

НПО «СТРОЙПОЛИМЕР»

Наружная самотечная канализация из гофрированных двухслойных полиэтиленовых труб.

Руководство по проектированию и строительству.

Первая редакция.

Москва 2004

СОДЕРЖАНИЕ

1. Предисловие

- 2. Техническая характеристика полиэтиленовых гофрированных труб производства НПО «Стройполимер»
 - 3. Проектирование подземной самотечной канализации с применением полиэтиленовых гофрированных труб производства НПО «Стройполимер»
 - 4. Строительство подземных самотечных сетей
 - <u> 5. Испытания подземных самотечных сетей из полиэтиленовых гофрированных труб</u>
 - 6. Техническое обслуживание и ремонт самотечных сетей
 - 7. Транспортирование и хранение полиэтиленовых гофрированных труб
 - 8. Требования безопасности и охраны окружающей среды

9. Литература

<u>Приложение 1 Химическая стойкость полиэтилена низкого давления,</u> используемого для изготовления труб и деталей трубопроводов.

Приложение 2 Таблицы для гидравлического расчета безнапорных гофрированных труб из ПНД производства НПО «Стройполимер»

Разработчики: О.В. Устюгова, В.А. Устюгов, канд. техн. наук А.Я. Добромыслов, канд. техн. наук Е.И. Зайцева, канд. техн. наук В.Е. Бухин.

Настоящее руководство разработано в помощь организациям, проектирующим и строящим трубопроводные системы самотечной канализации и ливнестоков с применением полиэтиленовых гофрированных труб.

Руководство содержит материалы, необходимые проектным организациям для определения расчетных секундных расходов сточной жидкости с учетом аккумулирующей емкости отводных трубопроводов, а также удобные номограммы и таблицы, предназначенные для гидравлических расчетов самотечных трубопроводов из полиэтиленовых гофрированных труб производства НПО «Стройполимер».

Руководство содержит также основные сведения по строительству и испытаниям подземных сетей самотечной канализации и ливнестоков с применением полиэтиленовых гофрированных труб.

Основные рекомендации настоящего руководства базируются на регламентах федеральных нормативных документов: <u>СП 40-102-2000</u> «Свод правил по проектированию и монтажу трубопроводов систем водоснабжения и канализации из полимерных материалов. Общие требования» и <u>СП 40-107-2003</u> «Свод правил по проектированию, монтажу и эксплуатации систем внутренней канализации из полипропиленовых труб».

В руководстве приведен сортамент полиэтиленовых гофрированных труб и для строительства наружных сетей канализации и ливнестоков производства НПО «Стройполимер».

1. Предисловие

В настоящее время Российская Федерация переживает строительный бум: в беспрецедентных количествах возводятся объекты самого разного назначения. Практически все современное строительство включает в числе прочих систем инженерного оборудования также системы канализации и ливнестоков. Требования охраны окружающей среды диктуют необходимость устройства современных, т.е. централизованных, систем канализации, стоимость трубопроводов которых составляет около 60% их суммарной стоимости.

В настоящее время в Российской Федерации находится в эксплуатации свыше 350 тыс. км канализационных сетей, из которых сети диаметром до 300 мм составляют 88%. При этом известно, что трубопроводные системы безнапорной канализации являются самыми материалоемкими из всех трубопроводных систем инженерного оборудования.

Мировая практика эксплуатации безнапорных канализационных сетей отмечает тревожный симптом: засоры трубопроводов диаметром до 300 мм носят настолько массовый характер, что ликвидация засоров и их последствий перерастает в проблему социальную. В связи с беспрецедентными объемами строительства протяженность канализационных сетей, как и сетей ливнестоков, быстро растет и оттого, насколько надежно будут работать самотечные трубопроводы, зависят и экологическая обстановка на объектах, и комфортность проживания.

В соответствии со статистическими данными, в 95% случаев засоры происходят изза попадания в канализационную сеть крупногабаритных предметов, не являющихся компонентами сточной жидкости. Чтобы они двигались, необходимо обеспечить в трубопроводе достаточные величины его наполнения и скорости течения жидкости.

Представляется бесспорным, что оптимальным из имеющихся материалов для самотечных сетей является пластмасса, - легкая, удобная в монтаже, имеющая очень низкий коэффициент шероховатости. А из пластмассовых труб, предназначенных для подземных прокладок, оптимальными являются двухслойные гофрированные трубы, поскольку при весьма малой толщине стенок они имеют достаточную кольцевую жесткость, что позволяет укладывать их на глубине до 5 метров, и обладают всеми достоинствами пластмассовых труб.

НПО «Стройполимер» производит двухслойные гофрированные трубы диаметрами 100, 150, 200, 250, 300, 350, 400 и 450 мм из полиэтилена низкого давления и комплектующие, необходимые для качественного строительства канализационных самотечных трубопроводов.

Настоящее Руководство является пособием для проектных и строительных организаций, использующих в своей практике двухслойные полиэтиленовые гофрированные трубы производства НПО «Стройполимер».

2. Техническая характеристика полиэтиленовых гофрированных труб производства НПО «Стройполимер»

НПО «Стройполимер» выпускает для строительства подземных самотечных сетей канализации полиэтиленовые двухслойные гофрированные трубы диаметрами 100, 150, 200, 250, 300, 350, 400 и 450 мм (табл. 1, рис. 1) по ТУ 2248-025-41989945-03.

Внутренний слой труб представляет собой круглоцилиндрическую оболочку, толщина которой в зависимости от диаметра представлена в <u>таблице 1</u>. Трубы и комплектующие трубопроводов допускается применять для транспортировки жидкостей с температурой до 60°С и веществ, неагрессивных к полиэтилену (химическая стойкость труб из ПНД представлена в <u>приложении 1</u>).

Основные физико-механические свойства труб представлены в таблице 2.

Трубы поставляются отрезками длиной 6 метров и соединяются между собой с помощью двухраструбной муфты (рис. 2) и резиновых уплотнительных колец, которые перед монтажом вставляются во второй от торца трубы паз. Срок службы трубопроводов, смонтированных из гофрированных двухслойных полиэтиленовых труб с применением муфт и резиновых уплотнительных колец, составляет не менее 50 лет.

Комплектность поставки труб в сборе: - труба, двухраструбная муфта с одной стороны трубы и два резиновых уплотнительных кольца.

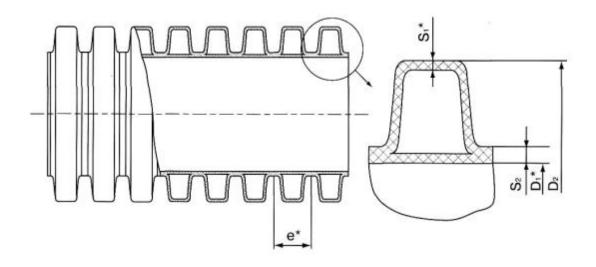


Рис.1. Конструкция и основные размеры гофрированной двухслойной трубы из полиэтилена

Таблица 1

DN	D1, mm	<i>D</i> ² • mm	<i>S₁</i> •, мм	S2, мм	<i>e</i> •, mm
100	100,0 ^{±2,2}	120,0 ^{±2,2}	0,6	1,30 ^{+0,60}	13,0
150	148,8 ^{+2,5}	177,0 ^{±2,5}	0,9	1,95 ^{+0,60}	17,7
200	196.3 ^{+2,9}	232,0 ^{±2,9}	0,9	2,40 ^{+0,60}	21,2
250	245,2 ^{+2,9}	287,5 ^{±2,9}	1,3	2,80 ^{+0,60}	26,5
300	295,7 ^{+3,2}	$345,0^{\pm 3,2}$	1,3	3,00 ^{+0,60}	35,3
350	348,0 ^{+3,2}	$397,0^{\pm 3,2}$	1,4	3,20 ^{+0,80}	35,3
400	398,0 ^{+4,0}	446,0 ^{+4,0}	1,6	3,4 ^{+1,00}	44,0

450	448,0 ^{+4,0}	496,0 ^{+4,0}	1,8	3,6+1,00	44,0
-----	-----------------------	-----------------------	-----	----------	------

Трубы поставляются отрезками длиной 6 метров и соединяются между собой с помощью двухраструбной муфты и резиновых уплотнительных колец, которые перед монтажом вставляются во второй от торца трубы паз (рис. 2). Срок службы трубопроводов, смонтированных из гофрированных двухслойных полиэтиленовых труб с применением муфт и резиновых уплотнительных колец, составляет не менее 50 лет.

Комплектность поставки в сборе: труба, двухраструбная муфта с одной стороны и два резиновых уплотнительных кольца.

Таблица 2.

Основные физико-механические свойства гофрированных труб из полиэтилена

Параметр	Значение параметра
Герметичность в сборе с соединительными муфтами, при давлении 0,05 МПа, мин., не менее	10
Кольцевая жесткость, КПа, не менее	4,0
Стойкость к удару, кол-во ударов, не менее	10
Стойкость к воздействию (1 час) горячей (80°С) воды, деформация площади сечения, не более, %	5,0
Стойкость к растрескиванию в водных растворах ПАВ при 50°C	отсутствие растрескивания
Плотность, $\Gamma/\text{см}^3*$	0,93
Коэффициент теплового линейного расширения, мм/(м°С)*	0,2(2 10-4)

Теплопроводность, Вт/м°С*	0,21			
Предел текучести при растяжении, МПа*	16,7			
Относительное удлинение при разрыве, %*	250			
Изменение длины после прогрева, %, не более	3,0			
*- показатели материала, из которого изготовлены трубы				

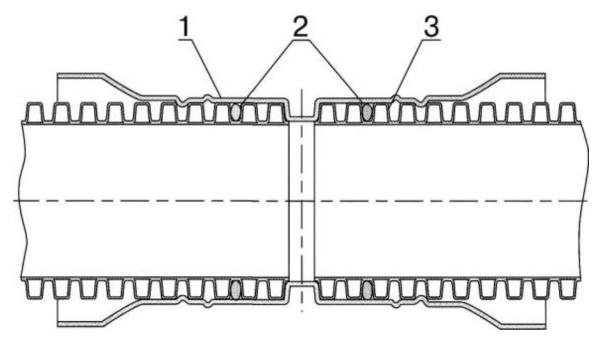


Рис. 2. Узел соединения гофрированных труб муфтой с резиновым уплотнением

1 - муфта соединительная; 2 - уплотнительное кольцо; 3 - труба гофрированная двухслойная;

3. Проектирование подземной самотечной канализации с применением полиэтиленовых

гофрированных труб производства НПО «Стройполимер»

3.1. Определение расчетного расхода сточных вод

3.1.1.Определение расчетного расхода сточных вод q_s , π/c , следует выполнять по формуле:

$$q^{s} = \frac{Q^{s}}{3.6} + K^{s} q_{0} \tag{3.1}$$

где Q^s - часовой расход сточных вод на расчетном участке, м 3 /час;

 $K^{\rm s}$ - коэффициент, учитывающий аккумулирующую емкость отводных самотечных трубопроводов и являющийся функцией их длины, L, м, и количества N санитарнотехнических приборов на расчетном участке.

Значения $K_S = f(N,L)$ приведены в <u>таблице 3</u>.

 q_0 - расход от прибора с максимальной вместимостью из их числа, установленного на расчетном участке, л/с.

- 3.1.2. Часовой расход сточных вод следует определять в соответствии с регламентами <u>СНиП 2.04.03-85</u> «Канализация. Наружные сети и сооружения».
- 3.2. Гидравлический расчет самотечных трубопроводов из полиэтиленовых гофрированных труб
- 3.2.1. Гидравлический расчет самотечных трубопроводов из полиэтиленовых гофрированных труб следует выполнять по регламентам «Свода правил по проектированию и строительству трубопроводов систем водоснабжения и канализации из полимерных материалов» СП 40-102-2000 или по таблицам приложения 1 настоящего руководства, рассчитанным в соответствии с этим сводом правил.
- 3.2.2. Диаметр самотечного трубопровода определяется по номограмме (<u>рис. 3</u>) в зависимости от скорости течения жидкости, наполнения трубопровода и величины расчетного расхода стоков. При этом скорость течения должно быть не менее 0,7 м/с и не более 8 м/с; наполнение трубопровода в режиме его эксплуатации должно быть не менее 0,3, а при максимальном секундном расходе жидкости не более 0,8.

Номограмма (рис. 3) состоит из четырех шкал: первая (слева направо) содержит пометки со значениями средних скоростей течения жидкости; вторая шкала - немая (не содержащая пометок); третья шкала содержит пометки со значениями наполнения трубопровода (H/D) - слева и со значениями расходов сточной жидкости - справа; четвертая шкала содержит пометки со значениями внутренних (расчетных) диаметров труб (D).

	Значения K^S при L , м, равной												
N	1	3	5	7	10	15	20	30	40	50	100	500	1000
4	0,61	0,51	0,46	0,43	0,40	0,36	0,34	0,31	0,27	0,25	0,23	0,15	0,13
8	0,63	0,53	0,48	0,45	0,41	0,37	0,35	0,32	0,28	0,26	0,24	0,16	0,13
12	0,64	0,54	0,49	0,46	0,42	0,39	0,36	0,33	0,29	0,26	0,24	0,16	0,14
16	0,65	0,55	0,50	0,47	0,43	0,39	0,37	0,33	0,30	0,27	0,25	0,17	0,14
20	0,66	0,56	0,51	0,48	0,44	0,40	0,38	0,34	0,30	0,28	0,25	0,17	0,14
24	0,67	0,57	0,52	0,48	0,45	0,41	0,38	0,35	0,31	0,28	0,26	0,17	0,15
28	0,68	0,58	0,53	0,49	0,46	0,42	0,39	0,36	0,31	0,29	0,27	0,18	0,15
32	0,68	0,59	0,53	0,50	0,47	0,43	0,40	0,36	0,32	0,30	0,27	0,18	0,15
36	0,69	0,59	0,54	0,51	0,47	0,43	0,40	0,37	0,33	0,30	0,28	0,19	0,16

40	0,70	0,60	0,55	0,52	0,48	0,44	0,41	0,37	0,33	0,31	0,28	0,19	0,16
100	0,77	0,69	0,64	0,60	0,56	0,52	0,49	0,45	0,40	0,37	0,34	0,23	0,20
500	0,95	0,92	0,89	0,88	0,86	0,83	0,81	0,77	0,73	0,70	0,66	0,50	0,44
1000	0,99	0,98	0,97	0,97	0,96	0,95	0,94	0,93	0,91	0,90	0,88	0,77	0,71

 Π р и м е ч а н и е: За длину L следует принимать расстояние от последнего на расчетном участке объекта до ближайшего присоединения следующего объекта или, при отсутствии таких присоединений, до ближайшего канализационного колодца.

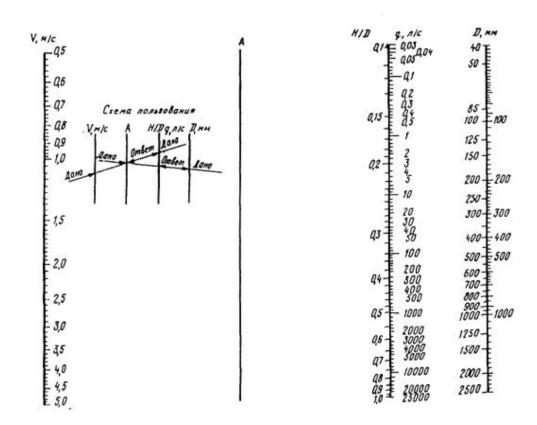


Рис.3. Номограмма для определения диаметра самотечного трубопровода из двухслойных гофрированных труб

Результат расчетов достигается двумя наложениями линейки. Сначала прямой линией соединяется пометка - значение скорости течения жидкости с пометкой - значением наполнения трубопровода и на немой шкале ставится засечка. Затем эта засечка соединяется прямой линией с пометкой - значением величины расчетного расхода сточной жидкости и эта линия продолжается до пересечения со шкалой D, где и читается ответ.

Если полученное значение внутреннего диаметра не совпадает со значением внутреннего диаметра труб по сортаменту НПО «Стройполимер», следует выбрать ближайший диаметр, больший или меньший расчетного, и повторить расчет в обратном порядке, а именно: пометку - значение выбранного диаметра соединить прямой линией с пометкой - значением расчетного расхода сточной жидкости и продлить эту линию до пересечения с немой шкалой, где поставить засечку. Затем, поставив линейку на эту засечку, соединить прямой линией пометки - значения скорости течения жидкости и наполнения трубопровода. При этом может быть получено бесчисленное множество значений V и H/D. Из них следует выбирать такие, чтобы

$$V = \overline{HD}fi \max ag{3.2.1}$$

3.2.3. При выбранных значениях V, H/D и D уклон i трубопровода равен:

$$i = \frac{lV^b}{2g4R},\tag{3.2.2}$$

где 1 - коэффициент сопротивления трения

b - некоторое число подобия режимов течения жидкости;

R = w/c - гидравлический радиус, м.

$$l = 0, 2 \left[\frac{K_3}{4R} \right]_{,}^{a} \tag{3.2.3}$$

где $K_9 = 0,02$ мм - коэффициент эквивалентной шероховатости полиэтиленовых труб;

a = 0.258 - показатель степени, являющийся функцией K_{9} .

$$b_n = 3 - \frac{\lg \operatorname{Re}_{\kappa \theta}}{\lg \operatorname{Re}_{\Phi}}.$$
(3.2.4)

При $b_n > 2$ следует принимать $b_n = 2$.

 $Re_{\kappa\theta} = (500 \, \mathcal{I}_p)/K_{\text{-}}$ - число Рейнольдса, соответствующее началу квадратичной области гидравлических сопротивлений турбулентного течения жидкости;

 $Re_{\phi} = (V_n \cdot \mathcal{I}_P)/n$ - фактическое число Рейнольдса, соответствующее скорости течения жидкости при полном наполнении трубопровода;

 $n = 1,49 \cdot 10^{-6} \text{ м}^2/\text{c}$ - вязкость хозяйственно-бытовых стоков.

3.2.4. Распределение средних скоростей течения по сечению безнапорных полиэтиленовых трубопроводов, определяемое по формуле:

$$\left[\frac{V_n}{V_n}\right]^b = \left[\frac{R_n}{R_n}\right]^{1,258} \tag{3.2.5}$$

представлено в таблице 4 и графиком (рис.4).

Примечание. Допускается при расчетах использовать данные <u>приложения 2</u> взамен формул (3.2.2) - (3.2.5).

Таблица 4

Зависимость $(VH/Vn)^6 = f(H/D)$

Наполнение трубопровода	Значение (VH/Vn) ^в	Наполнение трубопровода	Значение (VH/Vn) ^в
0,1	0,178	0,6	1,14

0,2	0,4	0,7	1,238
0,3	0,62	0,8	1,28
0,4	0,823	0,9	1,247
0,5	1,0	1,0	1,0

3.2.5. Температура хозяйственно-бытовых стоков и ливневых вод равна 16-20°С, поэтому специальные мероприятия по компенсации линейных удлинений самотечного трубопровода не требуются.

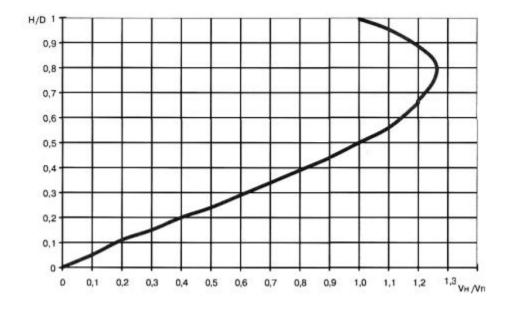
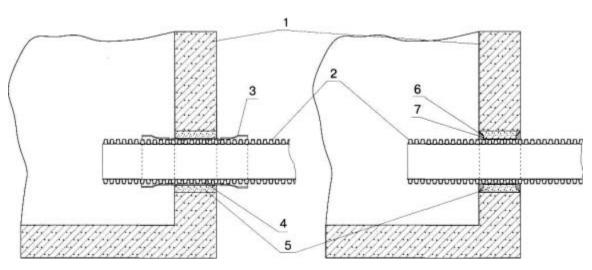
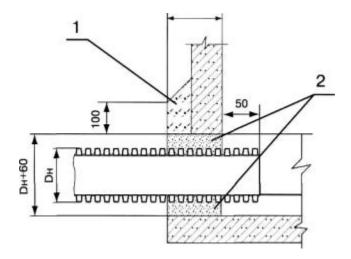


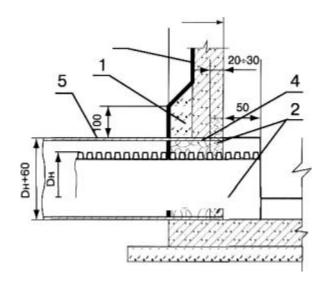
Рис.4. Распределение средних скоростей течения жидкости по сечению безнапорных трубопроводов

3.3. Канализационные сети

3.3.1. При проектировании подземных самотечных сетей канализации из полиэтиленовых гофрированных труб следует руководствоваться общими требованиями <u>СНиП 2.04.03-85</u> «Канализация. Наружные сети и сооружения» и <u>СП 40-102-2000</u> «Свод правил по проектированию и строительству трубопроводов систем водоснабжения и канализации из полимерных материалов. Общие требования».

- 3.3.2. Полиэтиленовые гофрированные трубы производства НПО «Стройполимер» предназначены для подземных прокладок самотечных сетей канализации на глубине до 5 метров. При прокладке труб на большую глубину необходимо обращаться к разработчикам и производителям. Кольцевая жесткость двухслойных гофрированных труб согласно ТУ на трубы, должна быть не менее 4 КПа.
- 3.3.3.Минимальная глубина заложения полиэтиленовых гофрированных труб должна быть не менее 0,8 м при отсутствии движения транспорта и не менее 1,3 м при движении грузового транспорта.
- 3.3.4. Канализационные колодцы на самотечной сети следует предусматривать в соответствии с общими требованиями CHuII 2.04.03-85.
- 3.3.5. Полиэтиленовые гофрированные трубы соединяются с помощью двухраструбных муфт и резиновых уплотнительных колец (см. раздел 1 настоящего руководства).
- 3.3.6. Проход гофрированных труб сквозь стенки канализационных колодцев и другие ограждающие конструкции выполняется либо с применением соединительных муфт, уплотняемых одним резиновым кольцом (рис. 5), либо с помощью резинового кольца конструкции НПО «Строй-полимер», одеваемого на наружную поверхность гофрированной трубы.
- 3.3.7. Детали заделки гофрированных труб в лотковой части канализационных колодцев в зависимости от грунтов представлены на <u>puc. 6</u>.


Рис.5 Проход канализационного трубопровода сквозь стенки колодца и другие строительные конструкции

1 - стенка колодца; 2 - труба; 3 - соединительная муфта; 4 - резиновое кольцо; 5 - заделка цементным раствором; 6 - манжета стенового ввода; 7 - подкладная лента

в сухих грунтах

в обводненных грунтах

в просадочных грунтах

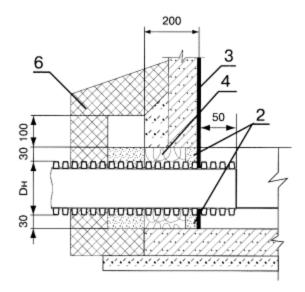


Рис. 6. Детали заделки гофрированных труб в лотковой части сборных железобетонных канализационных колодцев:

1 - бетон; 2 - асбестоцементный раствор; 3 - гидроизоляция; 4 - пакля, пропитанная в жидком полиизобутилене; 5 - стальная труба-футляр (для труб $\mathcal{L}H \leq 160$ мм); 6 - водоупорный замок.

4. Строительство подземных самотечных сетей

4.1. Земляные работы

- 4.1.1. Земляные работы при строительстве самотечных канализационных сетей, крепление стенок траншей, водоотлив и водопонижение следует выполнять в соответствии с требованиями <u>СНиП 3.02.01-87</u>.
- 4.1.2. Ширина траншеи по дну равняется наружному диаметру трубы плюс 40 см. Дно траншеи должно быть выровнено по нивелиру и иметь проектный уклон. На дне траншеи не должно быть выступающих твердых включений, на которые опирается труба при ее укладке.

При укладке гофрированных труб на искусственное (бетонное и т.п.) основание рекомендуется устройство песчаной подушки толщиной не менее 10 см.

- 4.1.3. Трубы следует укладывать на сухое, не промерзшее дно траншеи.
- 4.1.4. Трубы следует соединять друг с другом последовательно на дне траншеи. По мере укладки труб их следует присыпать грунтом с боков траншеи, обеспечивая

прямолинейность трубопровода. Применяемый грунт не должен иметь твердых включений.

- 4.1.5. Засыпку пазух траншей и их уплотнение следует вести послойно толщиной 5 см в случае глинистого грунта и 10 см песчаного.
- 4.1.6. При обратной засыпке гофрированных трубопроводов поверх защитного слоя грунт не должен содержать крупных твердых включений размерами более 30 см.
- 4.1.7. Трубы и детали трубопроводов, поступающих на объект, проходят входной контроль качества:
- наличие сопроводительной документации;
- выборочный визуальный осмотр труб и деталей трубопроводов, контроль их размеров;
- контроль качества складирования и хранения
- 4.2 Строительные работы.
- 4.2.1. Трубы и муфты перед монтажом раскладывают на бровке траншеи.
- 4.2.2.Монтаж гофрированных труб осуществляется на дне траншеи по следующей технологии:
- очистка от грязи и масел гладкого конца смонтированной трубы и внутренней поверхности двухраструбной муфты монтируемой трубы;
- смазывание резинового кольца и внутренней поверхности двухраструбной муфты мыльным раствором или глицерином;
- надвижение трубы с двухраструбной муфтой на гладкий конец трубы до упора, получаемое соединение приведено на рис. 2;
- для облегчения монтажа допускается применение рычага, упираемого в торец монтируемой трубы.

После сборки соединения рекомендуется щупом толщиной до 0,5 мм проверить наличие резинового кольца в раструбной щели.

4.2.3. При засыпке пазух и защитного слоя грунта над трубопроводом соединения труб оставляют не засыпанными для возможности осуществления контроля их герметичности в процессе предварительных гидравлических испытаний.

- 4.2.4. После положительных предварительных испытаний на герметичность выполняется засыпка грунтом стыковых соединений труб, уплотнение грунта в приямках и подбивка вручную грунта под двухраструбными муфтами. Уплотнение грунта пазух и защитного слоя производится послойно с использованием механических трамбовок.
- 4.2.5.Сборка соединений на резиновых кольцах допускается при температуре наружного воздуха не ниже минус 5°C.

5. Испытания подземных самотечных сетей из полиэтиленовых гофрированных труб

- 5.1. Гидравлические испытания самотечных канализационных сетей выполняют в два этапа после завершения гидроизоляционных работ в колодцах: без колодцев (предварительное) и совместно с колодцами (окончательное).
- 5.2. Окончательное испытание трубопровода канализации совместно с колодцами производят согласно СНиП 3.05.04.
- 5.3. Пневматические испытания трубопроводов, выполненных из полимерных материалов, производят при наземной и надземной их прокладке в следующих случаях:
- температура окружающего воздуха ниже 0 °C;
- применение воды недопустимо по техническим причинам;
- вода в необходимом для испытаний количестве отсутствует.

Порядок пневматических испытаний трубопроводов из полимерных материалов и требования безопасности при испытаниях устанавливаются проектом.

5.4. Предварительные и окончательные испытания самотечных канализационных сетей допускается производить пневматическим способом. Предварительные испытания проводят до окончательной засыпки траншеи. Испытательное давление сжатого воздуха, равное 0,05 МПа, поддерживают в трубопроводе в течение 15 мин. При этом осматривают стыки и выявляют неплотности по звуку просачивающегося воздуха, по пузырям, образующимся в местах утечки воздуха через стыковые соединения, покрытые мыльной эмульсией.

Окончательные испытания пневматическим способом проводят при уровне грунтовых вод над трубой в середине испытуемого трубопровода менее 2,5 м. Окончательным пневматическим испытаниям подвергают участки длиной 20-100 м, при этом перепад между наиболее высокой и низкой точками трубопровода не должен превышать 2,5 м. Пневматические испытания проводят через 48 ч после засыпки трубопровода. Испытательное избыточное давление сжатого воздуха указано в таблице 5.

Таблица 5.

Испытательное давление сжатого воздуха при пневматическом испытании самотечных канализационных трубопроводов

	Испытательное давле			
Уровень грунтовых вод h от оси трубопровода, м	избыточное начальное <i>р</i>	конечное	Перепад давления, <i>p-p1</i> . МПа	
h = 0	0,01	0,007	0,003	
0 < h < 0,5	0,0155	0,0124	0,0031	
0,5 < h < 1	0,021	0,0177	0,0033	
1 < h < 1,5	0,0265	0,0231	0,0034	
1,5 < h < 2	0,032	0,0284	0,0036	
2 < h < 2,5	0,0375	0,0338	0,0037	

6. Техническое обслуживание и ремонт самотечных сетей

- 6.1. Техническое обслуживание самотечных сетей канализации и ливнестоков заключается в ликвидации засоров трубопроводов, а также в профилактической их промывке в случае угрозы образования засоров.
- 6.2. Прочистка полиэтиленовых трубопроводов выполняется исключительно пластмассовыми трубами меньшего диаметра или шлангами из жесткой резины. Категорически запрещается применение для этих целей металлических тросов.

Для прочистки трубопроводов большого диаметра допускается применение гидравлического оборудования высокого давления.

- 6.3. Полиэтиленовые гофрированные трубопроводы, уложенные в землю, выдерживают бесконечное количество циклов замерзания и оттаивания транспортируемой по ним жидкости без разрушения труб. Ледяные пробки, образующиеся при этом в трубах, могут быть ликвидированы исключительно с помощью горячей воды. Применение для этих целей открытого огня категорически запрещается.
- 6.4. Службы контроля и надзора, осуществляющие эксплуатацию сетей канализации и ливнестоков, систематически освидетельствуют состояние трубопроводов и колодцев. Смотровые колодцы необходимо регулярно очищать от грязи; они должны быть закрыты постоянно в течение всего срока эксплуатации сети.
- 6.5. При необходимости локального ремонта трубопровода по причине образования сквозных трещин, проколов и других аналогичных повреждений труб поврежденный участок трубы вырезается и заменяется новым отрезком гофрированной трубы, имеющим такую же длину и диаметр.

Стыковые соединения нового отрезка с трубопроводом выполняются с помощью термоусаживаемой муфты.

7. Транспортирование и хранение полиэтиленовых гофрированных труб

7.1. Трубы транспортируют всеми видами транспорта в соответствии с правилами перевозки грузов, действующих на данном виде транспорта.

- 7.2. Погрузочно-разгрузочные операции при транспортировании и укладке труб в траншею следует выполнять по технологии, исключающей их механическое повреждение.
- 7.3. Транспортировку труб рекомендуется осуществлять в заводской упаковке, представляющей собой либо деревянный каркас, либо обвязку полимерной лентой. Однако поднимать связки труб за деревянный каркас или связывающую ленту категорически запрещается.
- 7.4. Связки труб в каркасах перемещают с помощью вилочного автопогрузчика или подъемного крана с применением стропов достаточной ширины.
- 7.5. Транспортировка, погрузка и разгрузка труб допускается при температуре наружного воздуха до минус 40 °C.
- 7.6. Трубы укладывают штабелем на ровное основание. Высота штабеля при долговременном хранении труб не должна превышать 2 м. При долговременном хранении труб до 2-х месяцев высота штабеля должна быть не более 3 м.
- 7.7. Трубы допускается хранить на открытом воздухе при условии, что они не подвержены воздействию прямых солнечных лучей, а также в помещении на расстоянии не менее 1 м от нагревательных приборов.
- 7.8. При устройстве штабелей следует обеспечить устойчивость штабеля, т.е. исключить возможность раскатывания труб.
- 7.9. Гофрированные трубы запрещается сбрасывать с транспортных средств, с бровки траншеи и т.п., а также перемещать волоком.

8. Требования безопасности и охраны окружающей среды

- 8.1. При строительстве канализационных сетей следует соблюдать общие требования СНиП 3.05.04-85.
- 8.2. К монтажным работам допускаются лица не моложе 18 лет, прошедшие медицинское освидетельствование, специальное обучение, вводный инструктаж по технике безопасности и инструктаж на рабочем месте.
- 8.3. Трубы из полиэтилена в условиях транспортирования, хранения и монтажа не выделяют в окружающую среду токсичные вещества. При непосредственном контакте материал труб не оказывает влияния на организм человека. Работа с полиэтиленовыми трубами не требует особых мер предосторожности.

8.4. Трубы при поднесении открытого огня загораются без взрыва и горят коптящим пламенем. Трубы относятся к группе сгораемых по <u>ГОСТ 12.1.044</u>, температура воспламенения - около 350 °C. В качестве средств пожаротушения следует применять воду, пенные и кислотные огнетушители.

9. Литература

- 1. СНиП 2.04.03-85. Канализация. Наружные сети и сооружения.
- 2. <u>СП 40-102-2000</u>. Проектирование и монтаж трубопроводов систем водоснабжения и канализации из полимерных материалов. Общие требования.
- 3. <u>СП 40-107-2003</u>. Проектирование, монтаж и эксплуатация систем внутренней канализации из полипропиленовых труб.
- 4. СНиП 3.05.04-85 Наружные сети и сооружения водоснабжения и канализации.
- 5. <u>BCH 20-95</u>. Проектирование и монтаж подземных сетей канализации и водопровода из поливинилхлоридных труб М., Департамент строительства, 1996 г.
- 6. <u>СНиП III-4-80</u>. Техника безопасности в строительстве.
- 7. ТУ 2248-224-00203536-01. Трубы дренажные гофрированные из полиэтилена низкого давления.
- 8. Проектирование пластмассовых трубопроводов. Под редакцией В.С. Ромейко, М., ТОО «Издательство ВНИИМП», 2003.

Приложения

Приложение 1 Химическая стойкость полиэтилена низкого давления, используемого для изготовления труб и деталей трубопроводов.

Вещество Концентрация Темг	ература Химическая Стойкость
----------------------------	------------------------------

Адипиновая кислота	Насыщенный водный раствор	60	С
		20	С
	6,3 %-ный водный раствор	40	С
		60	С
Азотная кислота		20	О
	40 %-ный водный раствор	40	-
		60	Н
		20	С
	Газообразный, сухой, 100 %-ный, чистый	40	С
Аммиак		60	С
	Водный, насыщенный	40	С
	на холоде	60	С
	50.0/	40	С
Аммония карбонат	50 %-ный водный	60	С

		40	С
Аммония нитрат	Водный, насыщенный	60	О
		20	С
Аммония сульфат-	Насыщенный водный раствор	40	С
		60	С
		20	С
Аммония сульфид	Водный любой концентрации	40	С
		60	С
Auronya boobar	Водный любой	40	С
Аммония фосфат	концентрации	60	С
		40	
Аммония хлорид	Насыщенный водный раствор	60	C C
		80	

		20	С
Анилина хлоргидрат	Тоже	40	С
		60	С
		20	С
Ацетальдегид	Технически чистый	40	О
		60	О
	Тоже	20	С
Ацетон		40	С
		60	С
Бария соли	Водные растворы любой концентрации	60	С
Бензин	Технически чистый	20	С
		40	С
		60	О

	водный раствор любой концентрации	20	С
Бензойная кислота		40	С
		60	С
Гориод киолодо	водный любой	40	С
Борная кислота	концентрации	60	С
	Насыщенный водный раствор	20	Н
Бром		40	Н
		60	Н
		20	С
Бромисто-водородная кислота	50 %-ный водный раствор	40	С
		60	С
Бутан	_"_	20	С
		60	С

		20	
Бутадиен	_"_	40	С
		60	
		20	С
Бутанол	_"_	40	С
		60	С
	"	20	С
Бутилацетат		40 	С
		60	О
Винилопетет	_"-	20	С
Винилацетат		60	C
Винная кислота	Любая водная	20	С
		40	С
		60	С

		20	С
Вино любое	Торговая	40	С
		60	С
		20	С
Вискозно-прядильный раствор	-	 	С
		60	С
Вода дистиллированная, деминерализованная, обессоленная		60	С
Вода минеральная	-	60	С
Вода морская	-	60	С
Водород	Технический	20	С
		40	С
		60	С

Водород хлористый		20	С
	Технический газообразный 100 %-ный	40	С
		60	С
		20	С
	30 %-ный водный раствор	40	С
Водорода перекись		60	С
	90 %-ный водный раствор	20	С
		40	Н
Воздух сжатый, содержащий масло	_	20	С
		40	С
		20	
Гексан	100 %-ный, технический	40	C O
		60	O
Этиленгликоль	1000/	20	С
	100%-ный	60	С

		20	С
Гликолевая (уксусная) кислота	37 %-ный водный раствор	40	С
		60	С
Гуууоруу	Технический	40	С
Глицерин	Технический	60	С
		20	С
Глюкоза	Водный раствор любой концентрации	40	С
		60	С
Декалин	Технический	20	С
		60	О
		20	С
Дибутилфталат	_"_	40	О
		60	О

Дигликолевая кислота		20	С
	30 %-ный водный раствор	40	С
		60	С
		20	С
Диметилформамид	Технический чистый	40	С
		60	О
Диметиламин	Технический	20	С
		20	С
Диметилформамид	_"_	40	С
		60	О
		20	С
Диоксан	_"_	40	С
		60	С
Дихлорбензол		20	О
	"	60	Н

	Т	I	
Дихлорэтан	_"_	20	Н
Диэтиламин	_"_	20	Н
Диэтиловый эфир	_"_	20	0
		20	C
Дубильная кислота	Любая водная	40	С
		60	C
	Любой водный	40	С
Желатин		60	C
	Технический	20	С
Изопропанол		40	С
		60	С
н	_"_	20	0
Изопропиловый эфир		60	Н
Иод	6,5 %-ный раствор в этаноле	20	С

Калия алюмосульфат		20	С
	50 %-ный водный	40	С
		60	С
		20	С
Vogua Suppoyer	Hear manner if po me if	40	C
Калия бихромат	Насыщенный водный	60	С
		80	С
	Насыщенный	20	С
Калия йодид		40	C
		60	С
Калия карбонат	Насыщенный водный раствор	40	С
		60	С
Калия нитрат	50 %-ный водный раствор	40	С
		60	С

		20	C
		20	C
Калия перманганат	Насыщенный водный раствор	40	C
		60	О
		20	С
Калия перхлорат	Тоже	40	С
		60	С
	Водные растворы любой концентрации	20	С
Калия персульфат		40	С
		60	С
		20	С
Калия сульфат	Тоже	40	С
		60	С
Калия цианид	Настин	40	С
	Насыщенный водный	60	С

Калия гипохлорид		20	С
	Насыщенный водный раствор, содержащий 12,5 % активного хлора	40	С
		60	С
Vorug vronur	Haarawayay ii ba wa ii	40	С
Калия хлорид	Насыщенный водный	60	С
Камфора	-	20	С
		60	О
Кислород	Любой концентрации	20	С
		40	С
		60	O
Кремниевая кислота	То же	60	С

		20	С
	32 %-ный водный раствор	40	С
крем нефтористоводородная кислота		60	С
	90 %-ный водный	20	С
	раствор	60	С
		20	С
Лимонная кислота	10%-ная	40	С
		60	С
Manus	Любые водные растворы	40	С
Магния соли		60	С
Moarr		20	О
Мазут	-	40	Н
Малеиновая кислота	Насыщенный водный раствор	20	С
		40	С
		60	С

	Т	Γ	
Масла и жиры растительные		20	
		 	C O
		60	
		20	O
Масло веретенное		40	О
		60	О
Масло камфорное	-	20	Н
		20	С
Масло минеральное, не содержащее ароматических веществ		40	С
		60	О
		20	С
Масло моторное		60	О
Меди соли		20	С
	Водные растворы любой концентрации	40	С
		60	С

Manage	1100/	20	С
Ментол	110%-ный	60	О
Manage	T	20	С
Метан	Технический	60	С
		20	С
Метанол	Любой	40	С
		60	С
Manusca	32 %-ный водный раствор	20	С
Метиламин		60	С
		20	С
Метилэтилкетон	Технический	40	О
		60	Н
Молоко		20	С
		40	С
		60	С

Молочная кислота		20	С
	90 %-ная водная	40	С
		60	С
		20	С
Морфолин	Технический	40	С
		60	С
V	Водные растворы до 30% Водные растворы до 50%	40	С
Мочевина		60	С
		20	С
Муравьиная кислота		40	С
		60	С
	Техническая	20	С
		40	С
		60	С
Мыльный раствор	Любой водный	60	С

Мышьяковая кислота	80%-ная водная	40	С
		60	С
		20	С
Натрия ацетат	Любой водный	40 	С
		60	С
		20	
Натрия бромат	Тоже	40	C O
		60	

	До 10 % водный	40	С
	раствор	60	С
		20	С
	До 30 % водный раствор	40	С
		60	С
Натрия гидрооксид	50 %-ный водный раствор	20	С
		40	С
		60	С
	Насыщенный раствор	20	С
		60	С
Натрия гидросульфит	До 10 % водный раствор	20	С
		40	С
		60	С

Натрия йодит		20	
	Любой водный раствор	40	С
		60	
Натрия карбонат	Насыщенный водный раствор	60	С
Нотрид интрот	То же	40	С
Натрия нитрат	то же	60	С
	Насыщенный раствор	20	С
Натрия бикарбонат		40	С
		60	С
	Насыщенный водный раствор	20	С
Натрия сульфат		40	С
		60	С
Натрия сульфит		20	С
	То же	40	С
		60	С

Натрия нитрит	Насыщенный водный	20	С
		20	О
Озон	100%-ный	60	Н
		20	С
Олеиновая кислота	Техническая чистая	40	С
		60	O
0	10%-ный, SO3	20	Н
Олеум		60	Н
Отходящие газы, содержащие двуокись углерода	Любая	60	С
		20	O
Перхлорэтилен, тетрахлорэтилен	Технические	40	Н
		60	С
Пикриновая кислота	1%-ный водный	20	O
	раствор	60	С

Пропан	Технический жидкий	20 	С
	Технический	20	С
	газообразный	60	С
Пропилена окись	Техническая	20	С
		20	С
Ртуть	Чистая	40	С
		60	С
	Любой	40	С
Сахарный сироп		60	С
Светильный газ	-	20	С
	Насыщенный раствор	20	С
Свинца ацетат		40	С
		60	С
Серебра соли	Насыщенный водный раствор	40	С
		60	С

		20	С
	До 40 % водный раствор	40	С
		60	С
		20	С
	До 60 % водный раствор	40	С
		60	С
Серная кислота	До 80 % водный раствор	20	С
		40	С
		60	О
	90 %-ный водный раствор	20	О
		60	О
	96 %-ный водный	20	Н
	раствор	60	О

	I		
		20	С
	Технический газообразный	40	С
Comment		60	С
Сероводород		20	С
	Насыщенный водный раствор	40	С
		60	С
	Техническая чистая	20	С
Сера		40	С
		60	С
Сероуглерод	Технический	20	
		60	O

		20	С
	Ангидрид	40	С
Серы двуокись		60	С
	H-Say name	20	С
	Любой концентрации	40	С
Серы двуокись	Любой концентрации	60	С
	Техническая жидкая	20 	Н
Силиконовые масла		20	С
		40	С
Синильная кислота		20	С
	Техническая	40	С
		60	С

	5 %-ный водный раствор	20	С
		40	О
		60	С
		20	С
	1 0 %-ная водная	40	С
Commence		60	С
Соляная кислота	До 30 % водная	20	С
		40	С
		60	С
	36 %-ная водная	20	С
		40	С
		60	С
Смесь кислот: серная + азотная + вода	48% + 49% + 3%	20	
		40	Н
		60	

Смесь кислот: серная +	10% + 20% + 70%	20	O
азотная + вода	10/6 + 20/6 + 70/6	40	O
Смесь кислот: азотная (15 %-ная)	3 части + 1 часть + 2	20	
фтористоводородная (5 %-ная) серная (18 %-ная)	части	40	O
Смесь кислот: серная +	30% + 60% + 10%	20	С
фосфорная + вода	30/6 + 00/6 + 10/6	O 40	О
Спиртные налитки	40 %-ные	20	С
		20	
Стеариновая кислота	Техническая	40	
		60	
		20	С
Сурьмы хлорид	90 %-ный водный	40	С
		60	С
Тетрагидрофуран	Технический	20	O

T	_"_	20	О			
Тетрахлорэтан	-"-	60	Н			
T	_"_	20	О			
Толуол	-"-	60	Н			
		20	С			
	50 %-ный водный раствор	40	С			
Трихлоруксусная		60	С			
кислота		20	С			
	Техническая чистая	40	О			
		60 H 20 O 60 H 20 C 40 C 20 C				
Трихлорэтилен	Технический	20	Н			
Триэтаноламин	_"_	20	С			
		20	С			
Углерода двуокись	Техническая сухая	40	С			
		60	С			

		20	С
	10 %-ный водный раствор	40	C
		20	С
	50 %-ный водный раствор	40	С
Уксусная кислота		60	С
		20	С
	Техническая чистая	40	С
		60	О
Уксусной кислоты		20	С
ангидрид	Технический	40	

		20	С
	До 10 % водный	40	С
Фенол		60	O
Фенол		20 C	С
	До 90 % водный	 	С
		60	40 C 60 O 20 C 40 C
		20	С
Формальдегид (формалин)	40 %-ный водный раствор	40	С
		60 O 20 C 40 C 60 O 20 C 40 C 40 C 60 C	
Фосфора хлорид	Технический	20	С

		20	С
	До 30 % водный раствор	40	С
		60	С
Фосфорная кислота		20	С
	До 50 % водный раствор	40	С
		60	С
		20	С
	85 %-ный водный раствор	40	С
		40 C 60 C 20 C 40 C 20 C 20 C	
Фосфорный ангидрид	T	20	С
(2 кл. оп)	Технический	40	С
Фотографическая	H.o.G.o.	20	С
эмульсия	Любая	40	C 40 C 60 C 20 C 40 C 40 C 40 C 40 C 40 C 40 C 4
Фотографический	Topropriš	20	С
закрепитель	Торговый	60 C 20 C 40 C 60 C 20 C 60 C 20 C 40 C 40 C 40 C 40 C 40 C 40 C 20 C 40 C	С

		20	С
Фруктовые соки		40	С
		60	С
		20	С
	До 40 % водный раствор	40	С
		60	О
Фтористоводородная		20	С
(плавиковая) кислота	50 %-ный водный раствор	40	С
		60	О
	70 %-ный водный	20	С
	раствор	40 C 60 C 20 C 40 C 40 C 60 O C 60 O C 60 O C 20 C	О
V	100.0/	20	Н
Хлор газообразный	100 %-ный	60	Н
V	100 0/×	20	Н
Хлор жидкий	100 %-ный	60	Н

W. 6		20	О
Хлорбензол	Технический	60	Н
Хлорметанол	_"_	20	Н
W.		20	О
Хлорная вода	Насыщенный раствор	40	60 H 20 H 20 O 40 O 20 H 60 H 60 H 20 H 60 C 40 C
		20	Н
Хлороформ	1ехническии	60 Н 20 О СТВОР 40 О 20 Н 60 Н 60 Н 20 Н 60 Н 20 С 40 С 40 С 40 С 40 С	Н
Хлорсульфоновая	T	20	Н
кислота	Техническая	60 H 20 O 30p 40 O 20 H 60 H 60 H 20 H 60 H 20 C 40 C 40 C	Н
		20	С
	50 %-ная водная	40	С
V		60	С
Хлоруксусная кислота		20	С
	Техническая	40	С
		60	СО

		20	О
Хромовая кислота	До 50 % водная	40	Н
		60	-
		20	Н
Смесь кислот: хромовая + серная + вода	5q + 2q + 3q	 	-
		60	-
	Tr.	20	Н
Царская водка	Концентрированная	40	-
		20	С
Циклогексан		40	С
		60	С
		20	С
Циклогексанол	_"_	60 - 20 Н 20 - 40 - 60 - 20 Н рированная 40 - 20 С Ский 40 С 60 С	О
		60	0

	Любые водные	40	С
Цинка соли	растворы	60	С
		20	С
Щавелевая кислота	Разбавленная водная	40	С
		60	О
		20	С
Этилацетат	Технический	60 C 20 C 40 C	
		60	О
		20	С
Этиленгликоль	_"_	40	С
		60	С
		20	С
Этилендиамин	_"_	60 C 20 C 40 C 60 O 20 C 40 C 40 C 40 C 40 C 40 C 60 O 20 C 40 C 40 C	С

Этиловый	Технический, 96 %-	40	С
спирт(этанол)	ный	60	С
Этиловый эфир акриловой кислоты	Технический	20	С
Этил хлористый	_"_	20	О
		20	С
Яблочная кислота	рир слоты Технический 20 20 20 20 20 20 20 20 20 20 20 20 20	40	С
		60	С
		20	С
Янтарная кислота	риловой кислоты -"- 20 20 5лочная кислота 1 %-ный водный раствор 60 20	С	
		60	С

Приложение 2 Таблицы для гидравлического расчета безнапорных гофрированных труб из ПНД производства НПО «Стройполимер»

*К*э 0,02 мм. Диаметр трубы 100мм.

1. / 1	i =0),01	i =0,	011	i =0,	012	i =0,	013	i =0,	014	i = 0,	015	i =0,016	
h/d	q, л/с	v, м/с	q, л/c	v, м/с	q, л/с	v, м/с	<i>q, л/с</i>	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с	 q, л/с 	v, м/с
0,1	0,135	0,330	0,143	0,351	0,152	0,371	0,159	0,390	0,167	0,409	0,175	0,427	0,182	0,444
0,2	0,598	0,535	0,635	0,568	0,671	0,600	0,704	0,630	0,737	0,659	0,768	0,687	0,799	0,714
0,3	1,380	0,696	1,463	0,738	1,544	0,779	1,619	0,817	1,693	0,854	1,765	0,890	1,833	0,925
0,4	2,423	0,826	2,567	0,875	2,708	0,923	2,837	0,967	2,965	1,011	3,089	1,053	3,208	1,093
0,5	3,645	0,928	3,859	0,983	4,069	1,036	4,261	1,085	4,452	1,134	4,638	1,181	4,814	1,226
0,6	4,943	1,005	5,231	1,063	5,514	1,121	5,773	1,173	6,031	1,226	6,280	1,276	6,518	1,325
0,7	6,195	1,055	6,555	1,116	6,909	1,177	7,233	1,232	7,554	1,286	7,865	1,339	8,161	1,390
0,8	7,251	1,076	7,672	1,139	8,085	1,200	8,464	1,256	8,839	1,312	9,203	1,366	9,549	1,418
0,9	7,891	1,060	8,349	1,121	8,799	1,182	9,212	1,237	9,621	1,292	10,017	1,345	10,394	1,396
1,0	7,290	0,928	7,718	0,983	8,138	1,036	8,523	1,085	8,905	1,134	9,275	1,181	9,628	1,226
1 / 1	i =0	017	i = 0,	018	i = 0.02		i = 0,	025	i=0;	,03	i = 0,	035	i =0	,04
h/d	q, л/с	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с
0,1	0,189	0,461	0,195	0,478	0,208	0,510	0,238	0,583	0,266	0,650	0,291	0,711	0,314	0,768

0,2	0,828	0,741	0,857	0,767	0,913	0,816	1,040	0,930	1,155	1,033	1,262	1,129	1,360	1,217
0,2	0,828	0,741	0,857	0,767	0,913	0,816	1,040	0,930	1,155	1,033	1,262	1,129	1,360	1,217
0,4	3,323	1,133	3,436	1,171	3,651	1,245	4,147	1,413	4,594	1,566	5,008	1,707	5,389	1,837
0,5	4,985	1,270	5,155	1,313	5,475	1,394	6,212	1,582	6,877	1,751	7,491	1,908	8,058	2,052
0,6	6,749	1,372	6,977	1,418	7,407	1,506	8,399	1,707	9,295	1,889	10,120	2,057	10,883	2,212
0,7	8,450	1,439	8,734	1,487	9,272	1,579	10,510	1,790	11,626	1,980	12,656	2,155	13,607	2,317
0,8	9,886	1,468	10,218	1,517	10,846	1,610	12,292	1,825	13,597	2,019	14,799	2,197	15,910	2,362
0,9	10,761	1,445	11,124	1,494	11,808	1,586	13,384	1,798	14,805	1,989	16,116	2,165	17,327	2,327
1,0	9,971	1,270	10,309	1,313	10,949	1,394	12,424	1,582	13,754	1,751	14,982	1,908	16,117	2,052

*К*э 0,02 мм. Диаметр трубы 150мм.

1 / 1		,05	i =0	,06	i =0	,07	i =0	,08	i = 0	,09	i = 0	0,01	i = 0,	011
h/d		v, м/с	q, л/c	v, м/с	q, л/c	v, м/с	q, л/c	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с	q, л/с	ν, м/с
0,1	0,265	0,293	0,299	0,330	0,330	0,364	0,359	0,396	0,386	0,426	0,412	0,455	0,436	0,482
0,2	1,179	0,476	1,322	0,534	1,454	0,587	1,577	0,637	1,693	0,684	1,804	0,729	1,909	0,771
0,3	2,720	0,620	3,045	0,694	3,342	0,762	3,622	0,825	3,882	0,885	4,132	0,942	4,370	0,996

0,4	4,776	0,735	5,340	0,822	5,855	0,901	6,339	0,976 	6,790	1,045	7,223	1,112	7,634	1,175
0,5	7,185	0,826	8,026	0,923	8,794	1,011	9,515	1,094 	10,187	1,172	10,831	1,246	 11,443 	1,316
0,6	9,744	0,894	10,878	0,999	11,913	1,094	12,884	1,183	13,789	1,266	14,656	1,345	15,480 	1,421
0,7	12,213	0,939	13,630	1,048	14,922	1,148	16,134	1,241 	17,265	1,328	18,347	1,411	 19,375 	1,490
0,8	J4,296	0,959	15,951	1,070	17,462	1,171	18,878	1,266 	20,199	1,354	21,463	1,439	22,665 	1,520
0,9	15,556	0,944	17,360	1,053	19,005	1,153	20,549	1,247 	21,988	1,334	23,366	1,417	24,675 	1,497
1,0	14,370	0,826	16,052	0,923	17,588	1,011	19,030	1,094 	20,374	1,172	21,662	1,246	22,886 	1,316
h/d	i = 0,	012	i = 0,	013	i = 0,	014	i = 0,	015	i = 0,	016	i = 0	,017	i = 0,	018
n/a	q, л/с	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с	 _ q, л/с 	v, м/с						
0,1	0,460	0,508	0,483	0,533	0,505	0,557	0,526	0,581	0,547	0,603	0,566	-0,625	0,586 	0,647
0,2	2,009	0,812	2,106	0,851	2,199	0,888	2,289	0,925	2,376	0,960	2,460	0,994	2,543	1,027
0,2	2,009	0,812	2,106	0,851	2,199	0,888	2,289	0,925	2,376	0,960	2,460	0,994	2,543	1,027
0,4	8,023	1,235	8,399	1,293	8,760	1,348	9,109	1,402	9,448	1,454	9,773	1,504	 10,094 	1,554
0,5	12,021	1,383	12,581	1,447	13,118	1,509	13,638	1,568	14,141	1,626	14,625	1,682	15,101	1,737
0,6	16,259	1,493	17,012	1,562	17,735	1,628	18,434	1,692	19,111	1,754	19,762 	1,814	20,403	1,873

0,7	20,347	1,565	21,286	1,637	22,188	1,707	23,060	1,774	23,905	1,839	24,716	1,901	25,516	1,963
0,8	23,799	1,596	24,897	1,669	25,950	1,740	26,969	1,808	27,956	1,874	28,904	1,938	29,837	2,001
0,9	25,912	1,572	27,108	1,644	28,256	1,714	29,366	1,781	30,441	1,847	31,475	1,909	32,492	1,971
1,0	24,043	1,383	25,162	1,447	26,236	1,509	27,275	1,568	28,282	1,626	29,250	1,682	30,203	1,737

*К*э 0,02 мм. Диаметр трубы 200мм.

1 / 1	i = 0	,003	i =0	,004	i = 0	,005	i = 0	,006	i = 0	,007	i = 0	,008	i = 0	,009
h/d	q, л/c	v, м/с	q, л/c	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с
0,1	0,418	0,265	0,504	0,320	0,580	0,368	0,650	0,413	0,715	0,454	0,775	0,492	0,832	0,528
0,2	1,858	0,431	2,226	0,517	2,554	0,593	2,853	0,662	3,128	0,726	3,384	0,785	3,626	0,842
0,3	4,289	0,562	5,122	0,671	5,864	0,768	6,538	0,856	7,160	0,937	7,735	1,013	8,282	1,084
0,4	7,533	0,666	8,979	0,794	10,264	0,908	11,432	1,011	12,506	1,106	13,501	1,194	14,446	1,278
0,5	11,335	0,749	13,492 	0,892	 15,407 	1,018	17,147	1,133	18,747	1,239	20,227	1,337	21,633	1,430
0,6	15,374	0,811	18,283 	0,964	20,863 	1,100	23,207	1,224	25,361	1,338	27,354	1,443	29,245	1,543
0,7	19,273	0,852	22,906 	1,012	26,127 	1,155	29,053	1,284	31,741	1,403	34,229	1,513	36,588	1,617
0,8	22,560	0,869	26,806 	1,033	30,570	1,178	33,989	1,309	37,130	1,430	40,036	1,542	42,792	1,649

0,9	24,549	0,856	29,174 	1,017	33,276	1,160	37,001	1,290	40,424	1,409	43,590	1,519	46,594	1,624
1,0	22,671	0,749	26,985	0,892	30,814	1,018	34,294	1,133	37,494	1,239	40,455	1,337	43,265	1,430
1 / 1	i = 0	0,01	i = 0	,011	i = 0	,012	i = 0	,013	i = 0	,014	i = 0	,015	i = 0	,016
h/d	q, л/с	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с
0,1	0,887	0,563	0,938	0,595	0,987	0,627	1,035	0,657	1,080	0,685	1,124	0,713	1,167	0,741
0,2	3,856	0,895	4,073	0,945	4,283	0,994	4,483	1,041	4,675	1,085	4,861	1,128	5,041	1,170
0,2	3,856	0,895	4,073	0,945	4,283 	0,994	4,483	1,041	4,675	1,085	4,861	1,128	5,041	1,170
0,4	15,336	1,356	 16,180 	1,431	 16,992 	1,503	17,767	1,571	18,510	1,637	19,230	1,701	19,926	1,762
0,5	22,956	1,517	 24,211 	1,600	 25,419 	1,680	26,570	1,756	27,674	1,829	28,743	1,899	29,778	1,968
0,6	31,026	1,637	32,714 	1,726	34,339 	1,811	35,887	1,893	37,372	1,971	38,810	2,047	40,200	2,120
0,7	38,809	1,715	 40,914 	1,808	 42,941 	1,898	44,872	1,983	46,724	2,065	48,516	2,144	50,250	2,221
0,8	45,387	1,749	47,846 	1,843	50,213	1,935	52,468	2,021	54,632	2,105	56,725	2,185	58,749	2,263
0,9	49,422	1,723	52,102	1,816	54,682	1,906	57,140	1,992	59,498	2,074	61,779	2,153	63,986	2,230
1,0	45,912	1,517	48,421	1,600	50,837	1,680	53,140	1,756	55,349	1,829	57,487	1,899	59,555	1,968

*К*э 0,02 мм. Диаметр трубы 250мм.

	i=0	003	i=0	004	i=0	005	i=0	006	i=0	007	i=0	008	i=0	009
h/d		v, м/с	q, л/с	v, м/с	q, л/c	v, м/с	q, л/с	v, м/с						
0,1	0,786	0,319	0,942	0,383	1,081	0,439	1,206	0,491	1,323	0,538	1,432	0,583	1,535	0,624
0,2	3,465	0,516	4,134	0,615	4,724	0,703	5,258	0,782	5,754	0,856	6,217	0,925	6,651	0,989
0,3	7,969	0,669	9,478	0,795	10,810	0,907	12,014	1,008	13,128	1,102	14,169	1,189	15,145	1,271
0,4	13,962	0,791	16,576	0,940	18,880	1,070	20,960	1,188	22,885	1,297	24,682	1,399	26,366	1,495
0,5	20,971	0,888	24,866	1,053	28,298	1,199	31,393	1,330	34,256	1,451	36,928	1,564	39,430	1,670
0,6	28,409	0,960	33,658	1,138	38,278	1,294	42,445	1,435	46,298	1,565	49,892	1,687	53,259	1,800
0,7	35,588	1,008	42,140	1,194	47,907 	1,357	53,106	1,504	57,913	1,640	62,396	1,767	66,594	1,886
0,8	41,644 	1,028	49,301	1,217	56,039	1,384	62,113	1,534	67,728	1,672	72,965	1,802	77,868	1,923
0,9	45,326 	1,013	53,668	1,199	61,010	1,363	67,629	1,511	73,749	1,648	79,456	1,775	84,801	1,895
1,0	41,942 	0,888	49,733	1,053	56,595	1,199	62,786	1,330	68,512	1,451	73,856	1,564	78,861	1,670
	i=0,	012	i=0,	013	i=0,	014	i=0,0)15	i=0,0	016	i=0,0	017	i = 0, 0	018
h/d	q, л/с	v, м/с	q, л/с	v, м/с	q, л/c	v, м/с	q, л/c	v, м/с	q, л/c	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с
0,1	1,632	0,664	1,725	0,702	1,814	0,738	1,899	0,772	1,981	0,806	2,061	0,838	2,137	0,869

0,2	7,062	1,051	7,453	1,109	7,827	1,164	^8,186	1,218	8,532	1,269	8,865	1,319	9,188	1,367
0,2	7,062	1,051	7,453	1,109	7,827 	1,164	8,186	1,218	8,532	1,269	8,865	1,319	9,188	1,367
0,4	27,955	1,585	29,468	1,671	30,912	1,752	32,300	1,831	33,634	1,907	34,918	1,979	36,165	2,050
0,5	41,793 	1,770	44,040	1,865	46,185	1,956	48,246	2,043	50,226	2,127	52,133	2,208	53,982	2,286
0,6	56,435	1,908	59,457	2,010	62,341	2,108	65,111	2,201	67,773	2,291	70,335	2,378	72,820	2,462
0,7	70,555	1,998	74,323	2,105	77,918	2,207	81,371	2,305	84,690	2,399	87,883	2,489	90,981	2,577
0,8	82,495	2,037	86,896	2,146	91,095	2,249	95,127	2,349	99,002	2,445	102,731	2,537	106,349	2,626
0,9	89,844 	2,007	94,641	2,114	99,218	2,217	103,614	2,315	107,838	2,409	111,903	2,500	115,847	2,588
1,0	83,585	1,770	88,081	1,865	92,370	1,956	96,491	2,043	100,453	2,127	104,265	2,208	107,965	2,286

$K_{\mathfrak{Z}}$ 0,02 мм. Диаметр трубы 300мм.

1 / 1		025	i = 0, 0	003	i =0,0	0035	i = 0, 0	004	i =0,0	0045	i = 0, 0	005	i =0,0	0055
h/d		v, м/с	q, л/с	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с
0,1	1,186	0,332	1,330	0,372	1,462	0,409	1,587	0,444	1,704	0,476	1,815	0,508	1,921	0,537
0,2	5,219	0,534	5,834	0,597	6,397	0,654	6,927	0,709	7,425	0,760	7,897	0,808	8,346	0,854
0,3	11,987	0.692	13,374	0,772	14,645	0,845	15,840	0,914	16,960	0,979	18,023	1,040	19,034	1,098

0,4	20,984	0,818	23,385	0,912	25,585	0,997	27,652	1,078	29,587	1,153	31,424	1,225	33,169	1,293
0,5	31,501	0,917	35,079	1,022	38,354	1,117	41,432	1,207	44,311	1,290	47,044	1,370	49,639	1,446
0,6	42,658	0,992	47,478	1,104	51,889	1,206	56,033	1,302	59,908	1,393	63,586	1,478	67,078	1,559
0,7	53,423	1,041	59,441	1,158	64,946	1,265	70,117	1,366	74,953	1,460	79,541	1,549	83,897	1,634
0,8	62,509	1,061	69,541	1,181	75,973	1,290	82,015	1,392	87,664	1,488	93,024	1,579	98,112	1,666
0,9	68,040	1,045	75,702	1,163	82,711	1,271	89,295	1,372	95,451	1,466	101,292	1,556	106,837	1,641
1,0	63,002	0,917	70,158	1,022	76,708	1,117	82,864	1,207	88,622	1,290	94,087	1,370	99,277	1,446
1 / 1		006	i = 0,0	065	i = 0, 0	007	i = 0.0	075	i = 0, 0	008	i = 0.0	085	i = 0, 0) 909
h/d	q, л/с	v, м/с	q, л/c	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с
0,1	2,023	0,566	2,120	0,593	2,215	0,619	2,306	0,645	2,394	0,669	2,479	0,693	2,563	0,717
0,2	8,777	0,898	9,189	0,940	9,589	0,981	9,974	1,020	10,345	1,058	10,704	1,095	11,056	1,131
0,2	8,777	0,898	9,189	0,940	9,589	0,981	9,974	1,020	10,345	1,058	10,704	1,095	11,056	1,131
0,4	34,838	1,358	36,438	1,420	37,989	1,481	39,479	1,539	40,912	1,595	42,303	1,649	43,661	1,702
0,5	52,121	1,518	54,499	1,587	56,803	1,654	59,018	1,719	61,146	1,781	63,213	1,841	65,231	1,900
0,6	70,417	1,637	73,616	1,711	76,715	1,783	79,693	1,852	82,556	1,919	85,334	1,984	88,046	2,047

0,7	88,062	1,715	92,051	1,793	95,916	1,868	99,630	1,940	103,199	2,010	106,664	2,077	110,045	2,143
0,8	102,977	1,748	107,637	1,828	112,151	1,904	116,489	1,978	120,658	2,049	124,704	2,117	128,653	2,184
0,9	112,140	1,723	117,219	1,801	122,140	1,876	126,867	1,949	131,412	2,019	135,822	2,086	140,127	2,153
1,0	104,241	1,518	108,998	1,587	113,606	1,654	118,035	1,719	122,293	1,781	126,426	1,841	130,461	1,900

*К*э 0,02 мм. Диаметр трубы 350мм.

	i = 0, 0	0025	i = 0,	003	i = 0, 0	0035	i = 0,	004	i =0,0	0045	i = 0,	005	i =0,0	0055
h/d	q, л/с	v, м/c	q, л/с	v, м/с	q, л/c	v, м/с	q, л/с	v, м/с	q, л/c	v, м/с	q, л/c	v, м/с	<i>q,</i> л/ <i>c</i>	v, м/с
0,1	1,872	0,378	2,093	0,423	2,298	0,464	2,490	0,503	2,671	0,539	2,842	0,574 	3,005	0,607
0,2	8,199	0,606	9,141	0,675	10,012	0,739	10,826	0,800	11,592	0,856	12,318	0,910 	13,008	0,961
0,3	18,782	0,782	20,905	0,871	22,868	0,953	24,699	1,029	26,423	1,101	28,053	1,169 	29,603	1,233
0,4	32,825	0,924	36,498	1,027	39,891 	1,123	43,054	1,212	46,030 	1,295	48,844	1,375	51,518	1,450
0,5	49,222	1,035	54,690	1,150	59,740	1,256	64,444	1,355	68,871	1,448	73,054	1,536	77,027	1,620
0,6	66,604	1,118	73,967	1,241	80,765	1,356	87,096	1,462	93,052	1,562	98,680	1,656 	104,024	1,746
0,7	83,374	1,172	92,564	1,302	 101,046 	1,421	108,944	1,532	 116,373 	1,636	123,392	1,735 	130,057	1,829
0,8	97,535	1,196 	108,271	1,327	 	1,449	127,408	1,562	 	1,668	144,284	1,769 	152,069	1,864

0,9	106,181	 1,178 	117,880	1,307	 128,679 	1,427	138,735	1,539	 148,193 	1,644	157,129	 1,743 	165,614	1,837
1,0	98,444	1,035	109,380	1,150	119,480	1,256	128,888	1,355	137,741	1,448	146,108	1,536	154,055	1,620
		006	$i = 0, \ell$	0065	i = 0,	007	i =0,0	0075	i = 0,	008	i =0,0	0085	i = 0,	009
h/d		v, м/с	q, л/с	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с	q, л/c	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с
0,1	3,162	0,638	3,312	0,669	3,457	0,698	3,597	0,726	3,733	0,754	3,863	0,780	3,991	0,806
0,2	13,669	1,010	14,303	1,056	14,913	1,101	15,502	1,145	16,075	1,187	16,624	1,228	17,160	1,267
0,2	I i,669	1,010	14,303	1,056	14,913	1,101	15,502	1,145	16,075	1,187	16,624	1,228	17,160	1,267
0,4	54,078	1,522	56,532	1,591	58,888	1,657	61,166	1,721	63,376	1,784	65,494	1,843	67,561	1,901
0,5	80,832	1,700	84,478	1,776	87,977	1,850	91,360	1,921	94,642	1,990	97,786	2,056	100,854	2,121
0,6	109,141	1,832	114,042	1,914	118,748	1,993	123,294	2,069	127,706	2,143	131,931	2,214	136,055	2,283
0,7	136,437	1,919	142,549	2,005	148,416 	2,087	154,084	2,167	159,583	2,244	164,850	2,318	169,991	2,390
0,8	159,522	1,956	166,660	2,043	173,512 	2,127	180,131	2,208	186,554	2,287	192,705	2,362	198,708	2,436
0,9	173,737	1,927	181,518	2,013	188,986	2,096	196,202	2,176	203,203	2,254	209,908	2,328	216,453	2,401
1,0	161,664	1,700	168,955	1,776	175,955 	1,850	182,719	1,921	189,283	1,990	195,571	2,056	201,709	2,121

*К*э 0,02 мм. Диаметр трубы 400мм.

1 / 1			i =0,003		i =0,0035		i =0,004		i =0,0045		i =0,005		i =0,0055	
h/d	q, л/c	v, м/с	q, л/c	v, м/с	q, л/с	v, м/с								
0,1	2,757	0,421	3,078	0,470	3,375	0,516	3,652	0,558	3,915	0,598	4,162	0,636	4,397	0,672
0,2	12,034	0,673	13,396	0,749	14,657	0,819	15,829	0,885	16,939	0,947	17,982	1,005	18,975	1,061
0,3	27,513	0,868	30,578	0,964	33,414	1,054	36,050	1,137	38,543	1,215	40,884	1,289	43,111	1,359
0,4	48,022	1,023	53,320	1,136	58,218	1,240	62,767	1,337	67,069	1,429	71,107	1,515	74,945	1,596
0,5	71,946	1,145	79,829	1,271	87,115	1,386	93,878	1,494	100,272	1,596	106,271	1,691	111,974	1,782
0,6	97,295	1,236	107,906	1,371	117,710	1,495	126,809	1,611	135,409	1,720	143,476	1,823	151,143	1,920
0,7	121,747	1,296	134,987	1,437	147,216	1,567	158,566	1,688	169,291	1,802	179,351	1,909	188,910	2,011
0,8	142,402	1,321	157,870	1,465	172,157	1,597	185,414	1,720	197,941	1,837	209,691	1,946	220,856	2,049
0,9	155,044	1,302	171,901	1,443	187,471	1,574	201,920	1,695	215,574	1,810	228,381	1,917	240,551	2,019
1,0	143,892	1,145	159,659	1,271	174,230	1,386	187,757	1,494	200,544	1,596	212,543	1,691	223,947	1,782
1 / 1	i =0,006		i =0,0065		i =0,007		i =0,0075		i =0,008		i =0,0085		i =0,009	
h/d	q, л/с	v, м/с	q, л/c	v, м/с	q, л/с	v, м/с								
0,1	4,625	0,707	4,841	0,740	5,050	0,772	5,252	0,803	5,448	0,833	5,637	0,861	5,821	0,890

0,2	19,934	1,114	20,844	1,165	21,721	1,214	22,571	1,262	23,395	1,308	24,187	1,352	24,962	1,395
0,2	19,934	1,114	20,844	1,165	21,721	1,214	22,571	1,262	23,395	1,308	24,187	1,352	24,962	1,395
0,4	78,652	1,675	82,166	1,750	85,552	1,822	88,828	1,892	92,007	1,960	95,056	2,025	98,042	2,088
0,5	117,479	1,870	122,696	1,953	127,723	2,033	132,587	2,110	137,305	2,185	141,830	2,257	146,260	2,328
0,6	158,544	2,014	165,557	2,103	172,314	2,189	178,850	2,272	185,189	2,353	191,269	2,430	197,220	2,505
0,7	198,138	2,109	206,880	2,202	215,302	2,292	223,449	2,378	231,350	2,462	238,927	2,543	246,344	2,622
0,8	231,632	2,149	241,843	2,244	251,678	2,335	261,192	2,423	270,419	2,509	279,266	2,591	287,927	2,672
0,9	252,298	2,118	263,428	2,211	274,149	2,301	284,521	2,389	294,579	2,473	304,224	2,554	313,666	2,633
1,0	234,958	1,870	245,393	1,953	255,447	2,033	265,174	2,110	274,610	2,185	283,659	2,257	292,519	2,328

*К*э 0,02 мм. Диаметр трубы 450мм.

1 / 1			i =0,003		i = 0,0035		i = 0.004		i = 0.0045		i = 0.005		i =0,0055	
h/d		v, м/с	q, л/с	v, м/с	q, л/с	v, м/с	q, л/c	v, м/с	<i>q,л/с</i>	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с
0,1	3,820	0,461	4,260	0,514		0,563	5,046	0,609	5,403	0,652	5,741	0,693	6,064	0,732
0,2	16,625	0,734	18,490	0,817	20,207	0,893	21,811	0,963	23,319	1,030	24,742	1,093	26,101	1,153
0,3	37,946	0,945	42,142 	1,050	46,000	1,146 	49,602	1,236	52,985	1,320	56,176	1,400	59,222 	1,476

66,164	1,114	73,411	1,236	80,070	1,348	86,284 	1,452	92,117 	1,550	 97,617 	1,643	 102,865 	1,731
99,056	1,246	 	1,381	 119,735 	1,506	 	1,622	 	 - 	 145,804 	1,834	 153,597 	1,932
133,892	1,344	 	1,489	 161,714 	1,623	 174,133 	1,748	 185,785 	1,865	 196,768 	1,975	207,244 	2,080
167,491	1,409	 	1,561	 202,196 	1,700	217,683 	1,831	232,213 	1,953	 245,906 	2,068	258,966 	2,178
195,884	1,436	217,020	1,591	236,424	1,733	254,513	1,866	271,483	1,990	287,475 	2,108	302,727	2,219
213,294	1,415	236,329	1,568	257,477 	1,708	277,194 	1,839	295,691 	1,961	313,123	2,077	329,749	2,187
198,111	1,246	219,668	1,381	239,469	1,506	257,937 	1,622	275,269 	1,731	291,608 	1,834	307,195	1,932
i =0,006		i = 0.0065		i =0,007		i =0,0075		i =0,008		i =0,0085		i =0,009	
q, л/c	v, м/с	q, л/с	v, м/с	q, л/c	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с	q, л/с	v, м/с	q, л/с	v, м/c
6,373	0,769	6,668	0,805	6,954	0,840	7,227	0,873	7,494	0,905	7,753	0,936	8,004	0,966
27,400	1,210	28,643	1,265	29,841	1,318	30,990	1,369	32,110	1,418	33,195	1,466	34,245	1,513
27,400	1,210	28,643	1,265	29,841	1,318	30,990	1,369	32,110	1,418	33,195	1,466	34,245	1,513
107,881	1,816	112,673	1,896	117,291	1,974	121,715	2,049	126,024	2,121	130,201	2,191	134,235	2,259
161,044	2,025	168,157 	2,115	175,010	2,201	181,575	2,283	187,967	2,364	194,164	2,442	200,148	2,517
217,252	2,181	226,811	2,277	236,019	2,369	244,840	2,457	253,427	2,544	261,751	2,627	269,788	2,708
	99,056 133,892 167,491 195,884 213,294 198,111 $i = 0$, q , π/c 6,373 27,400 27,400 107,881 161,044	99,056 1,246 133,892 1,344 167,491 1,409 195,884 1,436 213,294 1,415 198,111 1,246 $i = 0,006$ $q, \pi/c$ $v, m/c$ 6,373 0,769 27,400 1,210 27,400 1,210 107,881 1,816 161,044 2,025	99,056 1,246 109,834 133,892 1,344 148,395 167,491 1,409 185,584 195,884 1,436 217,020 213,294 1,415 236,329 198,111 1,246 219,668 $i = 0,006$ $i = 0,0$ $q, \pi/c$ $v, m/c$ $q, \pi/c$ 6,373 0,769 6,668 27,400 1,210 28,643 27,400 1,210 28,643 107,881 1,816 112,673 161,044 2,025 168,157	99,056 1,246 109,834 1,381 133,892 1,344 148,395 1,489 167,491 1,409 185,584 1,561 195,884 1,436 217,020 1,591 213,294 1,415 236,329 1,568 198,111 1,246 219,668 1,381 i =0,006	99,056 1,246 109,834 1,381 119,735 133,892 1,344 148,395 1,489 161,714 167,491 1,409 185,584 1,561 202,196 195,884 1,436 217,020 1,591 236,424 213,294 1,415 236,329 1,568 257,477 198,111 1,246 219,668 1,381 239,469 i =0,006	99,056 1,246 109,834 1,381 119,735 1,506 133,892 1,344 148,395 1,489 161,714 1,623 167,491 1,409 185,584 1,561 202,196 1,700 195,884 1,436 217,020 1,591 236,424 1,733 213,294 1,415 236,329 1,568 257,477 1,708 198,111 1,246 219,668 1,381 239,469 1,506 i =0,006	99,056 1,246 109,834 1,381 119,735 1,506 128,969 133,892 1,344 148,395 1,489 161,714 1,623 174,133 167,491 1,409 185,584 1,561 202,196 1,700 217,683 195,884 1,436 217,020 1,591 236,424 1,733 254,513 213,294 1,415 236,329 1,568 257,477 1,708 277,194 198,111 1,246 219,668 1,381 239,469 1,506 257,937 i =0,006	99,056 1,246 109,834 1,381 119,735 1,506 128,969 1,622 133,892 1,344 148,395 1,489 161,714 1,623 174,133 1,748 167,491 1,409 185,584 1,561 202,196 1,700 217,683 1,831 195,884 1,436 217,020 1,591 236,424 1,733 254,513 1,866 213,294 1,415 236,329 1,568 257,477 1,708 277,194 1,839 198,111 1,246 219,668 1,381 239,469 1,506 257,937 1,622 i =0,006	99,056 1,246 109,834 1,381 119,735 1,506 128,969 1,622 137,634 133,892 1,344 148,395 1,489 161,714 1,623 174,133 1,748 185,785 167,491 1,409 185,584 1,561 202,196 1,700 217,683 1,831 232,213 195,884 1,436 217,020 1,591 236,424 1,733 254,513 1,866 271,483 123,294 1,415 236,329 1,568 257,477 1,708 277,194 1,839 295,691 198,111 1,246 219,668 1,381 239,469 1,506 257,937 1,622 275,269 1 =0,006	99,056 1,246 109,834 1,381 119,735 1,506 128,969 1,622 137,634 1,731 133,892 1,344 148,395 1,489 161,714 1,623 174,133 1,748 185,785 1,865 167,491 1,409 185,584 1,561 202,196 1,700 217,683 1,831 232,213 1,953 195,884 1,436 217,020 1,591 236,424 1,733 254,513 1,866 271,483 1,990 213,294 1,415 236,329 1,568 257,477 1,708 277,194 1,839 295,691 1,961 198,111 1,246 219,668 1,381 239,469 1,506 257,937 1,622 275,269 1,731 i =0,006 i =0,0065 i =0,007 i =0,0075 i =0,008	99,056 1,246 109,834 1,381 119,735 1,506 128,969 1,622 137,634 1,731 145,804 133,892 1,344 148,395 1,489 161,714 1,623 174,133 1,748 185,785 1,865 196,768 167,491 1,409 185,584 1,561 202,196 1,700 217,683 1,831 232,213 1,953 245,906 195,884 1,436 217,020 1,591 236,424 1,733 254,513 1,866 271,483 1,990 287,475 213,294 1,415 236,329 1,568 257,477 1,708 277,194 1,839 295,691 1,961 313,123 198,111 1,246 219,668 1,381 239,469 1,506 257,937 1,622 275,269 1,731 291,608 1 = 0,006 i = 0,0065 i = 0,007 i = 0,0075 i = 0,008 i = 0,00	99,056 1,246 109,834 1,381 119,735 1,506 128,969 1,622 137,634 1,731 145,804 1,834 133,892 1,344 148,395 1,489 161,714 1,623 174,133 1,748 185,785 1,865 196,768 1,975 167,491 1,409 185,584 1,561 202,196 1,700 217,683 1,831 232,213 1,953 245,906 2,068 195,884 1,436 217,020 1,591 236,424 1,733 254,513 1,866 271,483 1,990 287,475 2,108 213,294 1,415 236,329 1,568 257,477 1,708 277,194 1,839 295,691 1,961 313,123 2,077 198,111 1,246 219,668 1,381 239,469 1,506 257,937 1,622 275,269 1,731 291,608 1,834 1 = 0,006 i = 0,0065 i = 0,007 i = 0,0075 i = 0,008 i = 0,0085 1 = 0,006 i = 0,0065 i = 0,007 i = 0,0075 i = 0,008 i = 0,0085 1 = 0,0085 1 = 0,008 1,310 1,31	q, π/c ν, м/c q, π/c ν γ

База нормативной документации: www.complexdoc.ru

0,7	271,440	2,283	283,356	2,383	294,832	2,479	305,824	2,572	316,525	2,662	326,898 	2,749	336,913	2,833
0,8	317,296	2,326	331,210	2,428	344,611	2,526	357,447	2,620	369,942	2,712	382,054	2,801	393,748	2,887
0.9	345 630	2 203	360 708	2 303	375 408	2 490	389,401	2 583	403 024	2 673	A16 228	2 761	428 077	2 845
0,9	343,030	2,293	300,796	2,393	373,400	2,490	369,401	2,363	403,024	2,073	410,220	2,701	420,977	2,043
1,0	322,087	2,025	336,314	2,115	350,020	2,201	363,150	2,283	375,934 	2,364	388,328 	2,442	400,296	2,517