Industrial valves -Steel gate valves

Арматура трубопроводная промышленная. Стальные задвижки.

Европейский стандарт EN 1984:2000 имеет статус Британского стандарта.

Содержание

Введение	3
1 Область применения	4
2 Ссылки на нормативные документы	5
3 Определения	6
4 Технические условия	7
4.1 Устройство	7
4.2 Функциональные характеристики 1	1
5 Проведение испытаний	2
6 Заявление соответствия 1	2
7 Обозначение	2
8 Маркировака и подготовка к хранению и транспортировке	3
8.1 Маркировка	3
8.2 Подготовка к хранению и транспортировке	3
Приложение А (информационное)_Сведения, предоставляемые заказчиком 1	4
Приложение ZA (информационное) Пункты данного Европейского стандарта, направленные на выполнение основных требований или других положений Директив EC	
Библиография	6

Введение

Данный Европейский Стандарт подготовлен Техническим Комитетом CEN/TC 69, Промышленная Трубопроводная Арматура, Секретарем которого является AFNOR.

Данному Европейскому Стандарту должен быть присвоен статус национального стандарта — форме публикации идентичного текста или воспроизведения настоящего текста, не позднее, чем к июлю 2000 года, а противоречащие ему национальные стандарты подлежат отзыву не позднее, чем к июлю 2000 года.

Данный Европейский Стандарт подготовлен по поручению, данному CEN Европейской Комиссией и Европейской ассоциацией свободной торговли, и поддерживает основные требования Директив ЕС.

Взаимосвязь с Директивами EC рассмотрена в информационном приложение ZA, которое является неотъемлемой частью данного Стандарта.

Согласно внутренним Положениям CEN/CENELEC, данный Европейский Стандарт является обязательным для исполнения национальными организациями по стандартам следующих стран: Австрии, Бельгии, Чешской республики, Дании, Финляндии, Франции, Германии, Греции, Исландии, Ирландии, Италии, Люксембурга, Нидерландов, Норвегии, Португалии, Испании, Швеции, Швейцарии и Великобритании.

1 Область применения

Данный Европейский Стандарт определяет технические условия на стальные задвижки, являющиеся кованными, литыми или сборными и имеющими патрубки фланцевые, под приварку встык, под приварку в раструб или с резьбой.

Данный стандарт относится к стальным задвижкам, главным образом, общего назначения. Они могут использоваться и в специальных областях, если удовлетворяют требованиям соответствующих норм.

Стандарт распространяется на следующий диапазон номинальных размеров:

DN8; DN10; DN12; DN15; DN20; DN25; DN32; DN40; DN50; DN65; DN80; DN100; DN125; DN150; DN200; DN250; DN300; DN350; DN400; DN450; DN500; DN600; DN700; DN750; DN800; DN900; DN1000

DN750 используется только для арматуры с указанием класса.

DN8 и DN12 не используются для фланцевых патрубков.

Задвижки с патрубками под приварку в раструб и с резьбовыми патрубками ограничены диапазоном от DN8 до DN65.

Диапазон охватываемых стандартом номинальных давлений:

- а) для фланцевой арматуры
- б) PN10; PN16; PN25; PN40; PN63; PN100Класс 150; Класс 300; Класс 600
- в) для арматуры с патрубками под приварку встык
- r) PN10; PN16; PN25; PN40; PN63; PN100
 - Класс 150, Класс 300, Класс 600
- д) для арматуры с патрубками под приварку в раструб или с резьбовыми патрубками
- e) PN10; PN16; PN25; PN40; PN63; PN100

Класс 600; Класс 800

В связи с продолжением работ над различными стандартами, указанными в списке ссылок на нормативные документы, может потребоваться пересмотр данного стандарта.

ПРИМЕЧАНИЕ 1 Арматура с патрубками под приварку в раструб или с резьбовыми патрубками обычно не выпускается с маркировками давлений PN10, PN16, PN25 and PN40.

ПРИМЕЧАНИЕ 2 Класс 800 – обозначение промежуточного класса, широко использующееся для арматуры с патрубками под приварку в раструб и с резьбовыми патрубками.

2 Ссылки на нормативные документы

В тексте настоящего Стандарта содержатся основные и второстепенные ссылки на положения других документов. Эти ссылки размещены в соответствующих местах в тексте настоящего стандарта, а список документов приводится ниже. Если используется основная ссылка, все последующие изменения или редакции упомянутых документов применимы к настоящему Стандарту, только если они включены в настоящий Стандарт в результате его изменения или пересмотра. Если используется второстепенная ссылка, применяется последнее издание упомянутых документов (со всеми изменениями и дополнениями).

EN 287-1:2004, Аттестация сварщиков. Сварка плавлением.

Часть 1: Стали

EN 288-1, Технические условия и оценка сварочных процедур для материалов с металлическими свойствами. Часть 1: Общие правила для сварки сплавлением

EN 558-1, Арматура трубопроводная промышленная. Размеры строительных длин металлической арматуры для фланцевых трубопроводных систем. Часть 1. Арматура с обозначением по рабочему давлению

EN 558-2, Арматура трубопроводная промышленная. Размеры строительных длин для проходного и углового корпуса металлических клапанов для фланцевых трубопроводных систем.

Часть 2. Клапаны с обозначением класса давления

EN 736-1, Арматура трубопроводная промышленная. Терминология.

Часть 1: Типы арматуры.

EN 736-2, Арматура трубопроводная промышленная. Терминология.

Часть 2: Компоненты арматуры.

EN 736-3, Арматура трубопроводная промышленная. Терминология.

Часть 3: Рабочие параметры.

EN 1418:1998, Персонал, обеспечивающий проведение сварочных работ. Испытание операторов сварочных машин для сварки плавлением и машин для контактной сварки при проведении полностью механизированной и автоматизированной сварки металлических материалов

EN 10045-1, Материалы с металлическими свойствами. Испытания на удар по Шарпи. Часть 1: Методика испытаний

EN 12760, Арматура трубопроводная промышленная. Патрубки под сварку в раструб для стальной трубопроводной арматуры

EN 12982, Арматура трубопроводная промышленная. Строительная длина и высота для металлической арматуры с патрубками под сварку встык

EN 12627, Арматура трубопроводная промышленная. Патрубки под приварку встык для стальной трубопроводной арматуры

prEN 19:1996, Арматура трубопроводная промышленная. Маркировка металлической арматуры

prEN 1092-1:1997, Фланцы и их соединения. Круглые фланцы для труб, арматуры, фитингов и вспомогательных устройств. Фланцы с маркировкой давления. Часть 1. Стальные фланцы

prEN 1503-1:2000, Арматура трубопроводная промышленная. Материалы корпуса, крышек и защитных колпаков. Часть 1: Марки сталей, установленные Европейскими стандартами.

prEN 1503-2:2000, Арматура трубопроводная промышленная. Материалы корпуса, крышек и защитных колпаков. Часть 2: Марки сталей, не установленные Европейскими стандартами

prEN 12266-1:1999, Арматура трубопроводная промышленная. Испытания трубопроводной арматуры. Часть 1: Испытания, методики проведения и критерии приемки

prEN 12266-2:1999, Арматура трубопроводная промышленная. Испытания трубопроводной арматуры. Часть 2: Дополнительные испытания, методики проведения и критерии приемки

prEN 12516-3:1999, Арматура трубопроводная промышленная. Расчетная прочность корпуса. Часть 3: Экспериментальный метод

prEN 12570:1996, Арматура трубопроводная промышленная. Испытание арматуры. Метод определения размеров элемента управления.

ISO 7-1, Резьбы трубные, обеспечивающие герметичность соединения.

Часть 1: Размеры, допуски и обозначение

ISO 228-1, Резьбы трубные, не обеспечивающие герметичность соединения.

Часть 1: Размеры, допуски и обозначение

EN ISO 5210, Арматура трубопроводная промышленная. Устройства многооборотного привода трубопроводной арматуры (ISO 5210:1991)

ASME B1.20-1, Резьбы трубные общего назначения (Дюймовые)

ПРИМЕЧАНИЕ. Европейский Стандарт EN 1984 поддерживает некоторые из основных требований Директивы 97/23/ЕС по оборудованию, работающему под давлением. Основные из предусмотренных требований перечислены в приложении ZA (информационном). Данный стандарт должен использоваться с перечисленными здесь нормативными документами. Следует также ссылаться на приложение ZA при указании соответствующего нормативного документа.

3 Определения

В данном стандарте используются определения типов трубопроводной арматуры и деталей, приведенные в стандартах EN 736-1, EN 736-2 и EN 736-3.

4 Технические условия

4.1 Устройство

4.1.1 Материалы

- **4.1.1.1** Материалы корпуса, кожуха и крышки определяются на основании стандартов prEN 1503-1:1994 и prEN 1503-2:1994.
- **4.1.1.2** Все внутренние части, контактирующие с жидкостью должны быть выполнены из материала, обладающего аналогичной коррозионной стойкостью к протекающей жидкости, как материал корпуса и крышки.
- **4.1.1.3** Материалы деталей корпуса должны иметь химический состав и механические свойства, обеспечивающие механическую целостность трубопроводной арматуры.

Элементы корпуса включают в себя следующее: а)шток;

- б) седло уплотнителя;
- в) седло клапана;
- г) обратное седло (для задвижек DN50 и выше, если установлено).
- **4.1.1.4** Штоки должны изготавливаться из кованного, волоченного или прокатного материала. Они должны иметь минимальную коррозионную стойкость, эквивалентную ферритной стали с содержанием 13% хрома.

4.1.2 Допустимые значения давления/температуры арматуры

- **4.1.2.1** Допустимые значения давления/температуры арматуры должны соответствовать указанным в Методах 1 , которые в настоящий момент находятся в стадии написания, для конкретной группы материалов корпуса/крышки.
- **4.1.2.2** Допустимые значения давления/температуры для арматуры с резьбовыми патрубками и патрубками под сварку в раструб Класса 800 должны соответствовать рядам Класса 600 для соответствующей группы материалов, умноженным на отношение 800/600.
- **4.1.2.3** Ограничения значений температуры и давления ниже указанных в п.п.4.1.2.1 и 4.1.2.2, вызванные например, применением мягких уплотнений, специальных элементов корпуса и сильфонных уплотнений, должны быть обозначены на задвижке (см. 8.1.2).
- **4.1.2.4** Для температур ниже минимальных значений, указанных в таблицах значений в Методах¹, рабочее давление должно быть не больше, чем давление, соответствующее минимальной температуре. Использование меньших температур, чем указано в таблицах допускается, если энергия разрыва на изгиб материала корпуса, кожуха и крышки, измеренная на трех образцах размером 10 мм х 10 мм в соответствии с EN 10045-1 составляет в среднем не менее 27 Дж при температуре не выше минимальной планируемой рабочей температуры.

_

¹ Пояснение ИД НПАА: см. EN 12516-1:2005 Арматура трубопроводная промышленная. Испытание арматуры. Расчетная прочность корпуса. Часть 1. Табличный метод расчетов.

4.1.3 Размеры

4.1.3.1 Значения строительных длин FTF (face-to-face) и ETE (end-to-end)

Значения строительной длины FTF для арматуры с фланцевыми патрубками, работающей под давлением должны соответствовать EN 558-1. Значения строительной длины FTF для арматуры с фланцевыми патрубками, отличающейся по классу должны соответствовать EN 558-2.

Значения строительной длины ETE для арматуры с патрубками под приварку встык должны соответствовать EN 12982.

Значения строительной длины ЕТЕ для арматуры с резьбовыми патрубками и с патрубками под приварку в раструб остаются на усмотрение производителя.

4.1.3.2 Патрубок корпуса

4.1.3.2.1 Фланцевые патрубки должны соответствовать условиям prEN 1092-1:1997 для фланцев, работающих под давлением или условиям $Metogobeta^2$ для фланцев, отличающихся по классу.

Фланцевые патрубки должны быть отлиты или соединены с корпусом кузнечной сваркой, за исключением того, что фланцы могут быть присоединены путем приваривания в соответствии с п. 4.1.6. Для присоединения фланцев путем приваривания в случае размеров, больших DN50 должна применяться приварка встык с полным проплавлением.

- **4.1.3.2.2** Профили патрубков для приварки встык должны соответствовать стандарту EN 12627.
- **4.1.3.2.3** Размеры патрубков для приварки в раструб должны соответствовать стандарту EN 12760. Минимальная толщина материала, удерживающего давление, должна соответствовать значениям, указанным в Методах³, которые в настоящий момент находятся в стадии написания.
- **4.1.3.2.4** Внутренняя резьба патрубков должна быть в соответствии с Типом Rc и Rp для ISO 7-1 или Типом G для ISO 228-1 или Типом NPT для ASME B1.20-1.

4.1.3.3 Внутренний диаметр патрубков корпуса

Патрубки корпуса должны быть круглыми. Для нефутерованной арматуры внутренний диаметр патрубков корпуса должен быть не менее номинального внутреннего диаметра, указанного в Таблице 1.

-

² См. например prEN 1759-1.

³ См. например prEN 12516-1 и prEN 12516-2.

BS EN 1984:2000 Таблица 1 – Номинальный внутренний диаметр патрубков корпуса

Размеры в миллиметрах

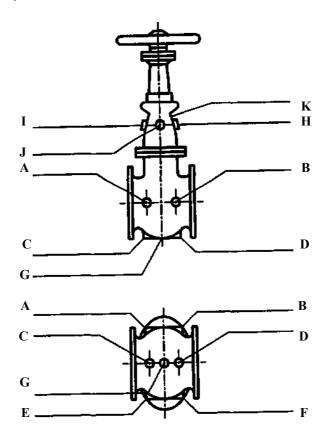
DN	PN 10	PN 16	Класс 150	PN 25	PN 40	Класс 300	PN 63	PN 100	Класс 600	Класс 800
8	8	8	6	8	8	6	8	6	6	6
10	10	10	9	10	10	9	10	9	9	9
12	12	12	12	12	12	12	12	11	11	11
15	15	15	13	13	13	13	13	13	13	12
20	20	20	19	19	19	19	19	19	19	18
25	25	25	25	25	25	25	25	25	25	23
32	31	31	31	31	31	31	31	31	31	30
40	40	40	38	38	38	38	38	38	38	36
50	50	50	50	50	50	50	50	50	50	46
65	63	63	63	63	63	63	63	63	63	60
80	78	78	76	76	76	76	76	76	76	-
100	100	100	101	100	100	101	100	100	101	-
125	125	125	127	125	125	127	125	125	127	-
150	150	150	152	150	150	152	150	150	152	-
200	200	200	203	200	200	203	200	199	199	-
250	250	250	254	250	250	254	250	247	247	-
300	300	300	304	300	300	304	300	298	298	-
350	343	343	336	336	336	336	336	327	327	-
400	394	394	387	387	387	387	384	375	375	-
450	445	445	438	438	432	432	429	419	419	-
500	495	495	488	488	483	483	479	463	463	-
600	597	597	590	590	584	584	579	558	558	-
700	695	695	692	692	686	686	678	648	648	-
750	746	746	743	743	737	737	728	695	695	-
800	800	793	788	788	786	786	776	741	741	-
900	900	889	889	889	884	884	873	835	835	-
1000	1000	991	991	991	983	983	971	928	928	-

4.1.4 Операции

4.1.4.1 Рабочая резьба штока

Рабочая резьба штока должна быть наружного винтового типа, если заказчиком не указано иное.

4.1.4.2 Устройство управления


Задвижка комплектуется ручным маховиком, если заказчиком не определен силовой привод. При управлении силовым приводом соединение с задвижкой должно соответствовать EN ISO 5210.

4.1.4.3 Направление управляющего вращения

Задвижка должна закрываться при вращении маховика по часовой стрелке. Маркировка маховика должна соответствовать стандарта prEN 19:1996.

4.1.5 Дополнительные соединения

4.1.5.1 Если требуются дополнительные соединения, то они должны быть обозначены буквами как указано на **рисунке 1.**

ПРИМЕЧАНИЕ Дополнительное соединение К противоположно J и находится с той же стороны, что E и F Рисунок 1 — Расположение дополнительных соединений

4.1.5.2 Если требуются дополнительные соединения, то они должны соответствовать Таблице 2.

Резьбовые соединения должны иметь внутреннюю резьбу согласно указанным в п.**4.1.3.2.4**, а соединения под сварку в раструб должны соответствовать стандарту EN 12760.

Таблица 2 - Размеры дополнительных соединений

Номинальный размер	Размер дополнительного		
арматуры	соединения		
50≤DN≤100	DN15		
125≤DN≤200	DN20		
250≤ DN ≤600	DN25		
650≤DN	DN40		

4.1.6 Неразборное соединение

4.1.6.1 Сварка

Сварка частей корпуса задвижки должна быть выполнена согласно стандарту EN 288-1⁴. Сварочные аппараты должны быть испытаны согласно стандарту EN 287-1⁵, а операторы сварочных работ должны быть аттестованы согласно стандарта EN 1418⁶.

4.1.6.2 Неразрушающие испытания

Условия неразрушающих испытаний сварных соединений, являющихся элементами корпуса задвижки подробно рассмотрены в принятых правилах сварки.

4.1.6.3 Термообработка

Условия термообработки сварных соединений, являющихся элементами корпуса задвижки будут подробно рассмотрены в Методах сварки.

4.2 Функциональные характеристики

4.2.1 Расчетная прочность корпуса

Минимальная толщина стенок корпуса и крышки, соединения корпуса с крышкой и крепление крышки должны определяться в соответствии с Методами⁷.

В равной степени допустимо проверять расчетную прочность корпуса задвижки посредством проведения испытаний при повышенном давлении в соответствии с условиями prEN 12516-3:1999.

4.2.2 Характеристики потока

Отверстие седла допускается полнопроходное в сечении, без препятствий, либо уменьшенного сечения. Когда задвижка полностью открыта, внутренние ее части не должны влиять на поток жидкости. Допускается установка каких-либо элементов, необходимых для обеспечения крепления посадочных колец в отверстие задвижек с полным проходным сечением или уменьшенным проходным сечением.

См. например prEN 12516-1 и/или prEN 12516-2.

⁴ Комментарий ИД НПАА: Стандарт EN 288-1 заменен на BS EN ISO 15607:2003 Спецификация и квалификация процедур сварки металлических материалов. Общие правила.

⁵ Действует BS EN 287-1:2004 Аттестация сварщиков. Сварка плавлением. Часть 1. Стали. ⁶ Комментарий ИД НПАА: BS EN 1418:1998 Персонал, обеспечивающий проведение сварочных работ. Испытание операторов сварочных машин для сварки плавлением и машин для контактной сварки при проведении полностью механизированной и автоматизированной сварки металлических материалов.

4.2.3 Утечка седла

Допустимые уровни в испытании утечки седла, изложенном в prEN 12266-1:19998 составляют:

- для эластомерной или полимерной посадки Уровень А;
- для других видов посадки Уровень В

Допустимый уровень в испытании утечки обратного седла, изложенном в prEN 12266-2:1999 – Уровень С.

4.2.4 Допустимые усилия для ручного управления

Максимально допустимое усилие, приложенное к штурвалу ручного управления, не должно превышать значений, приведенных в prEN 12570:1996⁹. Размер штурвала должен обеспечить управление задвижкой при наличии результирующего давления на уплотнителе, равного допустимому давлению при 20 °C. По согласованию с заказчиком разрешается использовать более низкое давление, чем допустимое давление при 20 °C.

5 Проведение испытаний

- **5.1** Каждая задвижка должна быть испытана производителем на давление перед отправкой в соответствии с prEN 12266-1:1999.
- **5.2** Могут быть также произведены дополнительные испытания готовых задвижек согласно условиям prEN $12266-2:1999^{10}$. Необходимые испытания определяются заказчиком, за исключением теста F21, который не применяется для стальных задвижек.

6 Заявление соответствия

Производитель должен заявить соответствие данному стандарту посредством указания номера данного стандарта на задвижке.

7 Обозначение

Задвижки, соответствующие данному стандарту, должны обозначаться следующим образом в том же порядке:

- "Задвижка"
- -- "EN 1984"
- Тип патрубков, т.е. фланцевые, резьбовые, под приварку в раструб или встык
- Значок "DN" и номер

_

арматуры. Метод определения размеров элемента управления.

⁸ Комментарий ИД НПАА: см. BS EN 12266-1:2003 Арматура трубопроводная промышленная. Испытание арматуры. Часть 1 Испытание давлением, методы испытаний и критерии приемки - обязательные требования ⁹ Комментарий ИД НПАА: см. BS EN 12570:2000 Арматура трубопроводная промышленная. Испытание

¹⁰ Комментарий ИД НПАА: действует BS EN 12266-2:2002 Арматура трубопроводная промышленная. Испытание арматуры. Часть 2. Испытания, процедуры испытаний, критерий приемки. Дополнительные требования.

- Обозначение давления
- Материал корпуса и крышки
- Для фланцевых задвижек строительные размеры основного ряда
- Ограничения допускаемых рабочих температур или давлений (см. 4.1.2.3).

8 Маркировка и подготовка к хранению и транспортировке

8.1 Маркировка

8.1.1 Маркировка должна соответствовать prEN 19:1996¹¹

Для задвижек, номинальный размер которых менее или равен DN50, с размером резьбы 2, ввиду малых физических размеров задвижки обязательные маркировки, как указано в prEN 19:1996, пункты 1, 2 и 4 можно расположить в следующей последовательности (при условии, что они указаны на идентификационной табличке):

- а) номинальный размер (пункт 1);
- б) название или торговая марка производителя (пункт 4);
- в) обозначение давления (пункт 2).

8.1.2 На задвижке должны быть нанесены следующие дополнительные маркировки:

- а) пункт 11;
- б) пункты 7 и 9 в соответствии с условиями 4.1.2.3;
- в) пункт 8 для задвижек с резьбовыми патрубками;
- г) пункт 10;
- д) пункт 15 для футерованных задвижек;
- е) пункт 12 идентификация плавки на соответствующем компоненте корпуса;
- ж) пункт 18.

8.2 Подготовка к хранению и транспортировке

Каждая задвижка должна быть осущена от какой-либо испытательной жидкости. Патрубки должны быть закрыты для предотвращения попадания посторонних веществ и влаги. Задвижки с полимерным или эластомерным седлом, должны быть защищены также от ультрафиолетового излучения.

¹¹ Коментарий ИД НПАА: см. BS EN19:2000 Арматура трубопроводная промышленная. Маркировка металлической арматуры.

Крышки фланцев, при их наличии, должны закрывать всю поверхность уплотнения. Поверхность приварки задвижек с патрубками под приварку должна быть надежно защищена для предотвращения механического повреждения или коррозии подготовленной поверхности.

Положение задвижек с полимерным или эластомерным седлом при отгрузке должо исключить сжатие материала седла. Все остальные задвижки при отгрузке должны находиться в положении с закрытым уплотнителем.

Приложение **A** (информационное)

Сведения, предоставляемые заказчиком

В запросе и/или заказе должна быть представлена следующая информация:

- а) данный стандарт, т.е. EN 1984;
- б) тип патрубков корпуса, т.е. фланцевый, под приварку встык, под приварку в раструб или резьбовой (см. **4.1.3.2**);
- в) номинальный размер задвижки (см. пункт 1);
- г) обозначение давления (см. пункт 1);
- д) материал корпуса, крышки и кожуха (см.: 4.1.1.1);
- е) для фланцевых задвижек, номер основного ряда строительных длин (см. 4.1.3.1);
- ж) для задвижек с резьбой тип резьбы (см. 4.1.3.2.4);
- з) должна ли рабочая резьба быть внутреннего типа, или допустим как внутренний, так и наружный тип резьбы (см. **4.1.4.1**);
- и) тип приводного устройства, если не ручной маховик (см. 4.1.4.2);
- к) наименование дополнительных соединений (см. **4.1.5.1**), а также их размер и тип (см. **4.1.5.2**);
- л) дифференциальное давление на уплотнителе, если оно меньше допустимого при 20 °C для соответствующей маркировки давления (см. **4.2.4**);
- м) требуется ли седловое отверстие свободного проходного сечения (см. 4.2.2);
- н) требуется ли специальная отделка (см. 4.1.1.3).

Приложение ZA (информационное)

Пункты данного Европейского стандарта, направленные на выполнение основных требований или других положений Директив ЕС

Данный Европейский Стандарт подготовлен по поручению, данному CEN Евросоюзом и Европейской ассоциацией свободной торговли, и поддерживает основные требования Директивы EC 97/23/EC (FED).

ПРЕДУПРЕЖДЕНИЕ: Продукция, входящая в область применения данного стандарта, может также подпадать под действие других требований или других Директив ЕС.

Условия Директивы 97/23/ЕС могут поддерживаться следующими пунктами этого стандарта.

Таблица ZA.1 – Пункты данного Европейского Стандарта, направленные на выполнение основных требований Директивы EC 97/23/EC.

Пункт	Сущность требования	Приложение 1 Основных требований безопасности PED		
4	Общее устройство	2.1		
8.1. 2 ^{e)}	Возможность контроля	3.1.5		
8.1.2	Маркировки и ярлык	3.3		

Соответствие пунктам данного стандарта и других нормативных документов пункта 2 (см. выше) отвечает основным конкретным условиям указанной Директивы и соответствующим положениям Европейской ассоциации свободной торговли.

Библиография

- [1] BS EN 1759-1:2004 Фланцы и их соединения. Круглые фланцы для труб, арматуры, фитингов. Часть 1. Стальные фланцы по классам давления от 1/2 до 24.
- [2] prEN 12516-1 WI [069082], Арматура трубопроводная промышленная. Расчетная прочность корпуса. Часть 1: Табличный метод для стальной арматуры
- [3] prEN 12516-2 Wl [069083], Арматура трубопроводная промышленная. Расчетная прочность корпуса. Часть 2: Расчетный метод для стальной арматуры