал).

Герметичность насоса обеспечивается резиновыми кольцами и торцовыми уплотнениями.

Торцовое уплотнение крепится на валу насоса при помощи штифта. Вращающееся кольцо прижимается к неподвижному пружиной, обеспечивая герметичность. Герметичность между валом и вращающимся кольцом обеспечивается резиновым кольцом. Герметичность между неподвижным кольцом и корпусом уплотнения обеспечивается резиновым кольцом. Неподвижное кольцо стопорится относительно корпуса уплотнения цилиндрическим штифтом.

Утечки жидкости отводятся через отверстия в корпусе уплотнения и корпусе насоса.

Перед пуском в насос заливают рабочую жидкость. В момент пуска жидкость, имеющаяся в насосе, захватывается центробежным колесом и по переводному каналу отбрасывается в левую полость корпуса насоса к вихревому колесу, которое частично вытесняет жидкость в колпак. За счет вытесненной жидкости в насосе образуется вакуум и из всасывающей линии поступает воздух.

В корпусе воздух смешивается с перекачиваемой жидкостью, образуя эмульсию, которая вытесняется вихревым колесом в колпак. При прохождении эмульсии через воздухопровод воздух отделяется от жидкости и собирается в верхней части колпака, жидкость поступает обратно в камеру вихревого колеса.

Этот процесс происходит непрерывно до тех пор, пока всасывающая линия насоса не освободится от воздуха и перекачиваемая жидкость не поступит в насос. При прохождении через центробежное колесо и колесо вихревое жидкость, поступившая в насос, приобретает механическую энергию и поступает в напорный трубопровод. Освободившееся пространство немедленно заполняется новой порцией жидкости. Этот процесс при работе насоса происходит непрерывно.

Габаритные, установочные размеры насоса 1СЦЛ-20-24Г приведены на рис. 2. На рисунке даны также присоединительные размеры всасывающего и нагнетательного фланцев.

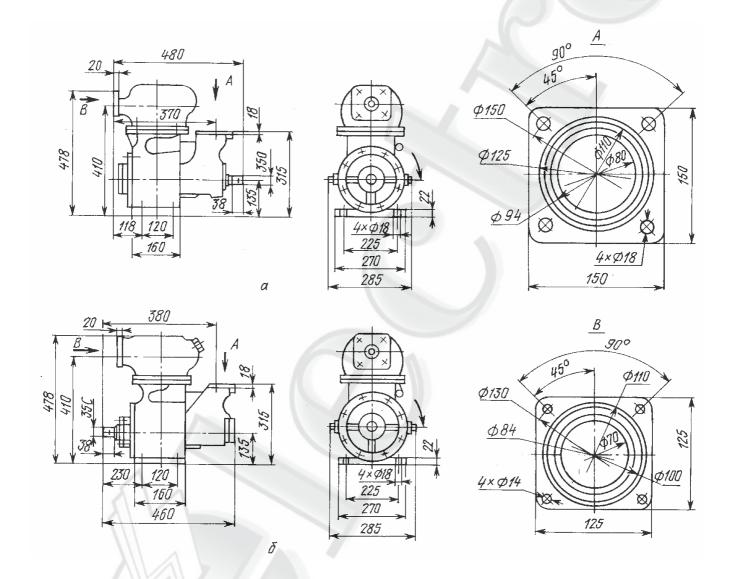


Рис. 2. Общий вид, габаритные и присоединительные размеры электронасоса 1СЦЛ-20-24Г:

- а левого вращения;
- б правого вращения

Электронасосный агрегат 1АСЦЛ-20-24 состоит из насоса 1СЦЛ-20-24Г-Л (левого вращения) и электродвигателя, смонтированных на общей фундаментной плите (чугунной или железобетонной) и соединенных между собой муфтой.

Муфта электронасосного агрегата выполняется в двух вариантах: пальцевая и втулочно-пальцевая и защищается кожухом, который устанавливается на заводе-изготовителе. Электронасосный агрегат поставляется в собранном виде и не требует разборки при монтаже.

В зависимости от заказа электронасосный агрегат комплектуется электродвигателями в соответствии с ведомостью комплектации, приведенной в табл. 1.

Таблица 1

Электродвигатель	Типоисполнение	Частота вращения, мин ⁻¹	Напряжение, В	Мощность, кВт	Масса, кг
Трехфазный короткозамкнутый асинхронный	AO2-71-4У3 IM1001		220/380		220
Трехфазный короткозамкнутый асинхронный взрывобезопасный	BAO-71-4У2 IM1001		380/660	22	310
Трехфазный короткозамкнутый асинхронный взрывобезопасный	B180S-4У2 IM1081	1500	380/000	22	290
Трехфазный короткозамкнутый асинхронный	4A180S-4У3 IM1081		220/380 380/660		175
Трехфазный короткозамкнутый асинхронный	B160M-4У2 IM1081	4	380/660	18,5	250
Трехфазный асинхронный взрывозащищенный	АИМ180S4 IM1080		360/000	22	225

Общий вид, габаритные и присоединительные размеры и масса агрегата в зависимости от используемого электродвигателя и варианта конструктивного исполнения фундаментной плиты представлены на рис. 3 и 4.

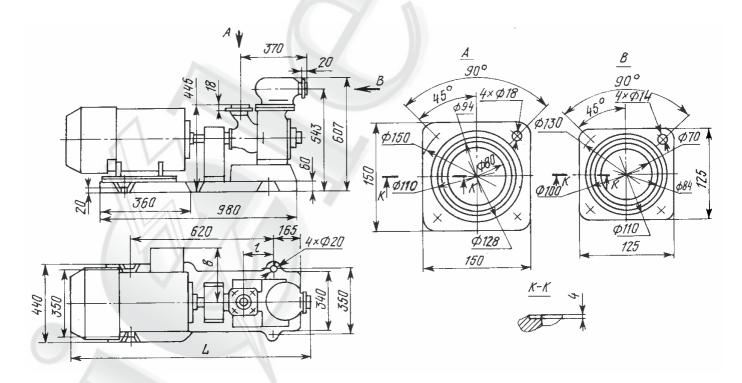


Рис. 3. Общий вид, габаритные, присоединительные размеры и масса электронасосного агрегата 1ACЦЛ-20-24Г на чугунной фундаментной плите

А – всасывающий фланец;

В – нагнетательный фланец

Таблица к рис. 3

Тип опоктропригатона		Размеры, мм	Magaz arraraza ya		
Тип электродвигателя	L	l b		— Масса агрегата, кг	
4A180S-4	1172	150	205	290	
B180S-4	1250	150	290	390	
AO2-71-4	1200		293	337	
BAO-71-4	1200	145	352	387	
B160M-4	1160		350	330	
АИM180S-4	1280	150	150	310	

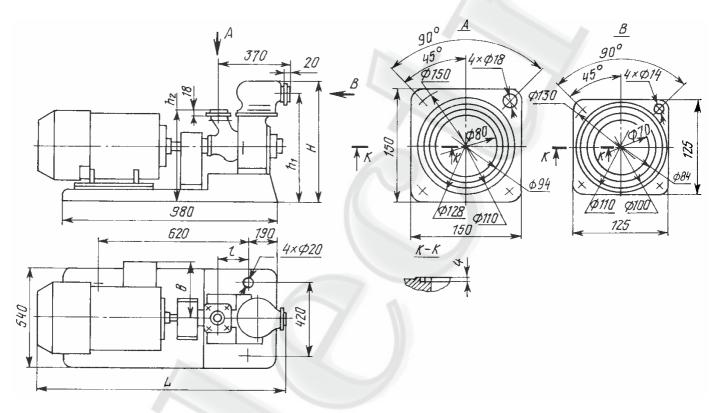


Рис. 4. Общий вид, габаритные, присоединительные размеры и масса электронасосного агрегата 1АСЦЛ-20-24Г на железобетонной фундаментной плите

Таблица к рис. 4

Тип опоктроприготопа	Размеры, мм						Managarnara ur	
Тип электродвигателя	Y L/	Н	h ₁	h ₂	I	b	Масса агрегата, кг	
4A180S-4	1172	607	/			205	290	
B180S-4	1250	607	513	447	150	290	390	
АИM180S-4	1200	560				150	335	

При эксплуатации электронасосный агрегат должен быть заземлен за болт заземления на электродвигателе по ГОСТ 12.2.007.0–75. Заземление насоса от снятия зарядов электростатического электричества производится за болт заземления на всасывающей секции в соответствии с действующими "Правилами защиты от статического электричества в производствах химической, нефтехимической и нефтеперерабатывающей промышленности" и ГОСТ 21130–75. Место соединения заземляющего провода с болтом заземления закрашивается для защиты от коррозии.

Во взрыво- и пожароопасных производствах, где не исключена возможность работы насоса всухую, должна быть предусмотрена автоматическая защита агрегата.

Условия эксплуатации

Номинальные значения климатических факторов по ГОСТ 15150-69.

Температура окружающей среды от 0 до 40 °C.

Относительная влажность воздуха 80% при температуре 20 °C.

Отсутствие непосредственного воздействия на электродвигатель воды.

Электронасосы 1СЦЛ-20-24Г и агрегаты 1АСЦЛ-20-24Г выпускаются по первой группе надежности.

Электронасосы должны эксплуатироваться в рабочем интервале подач насосных характеристик "Q-H"

Не допускаются пуск и работа насоса, не заполненного перекачиваемой жидкостью.

Условия хранения электронасосов до пуска в эксплуатацию – в закрытом помещении.

Электронасосы 1СЦЛ-20-24Г и агрегаты 1АСЦЛ-20-24Г соответствуют требованиям ТУ 26-06-1268-80, сертифицированы СЦ НАСТХОЛ Госстандарта России. Сертификат соответствия РОСС RU. АЯ 45.В1208, действителен до 04.08.2002 г.

Технические данные

Основные технические данные насосов при испытании на воде плотностью р=1000 кг/м³ при частоте вращения 1450 и 1700 мин⁻¹ приведены в табл. 2.

Таблица 2

	Частота вращения, мин ⁻¹			
Наименование показателя	1450	1700		
Подача Q, м³/ч	32	45		
Напор Н, м	54	45		
Допустимый кавитационный запас ∆h _д , м, не более	1,5	5		
Допустимая продолжительность самовсасывания, с	50			
Мощность, кВт	16	24		
Значение утечки через каждое уплотнение вала, см ³ /ч, не более	30			
Высота самовсасывания, м, не менее	5,5			
КПД, %	33			
Направление вращения (если смотреть со стороны привода): насоса агрегата	Левое, правое Левое			
Масса насоса, кг	35			

Характеристики электронасоса при испытании на воде плотностью р=1000 кг/м3, при частоте вращения n = 1450 и 1700 мин⁻¹ приведены на рис. 5. На рисунках указан рабочий диапазон характеристики "Q-H".

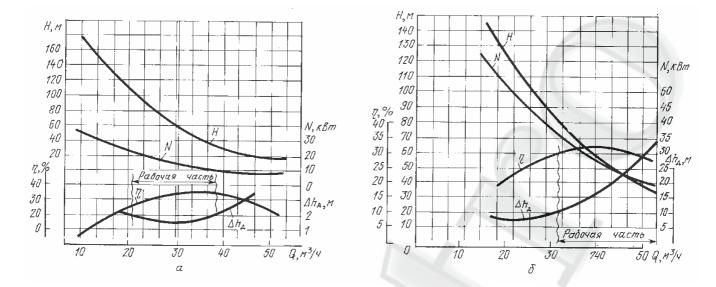


Рис. 5. Характеристики электронасоса 1СЦЛ-20-24Г при частоте вращения:

а – 1450 мин⁻¹; б – 1700 мин⁻¹

Гарантируемые технические шумовые и вибрационные характеристики агрегата 1АСЦЛ-20-24Г (для определения защитных мероприятий по обеспечению шума и вибрации на рабочих местах в соответствии с требованиями ГОСТ 12.1.003–83 и ГОСТ 12.1.012–78) приведены в табл. 3.

Таблица 3

Уровень звуковой мощности, дБ, в октавных полосах со среднегеометрическими частотами, Гц								Корректированный уровень	
63	125	250	500	1000	2000	4000	8000	звуковой мощности, дБА	
87	85	98	100	94	92	89	81	103	

Среднеквадратичное значение вибростойкости агрегата, измеренное в диапазоне от 10 до 1000 Гц, не превышает 6.9 мм/с (105 дБ относительно 5∙10 мм/с).

Гарантийный срок службы электронасоса – 5 лет со дня ввода в эксплуатацию, но не более 7 лет со дня отгрузки изготовителем. Порядок исчисления гарантии по ГОСТ 22352–77.

К концу гарантийного срока службы электронасоса допускается падение подачи на 10% от номинальной.

ГОСТ (ТУ)

TY 26-06-1268-80 POCC RU AA 45.B1208

Изготовитель: ОАО "ЭНА"

141100, Россия, Московская обл., г. Щелково, Заводская ул., 14