

ПРАВИТЕЛЬСТВО МОСКВЫ

КОМПЛЕКС АРХИТЕКТУРЫ, СТРОИТЕЛЬСТВА, РАЗВИТИЯ И РЕКОНСТРУКЦИИ ГОРОДА

ГУП «НИИМОССТРОЙ»

ТЕХНИЧЕСКИЕ РЕКОМЕНДАЦИИ на проектирование и строительство подземных сетей водоотведения из безнапорных полиэтиленовых труб с двухслойной стенкой

TP 170-05

Москва - 2005 г.

Настоящие технические рекомендации (ТР) разработаны ГУП «НИИМосстрой» по заказу ОАО «Московский комитет по науке и технологиям» (договор № 3-С/04), как один из результатов научно-исследовательских работ по теме: «Разработка технологий применения полиэтиленовых труб с двухслойной гофрированной стенкой в подземных инженерных сетях нового поколения с проведением экспериментальных работ на опытных участках» (раздел «Разработка технологии прокладки трубопроводов водоотведения из полиэтиленовых труб диаметром 100 - 500 мм с двухслойной стенкой гофрированной наружной и гладкой внутренней с использованием полиэтиленовых колодцев»).

Технические рекомендации подготовлены на основе проведенных ГУП «НИИМосстрой» исследований, накопленного отечественного и зарубежного опыта по применению пластмассовых труб, в том числе с двойными стенками, при устройстве трубопроводов безнапорной канализации и самотечных водостоков.

Разработке ТР предшествовал выпуск ЗАО НПО «Стройполимер» опытных партий полиэтиленовых гофрированных труб (ПГТ) с двухслойной стенкой номинальным внутренним диаметром 100 мм, 150 и 200 мм и прокладка из них опытных участков внутриквартальной канализации.

Технические рекомендации согласованы: АО «Моспроект», ЗАО «Мосинжпроект», ХК «Главмосстрой», ЗАО «Главмосинжстрой», ПАУКС ГП «Мосводоканал» и ЗАО НПО «Стройполимер».

ТР разработаны к.т.н. Сладковым А.В. и к.т.н. Отставновым А.А.

СОДЕРЖАНИЕ

1. Общая часть

- 2. Особенности проектирования подземных сетей водоотведения из пгт
 - 3. Транспортирование, складирование и хранение пгт
 - 4. Прокладка водоотводящих трубопроводов из пгт
 - 5. Сдача и приемка в эксплуатацию
- 6. Устранение возможных дефектов монтажа и ремонт трубопроводов из пгт
- 7. Требования безопасности при прокладке водоотводящих трубопроводов из пгт

8. Охрана окружающей среды

<u>Приложение а. Таблицы для гидравлического расчета трубопроводов</u> водоотведения из пгт

<u>Приложение б. Номограммы для гидравлического расчета трубопроводов</u>
<u>водоотведения из пгт</u>

Правительство Москвы	Технические рекомендации на проектирование и строительство	TP 170-05
Комплекс архитектуры, строительства, развития и реконструкции города	подземных сетей водоотведения из безнапорных полиэтиленовых труб с двухслойной стенкой	Вводятся впервые

РАЗРАБОТАНЫ	УТВЕРЖДЕНЫ:	Дата
		введения в
ГУП «НИИМосстрой»	Начальник Управления	действие 1
		июля 2005 г.

научно-технической политики в строительной отрасли	
21.04.2005 г. А.Н. Дмитриев	

1. ОБЩАЯ ЧАСТЬ

- 1.1. Настоящие технические рекомендации распространяются на проектирование и строительство подземных сетей водоотведения (канализации и водостоков) из безнапорных полиэтиленовых гофрированных труб далее ПГТ с двухслойной стенкой (гладкой внутренней и гофрированной наружной).
- 1.2. При строительстве водоотводящих сетей из ПГТ должны учитываться требования СНиП 2.04.03-85, СНиП 3.05.04-85, СП 40-102-2000, государственных стандартов и ведомственных нормативных документов по экологической и пожарной безопасности.
- 1.4. Сооруженные водоотводящие самотечные сети из ПГТ следует принимать в эксплуатацию в соответствии с требованиями <u>СНиП 3.01.04-87</u> и действующими нормами.
- 1.5. Для сооружения водоотводящих трубопроводов должны применяться ПГТ, отвечающие требованиям ТУ 2248-025-4198-9945 «Трубы гофрированные из полиэтилена для систем канализации и водоотведения» ЗАО НПО «Стройполимер» (рис. 1, табл. 1).

Основные показатели свойств ПГТ приводятся в табл. 2.

Примечания: можно использовать трубы ПГТ, изготовляемые в соответствии с другой нормативно-технической документацией, а также трубы импортного производства, показатели свойств которых не ниже приведенных в табл. 2.

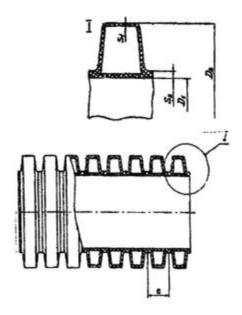


Рис. 1. Схема полиэтиленовой гофрированной двухслойной трубы

Таблица 1. Размеры полиэтиленовых гофрированных двухслойных труб

Размеры в мм

Номинальный			\mathcal{O}_2		S	S_2		Macca**),	
внутренний диаметр	ном.	пред _.	ном.	пред. *) откл.	S ₁ ном.	ном.	пред откл.*)	e	кг/м
200	196,3	2,9	232	2,9	0,9	2,4	0,6	21,2	1,71
250	245,2	2,9	287,5	2,9	1,3	2,8	0,6	26,5	2,52
300	295,7	3,2	345	3,2	1,3	3	0,6	35,3	3,28
350	348,0	3,2	397	3,2	1,4	3,2	0,8	35,3	4,07
400	398,0	4,0	446	4,0	1,6	3,4	1	44	4,8

Номинальный		D_1	D ₂		Š	S_2		Macca**),	
внутренний диаметр	ном.	пред, откл.*)	ном.	ном. пред. откл. *)	S_1	ном.	пред откл.*)	e	KΓ/M
450	448,0	4,0	496	4,0	1,8	3,6	1	44	5,89
500	1	1	-	1	1	1	1	1	-

^{*) - (+)}

1.6. Для строительства безнапорных водоотводящих трубопроводов допускаются к применению только трубы, имеющие сертификат соответствия в системах ГОСТ Р или Мосстройсертификации.

Таблица 2. Физико-механические показатели полиэтиленовых гофрированных двухслойных труб

Наименование	размерность	значение	Примечание
Кольцевая жесткость, не менее	Па	8000	5000 - 10000 Па по <u>СП</u> <u>40-102-2000</u> (жесткие), 8 кПа по ISO
Стойкость к удару падающим грузом 0,8 кг при температуре 0 °C	-	Отсутствие повреждений (трещин, расслоений, вздутий)	-
Герметичность в сборе с полиэтиленовыми муфтами и кольцами		³ 10	-

^{**) -} расчетная

Наименование	размерность	значение	Примечание
при температуре 20 °C и внутреннем давлении 0,05 МПА			
Стойкость к воздействию смены температур от -50 °C до +50 °C	-	Отсутствие повреждений	-
Стойкость к растрескиванию в водных растворах поверхностно-активных веществ при температуре 50 °C		Отсутствие растрескивания	-

1.7. Трубы ПГТ между собой следует соединять муфтами с двумя раструбами (рис. 2, табл. 3) с уплотнением резиновыми кольцами.

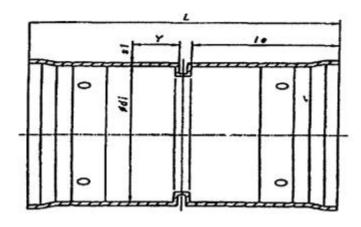


Рис. 2. Схема муфты для соединения полиэтиленовых гофрированных двухслойных труб

Таблица 3. Размеры муфт для соединения ПГТ (мм)

DN		di	Ç	Y	L	1	
DN	ном. пред, откл. (±)		S_{1min}	ı	L	le	
100	122,0	1,5	2,5	30	193	90	

DM	di		g	Y	L	1
DN	ном.	пред, откл. (±)	S_{1min}	Y	L	le
125	151,0	1,5	2,5	30	241	112
150	181,0	1,5	3,0	30	260	122
200	238,0	1,5	3,0	40	326	155
250	293,0	1,5	3,5	40	340	165
315	348,7	1,5	3,5	40	404	190
400	402,3	1,5	4,0	40	510	250
500	581,2	1,5	5,0	50	670	320

- 1.8. В слабых грунтах с расчетным сопротивлением менее 0,1 МПа (1 кгс/см²), а также в грунтах с возможной неравномерной осадкой (в неслежавшихся насыпных грунтах) прокладка самотечных трубопроводов водоотведения с трубами ПГТ без искусственного основания не допускается.
- 1.9. Трубопроводы водоотведения из ПГТ при траншейной прокладке допускается укладывать в грунт на глубину не более 6 м (до шелыги труб, с обязательной засыпкой пазух траншеи песком, гравием, щебенкой) с последующим механическим уплотнением до степени не менее 0,95.
- 1.10. Минимальная глубина заложения ПГТ в сетях водоотведения должна составлять 0,5 м вне пределов проезжей части и 0,6 м в пределах проезжей части.

2. ОСОБЕННОСТИ ПРОЕКТИРОВАНИЯ ПОДЗЕМНЫХ СЕТЕЙ ВОДООТВЕДЕНИЯ ИЗ ПГТ

- 2.1. При проведении гидравлических расчетов подземных безнапорных водоотводящих трубопроводов из полиэтиленовых гофрированных двухслойных труб могут использоваться гидравлические формулы, номограммы и таблицы в соответствии с требованиями СНиП 2.04.03-85 «Канализация. Наружные сети и сооружения» и СП 40-102-2000 «Проектирование и монтаж трубопроводов систем водоснабжения и канализации из полимерных материалов. Общие требования».
 - 2.2. Гидравлический уклон самотечного водоотводящего трубопровода

$$i = \frac{\lambda_s V^{\delta_s}}{2g4R_s},\tag{1}$$

где λ_{S} - коэффициент гидравлического сопротивления трения по длине трубопровода;

V - средняя скорость течения стоков, м/с;

g - ускорение свободного падения, м/ c^2 ;

 R_S - гидравлический радиус потока, м;

 $b_{\rm S}$ - безразмерный показатель степени;

$$\lambda_s = 0.2 \left(\frac{K_s}{4R_s} \right)^a, \tag{2}$$

где a - эмпирический показатель степени, зависящий от K_3 ,

$$a = 0.3124 K_3^{0.0516}, \tag{3}$$

$$b_s = 3 - \frac{\lg \operatorname{Re}_{Ne}}{\lg \operatorname{Re}_{\Phi}},\tag{4}$$

где K_9 - коэффициент эквивалентной шероховатости, м (рекомендуется принимать 0,1 мм).

Числа Рейнольдса

$$Re_{NS} = \frac{500 \cdot 4R_{s}}{K_{s}}_{N} \tag{5}$$

$$\operatorname{Re}_{\Phi} = \frac{V \cdot 4R_{5}}{\nu},\tag{6}$$

где v - коэффициент кинематической вязкости сточной жидкости, м $^2/c$, (табл. 4).

Таблица 4. Значения коэффициентов кинематической вязкости для различных температур сточной жидкости и количества транспортируемых взвешенных веществ

Температура сточной жидкости,	Значения	Значения $10^6 v$, м 2 /с, при количестве взвешенных веществ в стоках, мг/л							
°С	<100	100	200	300	400	500	600		
2	1,67	2,17	2,67	3,17	3,67	4,17	4,67		

Температура сточной жидкости,	Значения	Значения $10^6 v$, м 2 /с, при количестве взвешенных веществ в стоках, мг/л								
°C	<100	100	200	300	400	500	600			
3	1,61	1,83	2,05	2,77	2,49	2,71	2,93			
4	1,56	1,68	1,80	1,92	2,04	2,16	2,28			
5	1,52	1,60	1,68	1,76	1,84	1,92	2,00			
6	1,47	1,52	1,58	1,63	1,69	1,76	1,80			
7	1,42	1,46	1,50	1,54	1,58	1,62	1,67			
8	1,39	1,42	1,45	1,48	1,51	1,54	1,58			
9	1,35	1,37	1,40	1,42	1,45	1,47	1,49			
10	1,31	1,33	1,35	1,37	1,39	1,41	1,43			
11	1,27	1,29	1,30	1,32	1,34	1,35	1,37			
12	1,24	1,25	1,27	1,28	1,30	1,31	1,32			
13	1,21	1,22	1,23	1,25	1,26	1,27	1,28			
14	1,17	1,18	1,19	1,20	1,21	1,22	1,23			
15	1,14	1,15	1,16	1,17	1,18	1,18	1,19			

Температура сточной жидкости,	Значения $10^6 v$, м 2 /с, при количестве взвешенных веществ в стоках, мг/л								
°C	<100	100	200	300	400	500	600		
16	1,11	1,12	1,13	1,13	1,14	1,15	1,16		
17	1,09	1,10	1,10	1,11	1,12	1,12	1,13		
18	1,06	1,07	1,07	1,08	1,08	1,09	1,10		
19	1,03	1,04	1,04	1,05	1,05	1,06	1,06		
20	1,01	1,02	1,02	1,02	1,03	1,04	1,04		
21	0,99	1,00	1,00	1,00	1,01	1,01	1,02		
22	0,95	0,96	0,97	0,97	0,98	0,98	0,98		
23	0,93	0,94	0,95	0,95	0,96	0,96	0,96		
24	0,91	0,92	0,93	0,93	0,93	0,94	0,94		
25	0,90	0,90	0,91	0,91	0,91	0,92	0,92		

Для бытовых стоков целесообразно принимать $v=1,49\cdot 10^{-6}$ м/с. Для коэффициента кинематической вязкости чистой воды учитывается только ее температура (t_c , °C) (табл. $\underline{5}$).

Таблица 5. Значения коэффициента кинематической вязкости чистой воды, $v_{\rm B}$, в зависимости от температуры

t _c , °C	5	10	12	14	16	18	20	30	40
$10^{-6}v_{\rm B},{\rm m}^2/{\rm c}$	1,52	1,31	1,24	1,17	1,11	1,06	1,01	0,8	0,66

2.3. Средняя скорость течения жидкости V_H при неполном наполнении трубопровода определяется по формуле:

$$V_{n} = V_{n} \left(\frac{R_{n}}{R_{n}} \right)^{\frac{1+\alpha}{\delta_{n}}}, \tag{7}$$

где V_n - средняя скорость течения сточной жидкости при полном заполнении трубопровода, м/с;

 R_{SH} , R_{SN} - гидравлические радиусы при неполном и полном заполнениях трубопровода, м.

2.4. При конкретном наполнении трубопровода расход сточной жидкости

$$q_S = V_H \cdot \omega, \tag{8}$$

где ω - живое сечение потока сточной жидкости при данном наполнении трубопровода, м 2 .

2.5. Живое сечение трубопровода

$$\omega = K_{\omega} d^2, \tag{9}$$

где d - расчетный (внутренний) диаметр труб, м,

 K_{ω} - коэффициент, учитывающий соотношение живых сечений потока при частичном и полном заполнениях трубопровода (табл. 6).

Таблица 6. Гидравлические характеристики различно заполненных самотечных канализационных трубопроводов

h/D	K_{ω}	R*)	$R_{\text{SH}}/R_{\text{S\Pi}}$	V_{H}/V_{Π}	$q_{\rm H}/{q_{\rm H}}^*)$
0,30	0,19817	0,1709	0,6836	0,78	0,20
0,35	0,24498	0,1935	0,7816	0,86	0,28
0,40	0,29337	0,2142	0,8568	0,92	0,34
0,45	0,34278	0,2331	0,9322	0,96	0,43
0,50	0,39270	0,2500	1,0000	1,00	0,50
0,55	0,44262	0,2649	1,0617	-	0,59
0,60	0,49203	0,2776	1,1104	1,07	0,66
0,65	0,54042	0,2881	1,1596	-	0,76
0,70	0,58723	0,2962	1,1048	1,08	0,84
0,75	0,63185	0,3017	1,2053	-	0,88
0,80	0,67357	0,3042	1,2168	1,07	0,91
0,85	0,71152	0,3033	1,2054	-	0,95
0,90	0,74452	0,2980	1,1920	1,04	0,98
0,95	0,77072	0,2865	1,1115	-	0,99

h/D	K_{ω}	R*)	$R_{\text{SH}}/R_{\text{S\Pi}}$	$V_{\rm H}/V_{\rm II}$	$q_{\rm H}/{q_{\Pi}}^*)$
1,00	0,78540	0,2500	1,0000	1,00	1,00

^{*) -} с точностью до 5 % с помощью этих соотношений могут быть также определены скорости и расходы при полном «п» и частичном «н» заполнениях

2.6. Гидравлический радиус потока сточной жидкости в самотечном трубопроводе с частичным наполнением

$$R_{S} = Rd. (10)$$

2.7. Значения минимальных скоростей при проведении гидравлической увязки самотечных канализационных трубопроводов из труб должны приниматься больше самоочищающих скоростей, а максимальные скорости должны быть меньше 5 м/с (табл. 7).

Таблица 7. Расчетные значения гидравлических параметров самотечных канализационных трубопроводов из труб

Диаметры, DN, мм	100	150	200	250	300	350	400	450	500
Минимальные скорости, V _{min} м/с	0,75	0,8	0,85	0,9	0,95	1	1,05	1,1	1,15
Максимальные скорости, $V_{max}\ \text{м/c}$					5				
Минимальные наполнения, $(H/d)_{min}^{*}$					0,3				
Максимальные наполнения, (H/d) _{max}			0,	6				0,8	
Минимальные уклоны, i _{min} , ‰	8	6	5	4	3	2	1	0,9	0,8

- *) меньшее заполнение трубопровода можно принимать только в качестве безрасчетных значений
- 2.8. При выполнении приближенных гидравлических расчетов трубопроводов водоотведения из ПГТ целесообразно пользоваться гидравлическими таблицами (приложение \underline{A}), которые дают точность 5 10 %, либо использовать номограммы (приложение $\underline{\underline{b}}$) меньшей точности (15 20 %).

3. ТРАНСПОРТИРОВАНИЕ, СКЛАДИРОВАНИЕ И ХРАНЕНИЕ ПГТ

- 3.1. ПГТ допускается транспортировать любым видом транспорта в соответствии с правилами перевозки грузов и требованиями погрузки и крепления грузов, действующими на данном виде транспорта.
- 3.2. Транспортирование следует производить с максимальным использованием вместимости транспортного средства.
- 3.3. ПГТ следует предохранять от ударов и механических нагрузок, а их поверхность от нанесения царапин (глубиной более 0,1 0,2 мм). При перевозке трубы необходимо укладывать на ровную поверхность транспортных средств, используя для их закрепления специальные профильные прокладки, предохранять от острых металлических углов и ребер платформы.
- 3.4. Транспортирование и погрузочно-разгрузочные работы должны производиться при температуре не ниже 20 °C. Транспортировка ПГТ при более низких температурах допускается с соблюдением особых мер предосторожности, при использовании специальных средств, обеспечивающих их фиксацию. Категорически запрещается сбрасывать трубы с транспортных средств.
- 3.5. Погрузочно-разгрузочные работы на предприятии должны производиться в соответствии с <u>ГОСТ 12.3.020-80</u>.
- 3.6. ПГТ следует хранить в не отапливаемых складских помещениях или на складских площадках под навесом, исключая вероятность их механических повреждений. В отапливаемых складах трубы следует располагать на расстоянии не менее 1 м от отопительных приборов. Трубы должны быть защищены от воздействия прямых солнечных лучей. При открытом складировании труб на территории предприятия-изготовителя или на строительных площадках

допускается временное (не более трех месяцев с момента изготовления) хранение без защиты от $У\Phi$ излучения.

- 3.7. Упаковка, транспортирование, оформление документации и хранение ПГТ должно производиться в соответствии с требованиями Γ с изм. 1 5.
- 3.8. При транспортировке и погрузочно-разгрузочных работах запрещается подвергать трубы ударным нагрузкам.
- 3.9. При перевозке автотранспортом длина свисающих концов труб не должна превышать 1 м.
- 3.10. Трубы следует хранить в штабелях на ровных площадках. Нижние и последующие ряды укладываются на деревянные (пластмассовые) профилированные прокладки. Высота штабеля принимается с учетом массы труб, но не более 2 м. Для предотвращения самопроизвольного раскатывания труб следует устанавливать боковые опоры.
- 3.11. Доставка ПГТ на строительную площадку должна производиться специально оборудованным автотранспортом. Разгрузку труб следует производить вручную или автопогрузчиком (автокраном) с использованием мягких полотенец или строп. При выполнении погрузочно-разгрузочных работ запрещается сбрасывать трубы с транспортных средств.
- 3.12. Различные по диаметру ПГТ целесообразно хранить отдельно друг от друга.

4. ПРОКЛАДКА ВОДООТВОДЯЩИХ ТРУБОПРОВОДОВ ИЗ ПГТ

- 4.1. Работы по прокладке водоотводящих трубопроводов из полиэтиленовых труб с двойными стенками следует выполнять с учетом общих требований СНиП и в соответствии с проектами канализационной сети и водостоков, организации строительства (ПОС) и производства работ (ППР). Строительные организации, выполняющие работы по прокладке подземных систем водоотведения, должны иметь лицензию на право производства работ.
- 4.2. Прокладка водоотводящих сетей с использованием труб должна производиться в соответствии с требованиями <u>СНиП 3.05.04-85*</u>.
- 4.3. При производстве работ по прокладке трубопроводов канализации и водостоков из труб следует использовать технологические процессы,

предусмотренные типовыми технологическими регламентами. Их состав и очередность выполнения должны увязываться с конкретными условиями строительства в процессе производственного инструктажа.

- 4.4. Монтаж безнапорных канализационных трубопроводов и водостоков не следует производить при температуре наружного воздуха ниже -20 °C.
- 4.5. После окончания отдельных технологических этапов производства работ, предусмотренных в проекте, следует оформлять приемосдаточные акты на их выполнение с участием производителя работ, представителей организаций, проектирующих и эксплуатирующих самотечную систему канализации и/или водостоки.
- 4.6. Перед прокладкой водоотводящих трубопроводов трубы, муфты, резиновые уплотнительные кольца и вещества, используемые в качестве смазки должны проходить входной контроль качества, включающий:
 - проверку сопроводительной документации,
 - тщательный визуальный осмотр,
 - сравнение с эталонными образцами,
 - выборочное определение размеров,
- проверку изделий на соответствие ТУ и паспортам на материалы, из которого они изготовлены (табл. 8).

Таблица 8. Свойства полиэтилена для изготовления ПГТ

Наименование	размерность	Значение*)
Плотность	г/см ³	0,953 - 0,959/0,935 - 0,960
Предел текучести при растяжении	МПа	20 - 23/15 - 19
Модуль упругости при растяжении	МПа	800/800
Относительное удлинение при разрыве	%	300 - 800/300 - 900

Наименование	размерность	Значение ^{*)}
Коэффициент линейного теплового расширения	1/°C	1,910 ⁻⁴ /1,910 ⁻⁴

 $^{^{*)}}$ - в числителе для ПЭ 63, в знаменателе для ПЭ 80

- 4.7. Размеры всех элементов ПГТ (стенок, выступов и впадин труб и муфт) должны соответствовать установленным нормам. Торцы цилиндрической части труб должны быть перпендикулярны (± 0.5 град.) продольной оси и иметь круглое сечение с овальностью не более 2 %.
- 4.8. При разработке траншей (котлованов) и производстве работ по устройству оснований для прокладки самотечных канализационных трубопроводов и водостоков следует соблюдать требования <u>СНиП 3.02.01-87</u> «Земляные сооружения. Основания и фундаменты».
- 4.9. Грунт, образующийся при рытье траншей и котлованов, должен выбрасываться на бровку в отвал либо в кузов самосвала на вывоз. Проектную глубину и ширину по верху выемок превышать не следует. Ширина траншеи по дну не должна быть больше наружного диаметра труб + (0,2 0,3) м.
- 4.10. Для обеспечения качественной сборки труб между собой в траншее следует разрабатывать приямки, симметричные относительно стыков, с размерами:
 - 0,3 ′ (наружный диаметр + 0,15) ′ 0,6 м (глубинах ′ ширина ′ длина).
- 4.11. Для укладки самотечных трубопроводов водоотведения из ПГТ должна производится специальная подготовка дна траншеи с обеспечением проектного уклона в соответствии с проектом:
- при естественном основании ровной срезкой грунта с профилированием на угол (по проекту);
- при искусственном основании насыпкой песка, гравия, щебенки с утрамбовкой слоями толщиной 100 ... 150 мм до проектной степени уплотнения, бетонированием (монолитным, сборным), установкой свайных опор.
- 4.12. Засыпка траншеи производится вручную или экскаваторамипланировщиками с включением следующих технологических процессов:
- подсыпка песка (мягкого талого грунта) под трубы и выше до отметки горизонтального диаметра трубы с уплотнением до степени не ниже 0,90;

- укладка такого же грунта в приямки вокруг соединений с уплотнением не ниже степени 0.92;
 - засыпка пазух траншей до верха труб с уплотнением до степени не ниже 0,9;
- устройство защитного слоя над трубой толщиной 0,25 ... 0,3 м без уплотнения с тщательным разравниванием;
- засыпка труб на высоту 0.7 ± 0.1 м с уплотнением электрифицированными трамбовками.

Примечание: В случае использования для выравнивания трубопроводов в качестве прокладок деревянных брусков и досок перед засыпкой пазух грунтом их следует из траншеи удалить.

- 4.13. После завершения гидравлических испытаний водоотводящих трубопроводов из ПГТ производят окончательную засыпку траншеи местным грунтом, не содержащим твердых включений крупнее 200 мм (камней, кирпичей, строительного мусора и пр.), экскаватором-планировщиком или бульдозером по слою грунта с заданным проектом уплотнением.
- 4.14. Сборочные работы по прокладке трубопроводов водоотведения из труб следует производить в соответствии с технологическим регламентом, утвержденным в установленном порядке. Такие работы должны производиться рабочими, прошедшими специальное обучение и получившими право на их выполнение.
- 4.15. Перед укладкой выборочными измерениями следует проверять размеры концов труб, муфт и резиновых колец, которые предстоит соединять между собой.
- 4.16. Непосредственно перед сборкой проводится входной контроль качества всех труб и изделий тщательный визуальный осмотр и сравнение с эталонными образцами. Особое внимание следует уделять проверке состояния резиновых колец и соответствие их качества нормативным требованиям, указанным в сопроводительной документации.
- 4.17. Канализационный трубопровод (водосток) следует монтировать, начиная с раскладки по трассе труб и муфт на бровке на расстоянии 1 ... 1,5 м от края траншеи.
- 4.18. Сборку трубопроводов из отдельных труб можно производить непосредственно на дне траншеи, над траншеей и на бровке траншеи. Для каждого конкретного случая необходимо разрабатывать технологические карты с указанием технологических схем укладки труб в траншеи и используемых средств малой механизации, а также машин, оборудования и оснастки.

- 4.19. Отдельные трубы (трубопровод) следует опускать в траншею плавно вручную или соответствующих их массе грузоподъемными механизмами, исключая возможность их повреждения о стенки и дно.
- 4.20. Перед укладкой трубопровода обязательно следует проверить устойчивость и целостность стенок траншеи. Трубы, укладываемые на основание, следует помещать сразу в проектное положение (опирание труб на жесткие прокладки недопустимо). Находящиеся под трубами камни, обломки кирпича и другие твердые включения необходимо удалить из траншеи, а образовавшиеся углубления сразу засыпать песком.
- 4.21. При соединении труб следует обеспечивать центровку торцов и их равномерную стыковку по всей окружности.
- 4.22. Уплотнение соединений резиновыми кольцами должно проводиться следующим образом:
 - конец трубы снаружи и муфту изнутри очищают от грязи и масел;
 - на трубу в первый паз надевают резиновое кольцо;
- кольцо снаружи и внутреннюю поверхность муфты внутри смазывают раствором хозяйственного мыла с добавлением технического глицерина;
- трубу вдвигают в муфту вручную или натяжным приспособлением (при этом усилия сборки не должны превышать допустимые значения, при которых возможна продольная деформация стенок труб):

диаметр трубы	усилие
200 мм	- 1,75 кН
250 мм	- 2,72 кН,
300 мм	- 4,35 кН,
350 мм	- 4,7 кН,
400 мм	- 5,0 кН,
450 мм	- 7,0 кН
500 мм	- 7,8 кН

Примечание: Не допустимо использовать ковш экскаватора для сборки соединений; усилия могут быть переданы на один из торцов труб, что может привести к их повреждению.

4.23. Проходы самотечных трубопроводов канализации и водостоков через стенки смотровых колодцев выполняются в соответствии с проектом и зависят от формы колодцев в плане (круглые или прямоугольные), вида материала (железобетонные, кирпичные либо полиэтиленовые) и способа сопряжения трубопроводов соседних участков (шелыга - в шелыгу, по воде, по основаниям либо с перепадом сопрягаемых в колодце труб).

Примечание: Обустройство прохода ПГТ через стенки полиэтиленовых колодцев следует выполнять в соответствии с альбомом ПС-344 к (ГУП «Мосинжпроект», 2002 г., выпуск 2).

- 4.24. Испытания самотечных канализационных сетей и водостоков, включающих ПГТ и колодцы, должны производиться в соответствии с проектом и с требованиями СНиП 2.04.03-85, СНиП 3.05.04-85* и СП 40-102-2000.
- 4.25. При проведении испытаний следует использовать типовые технологические процессы и испытательное оборудование, применяемое при гидравлическом (пневматическом) испытании самотечных трубопроводов из традиционных труб.

5. СДАЧА И ПРИЕМКА В ЭКСПЛУАТАЦИЮ

- 5.1. Сдача в эксплуатацию сетей водоотведения из ПГТ должна осуществляется в соответствии с проектом, а также с учетом требований СНиП 3.01.04-87 «Приемка в эксплуатацию законченных строительством объектов», СНиП 2.04.03-85 «Канализация. Наружные сети и сооружения» и «Правил производства работ по прокладке и переустройству подземных сооружений в московском регионе».
- 5.2. Следует придерживаться следующего порядка. После письменного уведомления генерального подрядчика о готовности строительного объекта к приемке заказчик назначает рабочую комиссию, в которую входят представители заказчика (председатель), эксплуатационного предприятия, подрядчика, проектной организации, а при необходимости других заинтересованных ведомств. Рабочая комиссия проверяет соответствие выполненных строительно-монтажных работ утвержденному проекту, производит проверку качества строительства, дает заключение о готовности к приемке в эксплуатацию водоотводящих сетей. В

случае обнаружения недоделок составляется их ведомость и устанавливается срок их устранения.

- 5.3. Для окончательной приемки в эксплуатацию законченных строительством водостоков (самотечной канализации) заказчик по согласованию с эксплуатационным предприятием должен назначить приемочную комиссию и установить срок ее работы. При этом заказчик и генеральный подрядчик представляют комиссии следующие документы:
- утвержденную проектно-сметную документацию на строительство трубопроводной сети из ПГТ;
- списки специализированных организаций, принимавших участие в выполнении строительно-монтажных работ, с указанием инженерно-технических работников, ответственных за их выполнение;
- материалы исполнительной геодезической съемки фактического положения элементов трубопроводов и сооружений на сетях, «Акт на разбивку трассы трубопроводной сети»;
 - исполнительные чертежи на построенные самотечные канализационные сети;
- акты сдачи и приемки отдельных этапов работ по монтажу трубопроводов, если проектом было предусмотрено их оформление;
- исполнительные чертежи на построенные трубопроводные сети со штампом Геотреста;
 - акты приемки-сдачи скрытых работ;
 - акт о проведении испытаний трубопроводной сети.
- 5.4. Комиссия, принимающая законченный строительством объект в эксплуатацию, после ознакомления с представленными материалами и проверки соответствия выполненных работ утвержденному проекту оформляет акт по форме, приведенной в СНиП 3.01.04-87. Акт составляется в 5-ти экземплярах (2 экз. для эксплуатационной организации, 2 экз. заказчику, 1 экз. генеральному подрядчику) и должен быть подписан председателем и всеми членами комиссии.

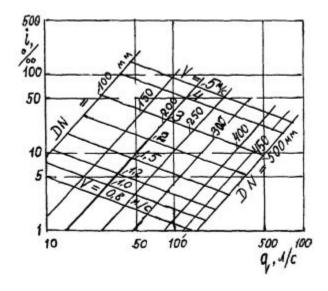
6. УСТРАНЕНИЕ ВОЗМОЖНЫХ ДЕФЕКТОВ МОНТАЖА И РЕМОНТ ТРУБОПРОВОДОВ ИЗ ПГТ

- 6.1. Устранение брака, произошедшего в процессе строительства или при эксплуатации трубопровода из ПГТ, должно производится по технологическому регламенту и технологии, согласованными с заказчиком, проектной организацией и производителями труб.
- 6.2. При небольшом механическом повреждении труб дефектное место следует очистить от грязи, пыли, масел и пр. и заделать трещину экструзионной сваркой (сварным швом или наложением заплатки на сварке из полиэтиленового листа или разрезанной вдоль такой же трубы) или использовать бандаж из термоусаживаемой манжеты.
- 6.3. Поврежденный участок следует вырезать. Резку труб можно производить вручную, различными пилами или электроинструментами. После резки поверхности концов труб должны быть очищены. Торцы цилиндрической части должны быть перпендикулярны (±0,5 град.) продольной оси труб. Бракованный отрезок трубы заменяется новым, который присоединяется экструзионной сваркой или подвижной муфтой с уплотнением резиновыми кольцами.

7. ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ПРИ ПРОКЛАДКЕ ВОДООТВОДЯЩИХ ТРУБОПРОВОДОВ ИЗ ПГТ

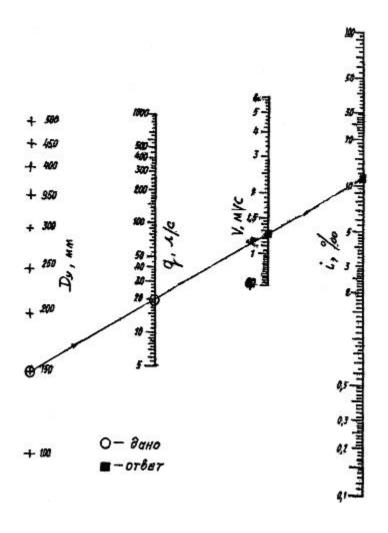
- 7.1. При производстве работ по прокладке трубопроводов водоотведения из ПГТ необходимо соблюдать требования <u>СНиП 12.04-2002</u> «Безопасность труда в строительстве. Часть 2. Строительное производство», включая изменения, касающиеся погрузочно-разгрузочных, земляных гидравлических и пневматических испытаний.
- 7.2. Складирование ПГТ, элементов колодцев, строительных изделий и др. материалов должно осуществляться согласно требований технических условий на них.

- 7.3. Манипуляции при погрузке и разгрузке ПГТ, элементов колодцев и других строительных изделий должны производиться с использованием инвентарных грузозахватных приспособлений (стропов, мягких полотенец, траверс, захватов и т.п.) с учетом применяемых подъемно-транспортных механизмов. При перемещении грунта, ПГТ, элементов колодцев и т.п. рабочий персонал должен находиться в безопасной зоне проведения работ.
- 7.4. Работа на любых строительных машинах должна производиться лицами, имеющими специальное на это разрешение, и только в соответствии с проектом производства работ. Использовать в работе разрешается только исправные машины, инструменты, приспособления и средства малой механизации, что должно проверяться в установленном порядке с указанием сроков, оговоренных в техпаспортах.
- 7.5. Необходимо постоянно следить за состоянием откосов при работе людей в не раскрепленных траншеях и котлованах, а в раскрепленных за элементами креплений.
- 7.6. Все рабочие, перед тем как приступить к работе, должны пройти полный инструктаж по технике безопасности (вводный, первичный, повторный, внеплановый и текущий).
- 7.7. При хранении ПГТ, элементов колодцев на объекте строительства и на месте монтажа следует соблюдать правила противопожарной безопасности (ГОСТ 12.1.004-91). Запрещается разводить огонь и проводить огневые работы в непосредственной близости (не менее 2 м) от бытовок, складов, хранить рядом горючие и легковоспламеняющиеся жидкости.
 - 7.8. При пожаре следует использовать обычные средства пожаротушения.
- 7.9. При осмотре колодцев (камер) необходимо открыть все люки, проверить их газоанализатором на загазованность. Категорически запрещаются попытки проверки загазованности зажженной спичкой, горящей бумагой или пламенем горелки. Испытания следует прервать во всех случаях, угрожающих безопасности работников.

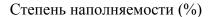

8. ОХРАНА ОКРУЖАЮЩЕЙ СРЕДЫ

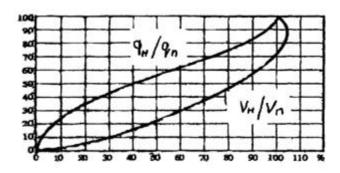
8.1. Меры по охране окружающей среды при производстве работ, связанных с прокладкой трубопроводов водоотведения из ПГТ должны соответствовать требованиям <u>СНиП 3.05.03-85</u> и настоящего раздела.

- 8.2. Без согласования с соответствующей организацией не допускается производить рытье траншей (котлованов) и т.п. на расстояниях менее 2 м от стволов деревьев и 1 м от кустарников. Запрещается перемещение грузов кранами на расстоянии ближе 0,5 м от крон или стволов деревьев. Не допускается складирование труб и других изделий на расстоянии менее 2 м от стволов деревьев без временных ограждающих или защитных устройств вокруг них.
- 8.3. Слив воды из трубопроводов после проведения испытаний следует производить только в места, предусмотренные ППР.
- 8.4. Территория по завершении строительства трубопроводной сети должна быть очищена и восстановлена в соответствии с проектом.
- 8.5. Отходы ПГТ следует вывозить на заводы для переработки или на захоронение в места, согласованные с Санэпиднадзором. Непригодные для вторичной переработки отходы подлежат уничтожению в соответствии с санитарными правилами и нормами, предусматривающими порядок накопления, транспортирования, обезвреживания и захоронения промышленных отходов.

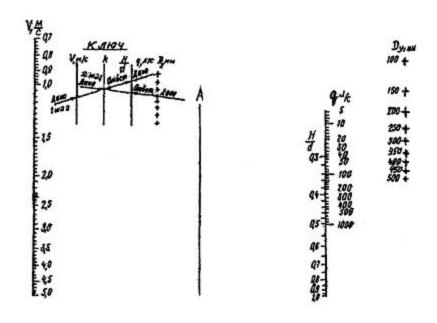

Приложение Б

Номограммы для гидравлического расчета трубопроводов водоотведения из ПГТ


Обозначения: DN - диаметр труб, q - расход, V - средняя скорость, i - гидравлический уклон


Рис. П.Б.1 Сетчатая номограмма для приближенных гидравлических расчетов полностью заполненных самотечных трубопроводов водоотведения из полиэтиленовых труб с двойными стенками

Обозначения: D_y - условный диаметр труб, q - расход, V - средняя скорость, i - гидравлический уклон


Рис. П.Б.2 Номограмма на выровненных точках для приближенных гидравлических расчетов полностью заполненных самотечных трубопроводов водоотведения из полиэтиленовых труб с двойными стенками

Обозначения: q_H , q_Π - расходы и V_H , V_Π - средние скорости при неполном и полном заполнении трубопроводов

Рис. П.Б.3 Графики соотношений расходов и средних скоростей при неполном и полном заполнении трубопроводов

Обозначения: V - средняя скорость, A - промежуточная шкала, q - расход, H/d - наполнение трубопровода, D_y - условный диаметр труб

Рис. П.Б.4 Номограмма на выровненных точках для приближенных гидравлических расчетов различно заполненных самотечных трубопроводов водоотведения из полиэтиленовых труб с двойными стенками

Приложение А

Таблицы для гидравлического расчета трубопроводов водоотведения из ПГТ

Таблица A1. Таблицы для гидравлического расчета трубопроводов водоотведения из ПГТ при различном наполнении ($K_9 = 0.02 \text{ мм}$)

DN = 100 MM

1. / 1	i = 0,01		i = 0	,011	i = 0	,012	i = 0	,013	i = 0	,014	i = 0,	,015	i = 0,	,016
h/d	q	V	q	V	q	V	q	V	q	V	q	V	q	V
0,1	0,135	0,330	0,143	0,351	0,152	0,371	0,159	0,390	0,167	0,409	0,175	0,427	0,182	0,444
0,2	0,598	0,535	0,635	0,568	0,671	0,600	0,704	0,630	0,737	0,659	0,768	0,687	0,799	0,714
0,3	1,380	0,696	1,463	0,738	1,544	0,779	1,619	0,817	1,693	0,854	1,765	0,890	1,833	0,925
0,4	2,423	0,826	2,567	0,875	2,708	0,923	2,837	0,967	2,965	1,011	3,089	1,053	3,208	1,093
0,3	3,645	0,928	3,859	0,983	4,069	1,036	4,261	1,085	4,452	1,134	4,638	1,181	4,814	1,226
0,6	4,943	1,005	5,231	1,063	5,514	1,121	5,773	1,173	6,031	1,226	6,280	1,276	6,518	1,325
0,7	6,195	1,055	6,555	1,116	6,909	1,177	7,233	1,232	7,554	1,286	7,865	1,339	8,161	1,390
0,8	7,251	1,076	7,672	1,139	8,085	1,200	8,464	1,256	8,839	1,312	9,203	1,366	9,549	1,418
0,9	7,891	1,060	8,349	1,121	8,799	1,182	9,212	1,237	9,621	1,292	10,017	1,345	10,394	1,396
1,0	7,290	0,928	7,718	0,983	8,138	1,036	8,523	1,085	8,905	1,134	9,275	1,181	9,628	1,226

16 / 4	i = 0,017		i = 0,018		i = 0	,02	i = 0,	025	i = 0	,03	i = 0,	035	i = 0	,04
h/d	q	V	q	V	q	V	q	V	q	V	q	V	q	V
0,1	0,189	0,461	0,195	0,478	0,208	0,510	0,238	0,583	0,266	0,650	0,291	0,711	0,314	0,768
0,2	0,828	0,741	0,857	0,767	0,913	0,816	1,040	0,930	1,155	1,033	1,262	1,129	1,360	1,217
0,2	0,828	0,741	0,857	0,767	0,913	0,816	1,040	0,930	1,155	1,033	1,262	1,129	1,360	1,217
0,4	3,323	1,133	3,436	1,171	3,651	1,245	4,147	1,413	4,594	1,566	5,008	1,707	5,389	1,837
0,5	4,985	1,270	5,155	1,313	5,475	1,394	6,212	1,582	6,877	1,751	7,491	1,908	8,058	2,052
0,6	6,749	1,372	6,977	1,418	7,407	1,506	8,399	1,707	9,295	1,889	10,120	2,057	10,883	2,212
0,7	8,450	1,439	8,734	1,487	9,272	1,579	10,510	1,790	11,626	1,980	12,656	2,155	13,607	2,317
0,8	9,886	1,468	10,218	1,517	10,846	1,610	12,292	1,825	13,597	2,019	14,799	2,197	15,910	2,362
0,9	10,761	1,445	11,124	1,494	11,808	1,586	13,384	1,798	14,805	1,989	16,116	2,165	17,327	2,327
1,0	9,971	1,270	10,309	1,313	10,949	1,394	12,424	1,582	13,754	1,751	14,982	1,908	16,117	2,052

DN = 150

1, /,1	i = 0	,05	i = 0	i = 0,06		,07	i = 0	,08	i = 0	,09	i = 0	,01	i = 0,	,011
h/d	q	V	q	V	q	V	q	V	q	V	q	V	q	V
0,1	0,265	0,293	0,299	0,330	0,330	0,364	0,359	0,396	0,386	0,426	0,412	0,455	0,436	0,482
0,2	1,179	0,476	1,322	0,534	1,454	0,587	1,577	0,637	1,693	0,684	1,804	0,729	1,909	0,771
0,3	2,720	0,620	3,045	0,694	3,342	0,762	3,622	0,825	3,882	0,885	4,132	0,942	4,370	0,996
0,4	4,776	0,735	5340	0,822	5,855	0,901	6,339	0,976	6,790	1,045	7,223	1,112	7,634	1,175
0,5	7,185	0,826	8,026	0,923	8,794	1,011	9,515	1,094	10,187	1,172	10,831	1,246	11,443	1,316
0,6	9,744	0,894	10,878	0,999	11,913	1,094	12,884	1,183	13,789	1,266	14,656	1,345	15,480	1,421
0,7	12,213	0,939	13,630	1,048	14,922	1,148	16,134	1,241	17,265	1,328	18,347	1,411	19,375	1,490
0,8	14,296	0,959	15,951	1,070	17,462	1,171	18,878	1,266	20,199	1,354	21,463	1,439	22,665	1,520
0,9	15,556	0,944	17,360	1,053	19,005	1,153	20,549	1,247	21,988	1,334	23,366	1,417	24,675	1,497
1,0	14,370	0,826	16,052	0,923	17,588	1,011	19,030	1,094	20,374	1,172	21,662	1,246	22,886	1,316

1. / 4	i = 0,	,012	i = 0,	i = 0,013		014	i = 0,	,015	i = 0,	,016	i = 0,	,017	i = 0,	,018
h/d	q	V	q	V	q	V	q	V	q	V	q	V	q	V
0,1	0,460	0,508	0,483	0,533	0,505	0,557	0,526	0,581	0,547	0,603	0,566	0,625	0,586	0,647
0,2	2,009	0,812	2,106	0,851	2,199	0,888	2,289	0,925	2,376	0,960	2,460	0,994	2,543	1,027
0,2	2,009	0,812	2,106	0,851	2,199	0,888	2,289	0,925	2,376	0,960	2,460	0,994	2,543	1,027
0,4	8,023	1,235	8,399	1,293	8,760	1,348	9,109	1,402	9,448	1,454	9,773	1,504	10,094	1,554
0,5	12,021	1,383	12,581	1,447	13,118	1,509	13,638	1,568	14,141	1,626	14,625	1,682	15,101	1,737
0,6	16,259	1,493	17,012	1,562	17,735	1,628	18,434	1,692	19,111	1,754	19,762	1,814	20,403	1,873
0,7	20,347	1,565	21,286	1,637	22,188	1,707	23,060	1,774	23,905	1,839	24,716	1,901	25,516	1,963
0,8	23,799	1,596	24,897	1,669	25,950	1,740	26,969	1,808	27,956	1,874	28,904	1,933	29,837	2,001
0,9	25,912	1,572	27,108	1,644	28,256	1,714	29,366	1,781	30,441	1,847	31,475	1,909	32,492	1,971
1,0	24,043	1,383	25,162	1,447	26,236	1,509	27,275	1,568	28,282	1,626	29,250	1,682	30,203	1,737

DN = 200

h/d	i = 0,	,003	i = 0,	i = 0,004		,005	i = 0,	,006	i = 0,	,007	i = 0,	,008	i = 0,	,009
h/d	q	V	q	V	q	V	q	V	q	V	q	V	q	V
0,1	0,418	0,265	0,504	0,320	0,580	0,368	0,650	0,413	0,715	0,454	0,775	0,492	0,832	0,528
0,2	1,858	0,431	2,226	0,517	2,554	0,593	2,853	0,662	3,128	0,726	3,384	0,785	3,626	0,842
0,3	4,289	0,562	5,122	0,671	5,864	0,768	6,538	0,856	7,160	0,937	7,735	1,013	8,282	1,084
0,4	7,533	0,666	8,979	0,794	10,264	0,908	11,432	1,011	12,506	1,106	13,501	1,194	14,446	1,278
0,5	11,335	0,749	13,492	0,892	15,407	1,018	17,147	1,133	18,747	1,239	20,227	1,337	21,633	1,430
0,6	15,374	0,811	18,283	0,964	20,863	1,100	23,207	1,224	25,361	1,338	27,354	1,443	29,245	1,543
0,7	19,273	0,852	22,906	1,012	26,127	1,155	29,053	1,284	31,741	1,403	34,229	1,513	36,588	1,617
0,8	22,560	0,869	26,806	1,033	30,570	1,178	33,989	1,309	37,130	1,430	40,036	1,542	42,792	1,649
0,9	24,549	0,856	29,174	1,017	33,276	1,160	37,001	1,290	40,424	1,409	43,590	1,519	46,594	1,624
1,0	22,671	0,749	26,985	0,892	30,814	1,018	34,294	1,133	37,494	1,239	40,455	1,337	43,265	1,430

h/d	i = 0,01		i = 0,011		i = 0,012		i = 0,013		i = 0,014		i = 0,015		i = 0,016	
	q	V	q	V	q	V	q	V	q	V	q	V	q	V
0,1	0,887	0,563	0,938	0,595	0,987	0,627	1,035	0,657	1,080	0,685	1,124	0,713	1,167	0,741
0,2	3,856	0,895	4,073	0,945	4,283	0,994	4,483	1,041	4,675	1,085	4,861	1,128	5,041	1,170
0,2	3,856	0,895	4,073	0,945	4,283	0,994	4,483	1,041	4,675	1,085	4,861	1,128	5,041	1,170
0,4	15,436	1,356	16,180	1,431	16,992	1,503	17,767	1,571	18,510	1,637	19,230	1,701	19,926	1,762
0,3	22,956	1,517	24,211	1,600	25,419	1,680	26,570	1,756	27,674	1,829	28,743	1,899	29,778	1,968
0,6	31,026	1,637	32,714	1,726	34,339	1,811	35,887	1,893	37,372	1,971	38,810	2,047	40,200	2,120
0,7	38,809	1,715	40,914	1,808	42,941	1,898	44,872	1,983	46,724	2,065	48,516	2,144	50,250	2,221
0,8	45387	1,749	47,846	1,843	50,213	1,935	52,468	2,021	54,632	2,105	56,725	2,185	58,749	2,263
0,9	49,422	1,723	52,102	1,816	54,682	1,406	57,140	1,992	59,498	2,074	61,779	2,153	63,986	2,230
1,0	45,912	1,517	48,421	1,600	50,837	1,680	53,140	1,756	55,349	1,829	57,487	1,899	59,555	1,968

DN = 250

h/d	i = 0,003		i = 0,004		i = 0,005		i = 0,006		i = 0,007		i = 0,008		i = 0,009	
n/a	q	V	q	V	q	V	q	V	q	V	q	V	q	V
0,1	0,786	0,319	0,942	0,383	1,081	0,439	1,206	0,491	1,323	0,538	1,432	0,583	1,535	0,624
0,2	3,463	0,516	4,134	0,615	4,724	0,703	5,258	0,782	5,754	0,856	6,217	0,925	6,651	0,989
0,3	7,969	0,669	9,478	0,795	10,810	0,907	12,014	1,008	13,128	1,102	14,169	1,189	15,145	1,271
0,4	13,962	0,791	16,576	0,940	18,880	1,070	20,960	1,188	22,885	1,297	24,682	1,399	26,366	1,495
0,5	20,971	0,888	24,866	1,053	28,298	1,199	31,393	1,330	34,256	1,451	36,928	1,564	39,430	1,670
0,6	28,409	0,960	33,658	1,138	38,278	1,294	42,445	1,435	46,298	1,565	49,892	1,687	53,259	1,800
0,7	35,588	1,008	42,140	1,194	47,907	1,357	53,106	1,504	57,913	1,640	62396	1,767	66,594	1,886
0,8	41,644	1,028	49,301	1,217	56,039	1,384	62,113	1,534	67,728	1,672	72,965	1,802	77,868	1,923
0,9	45,326	1,013	53,668	1,199	61,010	1,363	67,629	1,511	73,749	1,648	79,456	1,775	84,801	1,895
1,0	41,942	0,888	49,733	1,053	56,595	1,199	62,786	1,330	68,512	1,451	73,856	1,564	78,861	1,670

h/d	i = 0,012		i = 0,013		i = 0,014		i = 0,015		i = 0,016		i = 0017		i = 0,018	
	q	V	q	V	q	V	q	V	q	V	q	V	q	V
0,1	1,632	0,664	1,725	0,702	1,814	0,738	1,899	0,772	1,981	0,806	2,061	0,838	2,137	0,869
0,2	7,062	1,051	7,453	1,109	7,327	1,164	8,186	1,218	8,532	1,269	8,865	1,319	9,188	1,367
0,3	7,062	1,051	7,453	1,109	7,827	1,164	8,186	1,218	8,532	1,269	8,865	1,319	9,188	1,367
0,4	27,955	1,585	29,468	1,671	30,912	1,752	32,300	1,831	33,634	1,907	34,918	1,979	36,165	2,050
0,5	41,793	1,770	44,040	1,865	46,185	1,956	48,246	2,043	50,226	2,127	52,133	2,208	53,982	2,286
0,6	56,435	1,908	59,457	2,010	62,441	2,108	65,111	2,201	67,773	2,291	70,335	2,378	72,820	2,462
0,7	70,555	1,998	74,323	2,105	77,918	2,207	81,371	2,305	84,690	2,399	87,883	2,489	90,981	2,577
0,8	82,495	2,037	86,896	2,146	91,095	2,249	95,127	2,349	99,002	2,445	102,731	2,537	106,349	2,626
0,9	89,844	2,007	94,641	2,114	99,218	2,217	103,614	2,315	107,838	2,409	111,903	2,500	115,847	2,588
1,0	83,585	1,770	88,081	1,865	92,370	1,956	96,491	2,043	100,453	2,127	104,265	2,208	107,965	2,286

DN = 300

1. /.1	i = 0,	025	i = 0,	,003	i = 0,0	0035	i = 0,	,004	i = 0,0	0045	i = 0,0	005	i = 0,0	055
h/d	q	V	q	V	q	V	q	V	q	V	q	V	q	V
0,1	1,186	0,332	1,330	0,372	1,462	0,409	1,587	0,444	1,704	0,476	1,815	0,508	1,921	0,537
0,2	5,219	0,534	5,834	0,597	6,397	0,654	6,927	0,709	7,425	0,760	7,897	0,808	8,346	0,854
0,3	11,987	0,692	13,374	0,772	14,645	0,845	15,840	0,914	16,960	0,979	18,023	1,040	19,034	1,098
0,4	20,984	0,818	23,385	0,912	25,585	0,997	27,652	1,078	29,587	1,153	31,424	1,225	33,169	1,293
0,5	31,501	0,917	35,079	1,022	38,354	1,117	41,432	1,207	44,311	1,290	47,044	1,370	49,639	1,446
0,6	42,658	0,992	47,478	1,104	51,889	1,206	56,033	1,302	59,908	1,393	63,586	1,478	67,078	1,559
0,7	53,423	1,041	59,441	1,158	64,946	1,265	70,117	1,366	74,953	1,460	79,541	1,549	83,897	1,634
0,8	62,509	1,061	69,541	1,181	75,973	1,290	82,015	1,392	87,664	1,488	93,024	1,579	98,112	1,666
0,9	68,040	1,045	75,702	1,163	82,711	1,271	89,295	1,372	95,451	1,466	101,292	1,556	106,837	1,641
1,0	63,002	0,917	70,158	1,022	76,708	1,117	82,864	1,207	88,622	1,290	94,087	1,370	99,277	1,446

h/d	i = 0,0	006	i = 0.0	065	i = 0,0	007	i = 0.0	075	i = 0,	800	i = 0.0	0085	i = 0,	009
III/Q	q	V	q	V	q	V	q	V	q	V	q	V	q	V
0,1	2,023	0,566	2,120	0,593	2,215	0,619	2,306	0,645	2,394	0,669	2,479	0,693	2,563	0,717
0,2	8,777	0,898	9,189	0,940	9,589	0,981	9,974	1,020	10,345	1,058	10,704	1,095	11,056	1,131
0,2	8,777	0,898	9,189	0,940	9,589	0,981	9,974	1,020	10,345	1,058	10,704	1,095	11,056	1,131
0,4	34,838	1,358	36,438	1,420	37,989	1,481	39,479	1,539	40,912	1,595	42,303	1,649	43,661	1,702
0,5	52,121	1,518	54,499	1,587	56,803	1,654	59,018	1,719	61,146	1,781	63,213	1,841	65,231	1,900
0,6	70,417	1,637	73,616	1,711	76,715	1,783	79,693	1,852	82,556	1,919	85,334	1,984	88,046	2,047
0,7	88,062	1,715	92,051	1,793	95,916	1,868	99,630	1,940	103,199	2,010	106,664	2,077	110,045	2,143
0,8	102,977	1,748	107,637	1,828	112,151	1,904	116,489	1,978	120,658	2,049	124,704	2,117	128,653	2,184
0,9	112,140	1,723	117,219	1,801	122,140	1,876	126,867	1,949	131,412	2,019	135,822	2,086	140,127	2,153
1,0	104,241	1,518	108,998	1,587	113,606	1,654	118,035	1,719	122,293	1,781	126,426	1,841	130,461	1,900

DN = 350

1. / 4	i = 0,0	0025	i = 0,0	003	i = 0,0	035	i = 0,0	004	i = 0,0	0045	i = 0,0	005	i = 0,0	0055
h/d	q	V	q	V	q	V	q	V	q	V	q	V	q	V
0,1	1,872	0,378	2,093	0,423	2,298	0,464	2,490	0,503	2,671	0,539	2,842	0,574	3,005	0,607
0,2	8,199	0,606	9,141	0,675	10,012	0,739	10,826	0,800	11,592	0,856	12,318	0,910	13,008	0,961
0,3	18,782	0,782	20,905	0,871	22,868	0,953	24,699	1,029	26,423	1,101	28,053	1,169	29,603	1,233
0,4	32,825	0,924	36,498	1,027	39,891	1,123	43,054	1,212	46,030	1,295	48,844	1,375	51,518	1,450
0,5	49,222	1,035	54,690	1,150	59,740	1,256	64,444	1,355	68,871	1,448	73,054	1,536	77,027	1,620
0,6	66,604	1,118	73,967	1,241	80,765	1,356	87,096	1,462	93,052	1,562	98,680	1,656	104,024	1,746
0,7	83,374	1,172	92,564	1,302	101,046	1,421	108,944	1,532	116,373	1,636	123,392	1,735	130,057	1,829
0,8	97,535	1,196	108,271	1,327	118,181	1,449	127,408	1,562	136,086	1,668	144,284	1,769	152,069	1,864
0,9	106,18	1,178	117,880	1,307	128,679	1,427	138,735	1,539	148,193	1,644	157,129	1,743	165,614	1,837
1,0	98,444	1,035	109,380	1,150	119,480	1,256	128,888	1,355	137,741	1,448	146,10	1,536	154,055	1,620

	i = 0,0	006	i = 0,0	065	i = 0,0	007	i = 0,0	075	i = 0,	008	i = 0,0	0085	i = 0,	009
h/d	q	V	q	V	q	V	q	V	q	V	q	V	q	V
0,1	3,162	0,638	3,312	0,669	3,457	0,698	3,597	0,726	3,733	0,754	3,863	0,780	3,991	0,806
0,2	13,669	1,010	14,303	1,056	14,913	1,101	15,502	1,145	16,075	1,187	16,624	1,228	17,160	1,267
0,2	13,669	1,010	14,303	1,056	14,913	1,101	15,502	1,145	16,075	1,187	16,624	1,228	17,160	1,267
0,4	54,078	1,522	56,532	1,591	58,888	1,657	61,166	1,721	63,376	1,784	65,494	1,843	67,561	1,901
0,5	80,832	1,700	84,478	1,776	87,977	1,850	91,360	1,921	94,642	1,990	97,786	2,056	100,854	2,121
0,6	109,141	1,832	114,042	1,914	118,748	1,993	123,294	2,069	127,706	2,143	131,931	2,214	136,055	2,283
0,7	136,437	1,919	142,549	2,005	148,416	2,087	154,084	2,167	159,583	2,244	164,850	2,318	169,991	2,390
0,8	159,522	1,956	166,660	2,043	173,512	2,127	180,131	2,208	186,554	2,287	192,705	2,362	198,708	2,436
0,9	173,737	1,927	181,518	2,013	188,986	2,096	196,202	2,176	203,203	2,254	209,908	2,328	216,453	2,401
1,0	161,664	1,700	168,955	1,776	175,955	1,850	182,719	1,921	189,283	1,990	195,571	2,056	201,709	2,121

DN = 400

1. / 4	i = 0,0	006	i = 0,0	065	i = 0,0	007	i = 0,0	075	i = 0,0	008	i = 0,0	0085	i = 0,0	009
h/d	q	V	q	V	q	V	q	q	V	q	V	q	V	q
0,1	4,625	0,707	4,841	0,740	5,050	0,772	5,252	0,803	5,448	0,833	5,637	0,861	5,821	0,890
0,2	19,934	1,114	20,844	1,165	21,721	1,214	22,571	1,262	23,395	1,308	24,187	1,352	24,962	1,395
0,2	19,934	1,114	20,844	1,165	21,721	1,214	22,571	1,262	23,395	1,308	24,187	1,352	24,962	1,395
0,4	78,652	1,675	82,166	1,750	85,552	1,822	88,828	1,892	92,007	1,960	95,056	2,025	98,042	2,088
0,5	117,479	1,870	122,696	1,953	127,723	2,033	132,587	2,110	137,305	2,185	141,830	2,257	146,260	2,328
0,6	158,544	2,014	165,537	2,103	172,314	2,189	178,850	2,272	185,189	2,353	191,269	2,430	197,220	2,505
0,7	198,138	2,109	206,880	2,202	215,302	2,292	223,449	2,378	231,350	2,462	238,927	2,543	246,344	2,622
0,8	231,632	2,149	241,843	2,244	251,678	2,335	261,192	2,423	270,419	2,509	279,266	2,591	287,927	2,672
0,9	252,298	2,118	263,428	2,211	274,149	2,301	284,521	2,389	294,579	2,473	304,224	2,554	313,666	2,633
1,0	234,958	1,870	245,393	1,953	255,447	2,033	265,174	2,110	274,610	2,185	283,659	2,257	 292,519	2,328

h/d	i = 0,0	025	i = 0,0	003	i = 0,0	035	i = 0,0	004	i = 0,0	0045	i = 0,0	005	i = 0,0	0055
11/4	q	V	q	V	q	V	q	V	q	V	q	V	q	V
0,1	2,757	0,421	3,078	0,470	3,375	0,516	3,652	0,558	3,915	0,598	4,162	0,636	4,397	0,672
0,2	12,034	0,673	13,396	0,749	14,657	0,819	15,829	0,885	16,939	0,947	17,982	1,005	1,875	1,061
0,3	27,513	0,868	30,578	0,964	33,414	1,054	36,050	1,137	38,543	1,215	40,884	1,289	43,111	1359
0,4	48,022	1,023	53,320	1,136	58,218	1,240	62,767	1,337	67,069	1,429	71,107	1,515	74,945	1,596
0,5	71,946	1,145	79,829	1,271	87,115	1,386	93,878	1,494	100,272	1,596	106,271	1,691	111,974	1,782
0,6	97,295	1,236	107,906	1,371	117,710	1,495	126,809	1,611	135,409	1,720	143,476	1,823	151,143	1,920
0,7	121,747	1,296	134,987	1,437	147,216	1,567	158,566	1,688	169,291	1,802	179,351	1,909	188,910	2,011
0,8	142,402	1,321	157,870	1,465	172,157	1,597	185,414	1,720	197,941	1,837	209,691	1,946	220,856	2,049
0,9	155,044	1,302	171,901	1,443	187,471	1,574	201,920	1,695	215,574	1,810	228,381	1,917	240,551	2,019
1,0	143,892	1,145	159,65	1,271	174,23	1,386	187,75	1,494	200,54	1,596	212,543	1,691	223,94	1,782

DN = 450 MM

1. / 4	i = 0,0	0025	i = 0,0	003	i = 0,0	0035	i = 0,0	004	i = 0,0	045	i = 0,0	005	i = 0,0	055
h/d	q	V	q	V	q	V	q		q	V	q	V	q	V
0,1	3,820	0,461	4,260	0,514	4,666	0,563	5,046	0,609	5,403	0,652	5,741	0,693	6,064	0,732
0,2	16,625	0,734	18,490	0,817	20,207	0,893	21,811	0,963	23,319	1,030	24,742	1,093	26,101	1,153
0,3	37,946	0,945	42,142	1,050	46,000	1,146	49,602	1,236	52,985	1320	56,176	1,400	59,222	1,476
0,4	66,164	1,114	73,411	1,236	80,070	1,348	86,284	1,452	92,117	1,550	97,617	1,643	102,865	1,731
0,5	99,056	1,246	109,834	1,381	119,735	1,506	128,969	1,622	137,634	1,731	145,804	1,834	153,597	1,932
0,6	133,892	1,344	148,395	1,489	161,714	1,623	174,133	1,748	185,785	1,865	196,768	1,975	207,244	2,080
0,7	167,491	1,409	185,584	1,561	202,196	1,700	217,683	1,831	232,213	1,953	245,906	2,068	258,966	2,178
0,8	195,884	1,436	217,020	1,591	236,424	1,733	254,513	1,866	271,483	1,990	287,475	2,108	302,727	2,219
0,9	213,294	1,415	236,329	1,568	257,477	1,708	277,194	1,839	295,691	1,961	313,123	2,077	329,749	2,187
1,0	198,111	1,246	219,668	1,381	239,469	1,506	257,937	1,622	275,269	1,731	291,608	1,834	307,195	1,932

h/4	i = 0,0	006	i = 0,0	065	i = 0,0	007	i = 0,0	075	i = 0,	008	i = 0,0	0085	i = 0,0	009
h/d	q	V	q	V	q	V	q	V	q	V	q	V	q	V
0,1	6,373	0,769	6,668	0,805	6,954	0,840	7,227	0,873	7,494	0,905	7,753	0,936	8,004	0,966
0,2	27,400	1,210	28,643	1,265	29,841	1,318	30,990	1,369	32,110	1,418	33,195	1,466	34,245	1,513
0,2	27,400	1,210	28,643	1,265	29,841	1,318	30,990	1,369	32,110	1,418	33,195	1,466	34,245	1,513
0,4	107,881	1,816	112,673	1,896	117,291	1,974	121,715	2,049	126,024	2,121	130,201	2,191	134,235	2,259
0,5	161,044	2,025	168,157	2,115	175,010	2,201	181,575	2,283	187,967	2,364	194,164	2,442	200,148	2,517
0,6	217,252	2,181	226,811	2,277	236,019	2,369	244,840	2,457	253,427	2,544	261,751	2,627	269,788	2,708
0,7	271,440	2,283	283,356	2383	294,832	2,479	305,824	2,572	316,525	2,662	326,898	2,749	336,913	2,833
0,8	317,296	2,326	331,210	2,428	344,611	2,526	357,447	2,620	369,942	2,712	382,054	2,801	393,748	2,887
0,9	345,630	2,293	360,798	2,393	375,408	2,490	389,401	2,583	403,024	2,673	416,228	2,761	428,977	2,845
1,0	322,087	2,025	336,314	2,115	350,020	2,201	363,150	2,283	375,934	2,364	388,328	2,442	400,296	2,517

Таблица A2. Таблицы для гидравлического расчета трубопроводов водоотведения из ПГТ при полном наполнении ($K_3 = 0.01$ мм и $V = 1.31 \cdot 10^{-6}$ м $^2/c$)

							Ho	мина.	льный	диам	иетр, м	ИМ						
q, л/с	10	0	15	0	20	0	25	0	30	0	35	0	40	0	45	0	50	00
	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	J.								
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18]
2,00	0,86	0,25																
3,93	2,88	0,50	0,42	0,23														
5,89	5,96	0,75	0,87	0,34														
7,85	10,05	1,00	1,46	0,45	0,38	0,26												
9,82	15,12	1,25	2,19	0,56	0,57	0,32												
11,78	21,11	1,50	3,04	0,68	0,79	0,39	0,27	0,25										
13,74	28,01	1,75	4,02	0,79	1,05	0,45	0,36	0,29										
15,70	35,81	2,00	5,13	0,90	1,33	0,52	0,45	0,33	0,18	0,23								
17,67	44,55	2,25	6,37	1,02	1,65	0,58	0,56	0,37	0,23	0,26								
19,63	54,12	2,50	7,72	1,13	2,00	0,65	0,68	0,42	0,27	0,29								
21,59	64,56	2,75	9,19	1,24	2,38	0,71	0,81	0,46	0,33	0,31	0,15	0,23						

							Ho	мина.	льный	диам	метр, м	ΜМ						
q, л/с	10	0	15	0	20	0	25	0	30	0	35	0	40	00	45	50	50)0
	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	J								
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	1
23,55	75,85	3,00	10,78	1,35	2,79	0,78	0,95	0,50	0,38	0,34	0,17	0,25						
26,09			13,01	1,50	3,36	0,86	1,14	0,55	0,46	0,38	0,21	0,27						
30,42			17,28	1,75	4,45	1,01	1,51	0,64	0,61	0,44	0,28	0,32	0,14	0,24				
34,77			22,12	2,00	5,69	1,15	1,92	0,74	0,77	0,51	0,35	0,37	0,18	0,28				
39,11			27,51	2,25	7,07	1,29	2,38	0,83	0,96	0,57	0,43	0,41	0,23	0,31	0,13	0,25		
43,46			33,45	2,50	8,59	1,44	2,89	0,92	1,16	0,63	0,53	0,46	0,27	0,35	0,15	0,28		
47,80			39,93	2,75	10,24	1,58	3,45	1,01	1,38	0,70	0,63	0,50	0,33	0,38	0,18	0,30	0,11	0,
52,15			46,95	3,00	12,03	1,72	4,05	1,10	1,62	0,76	0,73	0,55	0,38	0,42	0,22	0,33	0,13	0,
56,49			54,49	3,25	13,94	1,87	4,69	1,20	1,88	0,82	0,85	0,59	0,44	0,45	0,25	0,36	0,15	0,
60,84			62,58	3,50	16,00	2,01	5,37	1,29	2,15	0,89	0,97	0,64	0,51	0,49	0,28	0,39	0,17	0
65,18			71,17	3,75	18,18	2,15	6,10	1,38	2,44	0,95	1,10	0,69	0,57	0,52	0,32	0,41	0,19	0

							Hon	мина.	льный	диам	метр, м	мм						
q, л/с	10	0	15	0	20	0	25	0	30	0	35	0	40	0	45	50	50	00
	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	J.								
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	
69,53			80,30	4,00	20,50	2,30	6,88	1,47	2,75	1,01	1,24	0,73	0,65	0,56	0,36	0,44	0,22	0,
75,64					23,97	2,50	8,04	1,60	3,21	1,10	1,45	0,80	0,75	0,61	0,42	0,48	0,25	0
83,19					28,62	2,75	9,59	1,76	3,83	1,21	1,73	0,88	0,90	0,67	0,50	0,53	0,30	0
90,75					33,66	3,00	11,27	1,92	4,50	1,32	2,03	0,95	1,05	0,73	0,59	0,58	0,35	0
98,31					39,08	3,25	13,07	2,08	5,21	1,43	2,35	1,03	1,22	0,79	0,68	0,62	0,41	0
105,88					44,89	3,50	15,00	2,24	5,98	1,54	2,69	1,11	1,40	0,85	0,78	0,67	0,47	0
113,44					51,07	3,75	17,06	2,40	6,80	1,65	3,06	1,19	1,59	0,91	0,89	0,72	0,53	0
121,00					57,62	4,00	19,24	2,56	7,66	1,76	3,45	1,27	1,79	0,97	1,00	0,77	0,60	0
128,56					64,55	4,25	21,54	2,72	8,57	1,87	3,86	1,35	2,00	1,03	1,12	0,82	0,67	0
136,13					71,86	4,50	23,97	2,88	9,54	1,98	4,29	1,43	2,22	1,09	1,24	0,86	0,74	0
143,69					79,53	4,75	26,51	3,04	10,54	2,09	4,74	1,51	2,45	1,16	1,38	0,91	0,82	0

							Ном	мина.	льный	диаг	метр, м	им						
q, л/с	10	0	15	0	20	0	25	0	30	0	35	0	40	00	45	50	50)0
	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	ת								
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	1
151,25					87,57	5,00	29,09	3,20	11,60	2,20	5,21	1,59	2,70	1,22	1,51	0,96	0,90	0,
165,19							34,41	3,50	13,67	2,41	6,14	1,74	3,18	1,33	1,78	1,05	1,06	0,
176,99							39,16	3,75	15,55	2,58	6,98	1,86	3,61	1,42	2,02	1,12	1,20	0,
188,79							44,19	4,00	17,54	2,75	7,87	1,99	4,07	1,52	2,28	1,20	1,36	0,
200,59							49,51	4,25	19,64	2,92	8,81	2,11	4,55	1,61	2,55	1,27	1,52	1,
212,39							55,12	4,50	21,86	3,09	9,80	2,23	5,07	1,71	2,83	1,35	1,69	1,
224,19							61,01	4,75	24,19	3,27	10,84	2,36	5,60	1,80	3,13	1,42	1,87	1,
235,99							67,19	5,00	26,63	3,44	11,93	2,48	6,16	1,90	3,45	1,50	2,05	1,
247,79							73,65	5,25	29,18	3,61	13,07	2,61	6,75	1,99	3,77	1,57	2,25	1,
259,59							80,38	5,50	31,83	3,78	14,25	2,73	7,36	2,09	4,11	1,65	2,45	1
271,39							87,40	5,75	34,60	3,95	15,49	2,85	8,00	2,18	4,47	1,72	2,66	1,

							Ног	мина.	льный	диаг	метр, м	ΜМ						
q, л/с	10	0	15	0	20	0	25	0	30	0	35	0	40	00	45	0	50	00
	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	Л								
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	1
283,18							94,69	6,00	37,48	4,13	16,77	2,98	8,66	2,28	4,84	1,80	2,88	1,
291,72									39,63	4,25	17,73	3,07	9,15	2,35	5,11	1,85	3,04	1.
308,88									44,12	4,50	19,74	3,25	10,18	2,48	5,69	1,96	3,38	1
326,04									48,84	4,75	21,84	3,43	11,26	2,62	6,29	2,07	2,74	1
343,20									53,79	5,00	24,05	3,61	12,40	2,76	6,92	2,18	4,11	1,
360,36									58,97	5,25	26,35	3,79	13,58	2,90	7,58	2,29	4,51	1
377,52									64,36	5,50	28,76	3,97	14,82	3,04	8,27	2,40	4,91	1
394,68									69,99	5,75	31,26	4,15	16,11	3,17	8,99	2,51	5,34	2
411,84									75,84	6,00	33,86	4,33	17,45	3,31	9,73	2,61	5,78	2
427,80											36,37	4,50	18,74	3,44	10,45	2,72	6,21	2
451,57											40,27	4,75	20,74	3,64	11,56	2,87	6,87	2

							Ног	мина	льный	диаг	метр, м	им						
q, л/с	10	0	15	0	20	0	25	0	30	0	35	0	40	0	45	0	50	00
	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	J.								
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	1
475,34											44,35	5,00	22,84	3,82	12,73	3,02	7,56	2,
499,10											48,62	5,25	25,03	4,01	13,95	3,17	8,28	2,
522,87											53,08	5,50	27,32	4,20	15,22	3,32	9,03	2,
546,64											57,72	5,75	29,70	4,40	16,55	3,47	9,82	2,
570,40											62,55	6,00	32,17	4,59	17,92	3,62	10,63	2,
590,65													34,36	4,75	19,14	3,75	11,35	3,
621,74													37,84	5,00	21,08	3,95	12,50	3,
652,83													41,49	5,25	23,10	4,14	13,70	3,
683,91													45,29	5,50	25,22	4,34	14,95	3,
715,00													49,26	5,75	27,42	4,54	16,25	3,
746,09													53,38	6,00	29,71	4,74	17,60	3,

							Ном	мина.	льный	диаг	метр, м	ИМ						
q, л/с	10	0	15	0	20	0	25	0	30	0	35	0	40	0	45	0	50	00
	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	Л								
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	1
787,77															32,91	5,00	19,50	4,
827,16															36,08	5,25	21,38	4,
866,54															39,39	5,50	23,33	4,
905,93															42,84	5,75	25,37	4,
945,32															46,43	6,00	27,49	4,
973,43																	29,05	5,
1022,09																	31,85	5,
1070,76																	34,78	5,
1119,43																	37,82	5,
1168,10																	40,99	6,

Таблица А3. Таблицы для гидравлического расчета трубопроводов водоотведения из ПГТ при полном наполнении ($K_3 = 0.1$ мм и $V = 1.49 \cdot 10^{-6}$ м $^2/c$)

							Ном	инал	ьный ,	диам	етр, мі	М					
q, л/с	10	0	150	0	200	0	250	0	30	00	35	0	40	0	450	0	
	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	100
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
2,00	1,01	0,25															
3,89	3,37	0,50	0,48	0,22													
5,9	7,26	0,75	1,02	0,34													
7,87	12,40	1,00	1,73	0,45	0,44	0,26											
9,85	18,86	1,25	2,62	0,57	0,67	0,33											
11,8	26,46	1,50	3,66	0,68	0,93	0,39	0,31	0,25									
13,7	35,03	1,75	4,82	0,79	1,22	0,45	0,41	0,29									
15,7	45,28	2,00	6,21	0,90	1,57	0,52	0,53	0,33									
17,7	56,79	2,25	7,77	1,02	1,97	0,59	0,66	0,38	0,26	0,26							
19,6	68,87	2,50	9,40	1,13	2,37	0,65	0,79	0,42	0,31	0,29							

							Ном	шнал	ьный ,	диам	етр, м	M					
q, л/с	10	00	150	0	200	0	250	0	30	00	35	0	40)0	450	0	
	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	100
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
21,59	82,73	2,75	11,27	1,24	2,84	0,71	0,95	0,46	0,38	0,31							
23,55	97,56	3,00	13,27	1,35	3,34	0,78	1,11	0,50	0,44	0,34	0,20	0,25					
25,99			15,97	1,50	4,01	0,86	1,33	0,55	0,53	0,38	0,24	0,27					
30,33			21,36	1,75	5,35	1,00	1,77	0,64	0,70	0,44	0,32	0,32	0,16	0,24			
34,8			27,68	2,00	6,93	1,15	2,29	0,74	0,91	0,51	0,41	0,37	0,21	0,28			
39,11			34,52	2,25	8,62	1,29	2,85	0,83	1,13	0,57	0,50	0,41	0,26	0,31	0,15	0,25	
43,38			42,01	2,50	10,48	1,43	3,46	0,92	1,37	0,63	0,61	0,46	0,32	0,35	0,18	0,28	
47,81			50,53	2,75	12,58	1,58	4,15	1,01	1,64	0,70	0,73	0,50	0,38	0,38	0,21	0,30	0,1
52,16			59,62	3,00	14,83	1,72	4,88	1,11	1,93	0,76	0,86	0,55	0,44	0,42	0,25	0,33	0,1
56,49			69,39	3,25	17,24	1,87	5,67	1,20	2,23	0,82	1,00	0,59	0,51	0,45	0,29	0,36	0,1
60,84			79,92	3,50	19,84	2,01	6,52	1,29	2,57	0,89	1,14	0,64	0,59	0,49	0,33	0,39	0,2

							Ном	иналі	ьный Д	диам	етр, м	М					
q, л/с	10	0	150)	200	0	250	0	30	00	35	0	40	0	45	0	
	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	100
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
65,18			91,14	3,75	22,60	2,15	7,42	1,38	2,92	0,95	1,30	0,69	0,67	0,52	0,37	0,41	0,2
69,54			103,13	4,00	25,55	2,30	8,39	1,47	3,30	1,01	1,47	0,73	0,76	0,56	0,42	0,44	0,2
75,70					30,01	2,50	9,84	1,60	3,87	1,10	1,72	0,80	0,88	0,61	0,49	0,48	0,2
83,20					35,91	2,75	11,76	1,76	4,62	1,21	2,05	0,88	1,05	0,67	0,59	0,53	0,3
90,75					42,36	3,00	13,86	1,92	5,44	1,32	2,42	0,95	1,24	0,73	0,69	0,58	0,4
98,31					49,33	3,25	16,13	2,08	6,32	1,43	2,81	1,03	1,44	0,79	0,80	0,62	0,4
105,88					56,82	3,50	18,57	2,24	7,27	1,54	3,23	1,11	1,65	0,85	0,92	0,67	1,5
113,44					64,82	3,75	21,16	2,40	8,28	1,65	3,67	1,19	1,88	0,91	1,05	0,72	0,6
121,00					73,31	4,00	23,92	2,56	9,36	1,76	4,15	1,27	2,13	0,97	1,18	0,77	0,7
128,56					82,32	4,25	26,84	2,72	10,49	1,87	4,65	1,35	2,38	1,03	1,32	0,82	0,7
136,20					91,93	4,50	29,96	2,89	11,70	1,98	5,18	1,43	2,65	1,10	1,47	0,86	0,8

							Ном	инал	ьный д		етр, мі	M					
q, л/с	10	0	150	0	200	0	250)	30	00	35	0	40	0	45	0	
	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	100
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
151,29					112,41	5,00	36,59	3,21	14,28	2,20	6,32	1,59	3,23	1,22	1,79	0,96	1,0
165,19							43,27	3,50	16,88	2,41	7,46	1,74	3,82	1,33	2,12	1,05	1,2
176,99							49,36	3,75	19,24	2,58	8,51	1,86	4,35	1,42	2,41	1,12	1,4
188,79							55,84	4,00	21,75	2,75	9,61	1,99	4,91	1,52	2,72	1,20	1,6
200,59							62,70	4,25	24,42	2,92	10,78	2,11	5,51	1,61	3,05	1,27	1,8
212,39							69,95	4,50	27,22	3,09	12,02	2,23	6,14	1,71	3,40	1,35	2,0
224,19							77,58	4,75	30,18	3,27	13,32	2,46	6,80	1,80	3,76	1,42	2,2
235,99							85,59	5,00	33,28	3,44	14,68	2,48	7,49	1,90	4,15	1,50	2,4
247,79							93,99	5,25	36,53	3,61	16,11	2,61	8,22	1,99	4,55	1,57	2,6
259,59							102,76	5,50	39,93	3,78	17,60	2,73	8,98	2,09	4,97	1,65	2,9
271,41							111,93	5,75	43,47	3,95	19,16	2,85	9,77	2,18	5,40	1,72	3,1

							Ном	шнал	ьный д		етр, м	M					
q, л/с	10	0	150	0	200	0	250	0	30	0	35	0	40	00	45	0	
	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	100
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
283,18							121,43	6,00	47,15	4,13	20,77	2,98	10,59	2,28	5,85	1,80	3,4
291,72									49,91	4,25	21,98	3,07	11,20	2,35	6,19	1,85	3,6
308,88									55,68	4,50	24,51	3,25	12,49	2,48	6,90	1,96	4,0
326,04									61,75	4,75	27,18	3,43	13,84	2,62	7,65	2,07	4,5
343,20									68,13	5,00	29,97	3,61	15,26	2,76	8,43	2,18	4,9
360,36									74,81	5,25	32,90	3,79	16,75	2,90	9,25	2,29	5,4
377,52									81,80	5,50	35,96	3,97	18,30	3,04	10,11	2,40	5,9
394,68									89,09	5,75	39,15	4,15	19,92	3,17	11,00	2,51	6,4
411,84									96,67	6,00	42,48	4,33	21,61	3,31	11,92	2,61	7,0
427,80											45,68	4,50	23,23	3,44	12,82	2,72	7,5
451,57											50,67	4,75	25,76	3,63	14,21	2,87	8,3

							Ном	инал	ьный д	циам	етр, м	М					
q, л/с	10	0	150)	200)	250)	30	0	35	0	40	0	45	0	
	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	100
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
475,34											55,91	5,00	28,42	3,82	15,67	3,02	9,2
499,10											61,39	5,25	31,19	4,01	17,20	3,17	10,1
522,87											67,13	5,50	34,10	4,20	18,80,	3,32	11,0
546,64											73,11	5,75	37,13	4,40	20,46	3,47	12,0
570,40											79,33	6,00	40,28	4,59	22,20	3,62	13,0
590,65													43,07	4,75	23,73	3,75	13,9
621,74													47,52	5,00	26,17	3,95	15,3
652,83													52,18	5,25	28,73	4,14	16,8
683,92													57,06	5,50	31,41	4,34	18,4
715,01													62,14	5,75	34,20	4,54	20,0
746,10													67,44	6,00	37,11	4,74	21,7

							Ном	инал	ьный Д	циам	етр, мі	M					
q, л/с	10	0	150)	200)	250)	30	0	35	0	40	0	450	0	
	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	1000i	V, л/с	100
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
787,77															41,19	5,00	24,1
827,16															45,23	5,25	26,5
866,55															49,46	5,50	29,0
905,94															53,87	5,75	31,5
945,34															58,46	6,00	34,2
973,42																	36,2
1022,10																	39,8
1070,77																	43,5
1119,43																	47,4
1168,10																	51,4