Данный файл представлен исключительно в ознакомительных целях.

Уважаемый читатель!
Если вы скопируете данный файл,
Вы должны незамедлительно удалить его сразу после ознакомления с содержанием.
Копируя и сохраняя его Вы принимаете на себя всю ответственность, согласно действующему международному законодательству.
Все авторские права на данный файл сохраняются за правообладателем.
Любое коммерческое и иное использование кроме предварительного ознакомления запрещено.

Публикация данного документа не преследует никакой коммерческой выгоды. Но такие документы способствуют быстрейшему профессиональному и духовному росту читателей и являются рекламой бумажных изданий таких документов.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ

ХАРЬКОВСКАЯ НАЦИОНАЛЬНАЯ АКАДЕМИЯ ГОРОДСКОГО ХОЗЯЙСТВА

МЕТОДИЧЕСКИЕ УКАЗАНИЯ К ПРАКТИЧЕСКИМ ЗАНЯТИЯМ ПО КУРСУ **"ВОДОСНАБЖЕНИЕ"**

РАЗДЕЛ I "Водопотребление города".

РАЗДЕЛ II "Свободные напоры в водопроводной сети" (для студентов дневной, заочной форм обучения, экстернов и иностранных студентов специальностей 6.092100 «Водоснабжение и водоотведение», 6.092100 «Промышленное и гражданское строительство», 6.092100 «Охрана труда в строительстве» 6.092100 «Техническое обслуживание ремонт и реконструкция зданий», 6.092100 «Городское строительство и хозяйство»)

Методические указания к практическим занятиям по курсу "Водоснабжение". Раздел І. "Водопотребление города". Раздел ІІ. "Свободные напоры в водопроводной сети" (для студентов дневной, заочной форм обучения, экстернов и иностранных студентов специальностей 6.092100 «Водоснабжение и водоотведение», 6.092100 «Промышленное и гражданское строительство», 6.092100 «Охрана труда в строительстве», 6.092100 «Техническое обслуживание ремонт и реконструкция зданий», 6.092100 «Городское строительство и хозяйство») – Сост.: С.С. Душкин, Г.И. Благодарная. – Харьков: ХНАГХ, 2006. - 30 с.

Составители: С.С. Душкин, Г.И. Благодарная

Рецензент: канд. техн. наук, доц. В.А.Ткачев

Рекомендовано кафедрой водоснабжения, водоотведения и очистки вод, протокол №1 от 30.08.2006 г.

ОБЩИЕ УКАЗАНИЯ

Дисциплина "Водоснабжение" является одной из профилирующих дисциплин специальности 6.092100 "Водоснабжение и водоотведение" по направлению подготовки 0926 "Водные ресурсы" и специальной дисциплиной на специальностях 6.092100 "Промышленное и гражданское строительство", 6.092100 "Городское строительство и хозяйство". Комплексный характер этой дисциплины обусловливается наличием в водопроводных системах различных сооружений, обеспечивающих добывание воды из источника и подачу ее потребителю

Строительство водопроводных сетей населенных мест и промышленных предприятий связано с большими затратами материалов и людских ресурсов, составляющими в некоторых случаях до 70-80% общих затрат на весь комплекс систем водоснабжения. Поэтому от расчета водопроводных сетей, конечная цель которого — определение оптимальных диаметров труб, в значительной степени зависит эффективность использования капитальных вложений в строительство водопровода.

В методических указаниях к практическим занятиям по курсу "Водоснабжение" представлены задачи, в которых определяются расходы воды для различных категорий потребителей и свободные напоры в водопроводной сети.

При решении задач, приведенных в данных методических указаниях, необходимо пользоваться соответствующими нормами проектирования, указанными в них.

Задачи могут быть использованы при выполнении курсового и дипломного проектирования, а также при выполнении расчетно-графических и контрольных работ.

РАЗДЕЛ І. ВОДОПОТРЕБЛЕНИЕ ГОРОДА

Нормой расхода воды или *нормой водопотребления* называется количество воды, расходуемое данным потребителем за определенный промежуток времени, или количество воды, необходимое для производства единицы какойнибудь продукции, - удельная норма водопотребления.

Потребление воды населением, предприятиями и разными другими потребителями происходит неравномерно как в течение года, так и в течение более коротких отрезков времени – суток и часов.

Неравномерность потребления воды характеризуется величиной так называемого коэффициента неравномерности. Неравномерность потребления воды в течение года учитывается величиной коэффициента суточной неравномерности (K_{cym}), численно равного отношению

$$K_{cym} = \frac{Q_{\text{MAKC.cym.}}}{Q_{cp.cym.}},\tag{1.1}$$

где $Q_{\text{макс.сут.}}$ – максимальный суточный расход в году; $Q_{\text{ср.сут.}}$ – средний суточный расход за год.

Неравномерность потребления воды в течение суток учитывается величиной коэффициента часовой неравномерности (K_{uac}), численно равного отношению

$$K_{yac} = \frac{Q_{Makc.yac.}}{Q_{cp.yac.}},\tag{1.2}$$

где $Q_{{\scriptscriptstyle MAKC. 4ac.}}$ — максимальный часовой расход, наблюдаемый в течение суток; $Q_{{\scriptscriptstyle Cp. 4ac.}}$ — средний часовой расход за сутки.

Нормы водопотребления и коэффициенты неравномерности расхода воды для разных категорий потребителей приведены в приложении 1.

Водопроводная сеть и все сооружения системы водоснабжения должны быть рассчитаны на количество воды, которое подается городу и промышленным предприятиям в течение суток при условии возможного наибольшего потребления под требуемым напором.

Различают такие характерные расходы воды, соответствующие основным категориям потребителей: на хозяйственно-питьевые нужды населения города; на коммунальные нужды города; для промышленных предприятий; на пожаротушение.

1.1. Определение расхода воды на хозяйственно-питьевые нужды населения города

При установлении расхода воды на хозяйственно-питьевые нужды населения необходимо определить количество населения города

$$N = F \cdot P, \tag{1.3}$$

где F - площадь части города с той или иной плотностью населения, га;

P - плотность населения, чел./га.

Расчетный (средний за год) суточный расход воды на хозяйственно-питьевые нужды населения города определяют по формуле

$$Q_{cp.cym.} = \frac{N \cdot q_{\mathcal{H}}}{1000}, \, \text{m}^3/\text{cyr}, \qquad (1.4)$$

где q_{∞} - норма водопотребления;

N - количество населения в городе, чел.

Расчетные расходы воды в сутки наибольшего и наименьшего водопотребления

$$Q_{\text{макс.сут.}} = K_{\text{макс.сут.}} \cdot Q_{\text{ср.сут.}}, \tag{1.5}$$

$$Q_{\text{мин.сут.}} = K_{\text{мин.сут.}} \cdot Q_{\text{cp.cym.}}. \tag{1.6}$$

Коэффициент суточной неравномерности водопотребления, учитывающий уклад жизни населения, режим работы предприятий, степень благоустройства зданий, изменение водопотребления по сезонам города и дням недели, необходимо принимать равным

$$K_{\text{макс.сут.}} = 1,1 \div 1,3$$
; $K_{\text{мин.сут.}} = 0,7 \div 0,9$
$$Q_{\text{макс.час.}} = K_{\text{макс.час.}} \cdot \frac{Q_{\text{макс.сут.}}}{24}, \qquad (1.7)$$

$$Q_{\text{мин.час.}} = K_{\text{мин.час.}} \cdot \frac{Q_{\text{мин.сут.}}}{24}, \tag{1.8}$$

$$K_{\text{MAKC.4AC.}} = \alpha_{\text{MAKC.}} \cdot \beta_{\text{MAKC.}}, \tag{1.9}$$

$$K_{\text{MUH,YGC}} = \alpha_{\text{MUH}} \cdot \beta_{\text{MUH}}, \qquad (1.10)$$

- где α коэффициент, учитывающий степень благоустройства зданий, режим работы предприятий и другие местные условия, принимается: $\alpha_{{\scriptscriptstyle MAKC.}} = 1,2 \div 1,4\;;\; \alpha_{{\scriptscriptstyle MUH.}} = 0,4 \div 0,6\;;$
 - β коэффициент, учитывающий количество жителей в населенном пункте, принимаемый по [1] табл. 2 или по приложению 1, табл. 1.

Максимальный секундный расход воды

$$Q_{\text{макс.сек.}} = \frac{Q_{\text{макс.час.}}}{3,6}, \, \pi/c.$$
 (1.11)

1.2. Расходы воды на коммунальные нужды города

а) Расходы воды на поливку улиц и площадей.

Максимальный суточный расход

$$Q_{\text{макс.сут.}} = \frac{F \cdot q \cdot n}{1000}, \, \text{m}^3/\text{cyt.}, \qquad (1.12)$$

где F - площадь поливаемых улиц и площадей, M^2 ;

- q норма расхода воды на поливку, принимаемая в зависимости от типа покрытия и способа поливки [1] табл. 3 или табл. 2, приложение 1;
- n число поливок, принимается в зависимости от режима поливки. Средний часовой расход

$$Q_{cp.4ac.} = \frac{Q_{MAKC.cym.}}{24}, \text{ M}^3/\text{ч}.$$
 (1.13)

Максимальный часовой расход

$$Q_{\text{макс.час.}} = \frac{0.0417 \cdot F \cdot K_{q} \cdot q \cdot n}{1000}, \, \text{M}^{3}/\text{ч}, \qquad (1.14)$$

где K_{u} - коэффициент часовой неравномерности расходования воды на поливку; величину его можно принимать для больших городов - 2,0, для малых и средних городов - 4,0.

Максимальный расход воды

$$Q_{\text{MAKC.CEK.}} = \frac{Q_{\text{MAKC.4AC.}}}{3.6}, \, \pi/c.$$
 (1.15)

б) Расход воды на поливку зелёных насаждений.

Максимальный суточный расход

$$Q_{\text{макс.сут.}} = \frac{F_3 \cdot q_3 \cdot n}{1000}, \, \text{M}^3/\text{cyt},$$
 (1.16)

где F_3 - площадь зелёных насаждений, м²;

- q_3 норма расхода воды на поливку, принимаемая по [1] табл. 3 или табл. 2, приложение 1;
- n число поливок.

Средний часовой, максимальный часовой и максимальный секундный расходы определяют по формулам (1.13), (1.14), (1.15), приведенным выше.

1.3. Определение расхода воды для промышленных предприятий

Этот расход слагается из расхода воды на хозяйственно-питьевые нужды, расхода воды на душевые и расхода воды на производственные нужды.

а) Расход воды на хозяйственно-питьевые нужды промышленного предприятия.

Максимальный суточный расход воды на хозяйственно-питьевые нужды промышленных предприятий определяется из выражения

$$Q_{\text{MAKC.cym.}} = (q_{z} \cdot n'_{z} + q_{x} \cdot n'_{x}) + (q_{z} \cdot n''_{z} + q_{x} \cdot n''_{x}) + (q_{z} \cdot n'''_{z} + q_{x} \cdot n'''_{x}), \, \Pi, \tag{1.17}$$

где q_{ε} и q_x - соответственно нормы водопотребления на одного рабочего (л в смену) в цехах со значительными тепловыделениями (в горячих цехах) и в остальных цехах (холодных цехах), равные: q_{ε} = 45 л и q_x = 25 л;

 n'_{z} , n''_{z} и n'''_{z} - количество рабочих в первой, второй и третьей сменах, работающих на предприятии в горячих цехах;

 n_x' , n_x'' и n_x''' - количество рабочих в первой, второй и третьей сменах, работающих на предприятии в холодных цехах;

Подставляя $q_z = 45\,$ л и $q_x = 25\,$ л в предыдущее равенство (1.17) и выражая расход в м³, получим

$$Q_{\text{MAKC,CVM.}} = [0.045 \cdot (n_2' + n_2'' + n_2''') + 0.025 \cdot (n_X' + n_X'' + n_X''')], \text{ M}^3/\text{cyt.}$$
 (1.18)

Количество рабочих в каждой смене и распределение их по горячим и холодным цехам принимается по данным предприятий или на основании имеющихся проектов этих предприятий. При отсутствии тех или других данных, но известном количестве рабочих можно принять следующее распределение работающих по сменам:

I смена - 40-45% всего количества работающих;

II и III смена - 30-35% всего количества работающих.

Распределение количества работающих в горячих и холодных цехах принимают в зависимости от характера технологического процесса предприятий.

Расход воды по отдельным сменам определяется по формулам

I смена
$$Q'_{CM} = (0.045 \cdot n'_2 + 0.025 \cdot n'_x), \, \text{м}^3;$$
 (1.19)

II смена
$$Q_{CM}'' = (0.045 \cdot n_z'' + 0.025 \cdot n_x'')$$
, м³; (1.20)

III смена
$$Q_{CM}^{""} = (0.045 \cdot n_z^{""} + 0.025 \cdot n_x^{""}), \,\mathrm{M}^3$$
 (1.21)

Нормы расхода и коэффициенты неравномерности потребления воды на хозяйственно-питьевые нужды промпредприятий относятся к работе одной смены, поэтому максимальный часовой расход воды надлежит вычислить для всех смен.

Величины максимальных часовых расходов для отдельных смен вычисляются по формулам

I смена
$$Q_{\text{макс.час.}} = \frac{0.045 \cdot n_{\varepsilon}' \cdot K_{\varepsilon} + 0.025 \cdot n_{x}' \cdot K_{x}}{t_{cm}}, \, \text{м}^{3}/\text{ч};$$
 (1.22)

II смена
$$Q_{\text{макс.час.}} = \frac{0.045 \cdot n_z'' \cdot K_z + 0.025 \cdot n_x'' \cdot K_x}{t_{cm}}, \text{ м}^3/\text{ч};$$
 (1.23)

III смена
$$Q_{\text{макс.час.}} = \frac{0.045 \cdot n_z^{\text{""}} \cdot K_z + 0.025 \cdot n_x^{\text{""}} \cdot K_x}{t_{c_M}}, \text{ м}^3/\text{ч},$$
 (1.24)

где K_z и K_x - коэффициенты часовой неравномерности соответственно в горячих и холодных цехах согласно [1] п. 2.4, K_z =2,5, K_x =3;

 $t_{\scriptscriptstyle CM}$ - продолжительность рабочей смены в часах.

Максимальный секундный расход воды

$$Q_{\text{макс.сек.}} = \frac{Q_{\text{макс.час.}}}{3.6}, \, \pi/c.$$
 (1.25)

б) Расход воды на душевую на предприятии.

Расход воды на душ зависит от количества рабочих и служащих, принимающих душ в каждой смене, и характера производства [2].

Максимальный суточный расход воды на душевые

$$Q_{MAKC,CVM} = [q_z'(n_z' + n_z'' + n_z''') + q_x'(n_x' + n_x''' + n_x''')], \text{ M}^3/\text{cyt.},$$
(1.26)

где n'_{ε} , n''_{ε} , n'''_{ε} - количество рабочих, работающих с повышенной степенью вредности или загрязненности соответственно в горячих цехах в первой, второй и третьей сменах;

 n'_x , n''_x , n'''_x - количество рабочих, принимающих души в остальных цехах соответственно в первой, второй и третьей сменах;

 $q_{\scriptscriptstyle c}^{\prime}$ и $q_{\scriptscriptstyle x}^{\prime}$ - нормы расхода воды на один душ соответственно в цехах с повышенной степенью вредности или загрязненности и в остальных цехах.

Согласно нормам [2] $q'_{\varepsilon} = 45\,$ л и $q'_{x} = 25\,$ л. Подставляя эти величины в предыдущее равенство и выражая расход в м³, получим

$$Q_{\text{MAKC.cym.}} = \left[0.45 \cdot \left(n'_{c} + n'''_{c} + n'''_{c}\right) + 0.25 \cdot \left(n'_{x} + n''_{x} + n'''_{x}\right)\right], \, M^{3}/\text{cyt.}$$
 (1.27)

Расход воды на души для отдельных смен определяется по формулам:

I смена
$$Q'_{cM} = (0.45 \cdot n'_{\varepsilon} + 0.25 \cdot n'_{x}), \,\mathrm{M}^{3};$$
 (1.28)

II смена
$$Q''_{cM} = (0.45 \cdot n''_z + 0.25 \cdot n''_x), \text{ M}^3;$$
 (1.29)

III смена
$$Q_{CM}^{"'} = (0.45 \cdot n_{\varepsilon}^{"'} + 0.25 \cdot n_{x}^{"'}), \,\mathrm{M}^{3}.$$
 (1.30)

Расход воды на прием душа (из расчета $q_{\partial.c.} = 500$ л в сутки, продолжительность пользования душем $t_{\partial} = 45$ мин) после окончания смены рассчитываем по формуле

$$Q_{\partial yu.cm.} = \frac{N_i \cdot q_{\partial.c.} \cdot t_{\partial}}{n_i \cdot 1000}, \text{ m}^3/\text{cyt.}, \qquad (1.31)$$

где N_i — количество работающих, пользующихся душем в смену, с i-й санитарной характеристикой технологического процесса;

 n_i – расчетное количество человек на одну душевую сетку в цехах с i-й санитарной характеристикой технологического процесса принимается по табл. 3 (приложение 1).

Максимальный часовой расход воды

$$Q_{\text{макс.час.}} = \frac{Q_{\text{см}}^{I}}{0.75}, \, \text{M}^{3}/\text{ч},$$
 (1.32)

где $Q'_{c_M} = (0.45 \cdot n'_2 + 0.25 \cdot n'_x)$, м³ – расход воды на душевую в I смену;

0,45 и 0,25 - соответственно нормы расхода на один душ в горячих и холодных цехах, M^3 .

Максимальный секундный расход воды на душевые

$$Q_{\text{макс.сек.}} = \frac{Q_{\text{макс.час.}}}{3.6}, \text{ л/c.}$$
 (1.33)

в) Расход воды на производственные нужды промпредприятия.

Расход воды на производственные нужды промпредприятий определяется по количеству выпускаемой продукции и удельному расходу на единицу продукции.

Максимальный суточный расход воды предприятий на производственные нужды

$$Q_{\text{макс.сут.}} = \Pi \cdot q_{y\partial}, \, \text{m}^3/\text{cyt.}, \qquad (1.34)$$

где Π - суточная продукция предприятия;

 $q_{y\partial}$ - средний удельный расход на производство единицы продукции, м³.

При отсутствии данных о расходах воды на производственные нужды по отдельным сменам потребление воды принимается равным в течение всего времени работы предприятия.

Максимальный часовой расход при этом равен

$$Q_{\text{макс.час.}} = \frac{Q_{\text{макс.сут.}}}{t}, \, \mathbf{M}^3/\mathbf{Y}, \tag{1.35}$$

где t - продолжительность работы предприятия в течение суток, ч.

Максимальный секундный расход воды на производственные нужды

$$Q_{\text{макс.сек.}} = \frac{Q_{\text{макс.час.}}}{3.6}, \, \pi/c.$$
 (1.36)

1.4. Расход воды на пожаротушение

Расчётный расход на наружное пожаротушение зависит от размеров населённого пункта, этажности здания и степени их огнестойкости, размеров производственных зданий, категорий производств и других факторов. Нормами противопожарного проектирования устанавливаются величины необходимых секундных расходов для тушения пожаров в населенных местах и на промышленных предприятиях, а также количество одновременных пожаров. Таким образом, максимальный секундный расход воды на тушение пожаров определяется как произведение расчетного секундного расхода, необходимого для тушения одного пожара, на число пожаров

$$Q_{nose}^{c} = (q_{nose} \cdot n + q'_{nose}), \, \pi/c, \qquad (1.37)$$

где $q_{noж.}$ – расчётный расход воды на тушение одного наружного пожара принимается для населенных пунктов по табл. 5 [1], а для промышленных предприятий – по табл. 7[1], л/с;

 $q_{noж.}$ — расчётный расход воды на одну струю для внутреннего пожаротушения принимается по табл. 1 [2], л/с;

n – число струй принимается по табл. 1 [2].

Продолжительность пожара в населенных местах и на предприятиях нормами установлена t_n =3 ч. Исходя из этого, полный расход воды на тушение пожара может быть определён по формуле

$$Q'_{nowc} = m \cdot (q_{nowc} \cdot n + q'_{nowc}), \, \pi/c, \tag{1.38}$$

где *т* - расчетное количество одновременных пожаров принимается для населенного пункта по табл. 6 [1], а для промышленного предприятия — в зависимости от занимаемой им площади: один пожар при площади до 150 га, два пожара — более 150 га.

$$Q_{nose}^n = 10.8 \cdot Q_{nose}', \,\mathbf{M}^3. \tag{1.39}$$

Полный расход воды на тушение пожара за 3 часа

$$Q_{nose} = Q_{nose}^{H\Pi} + 0.5Q_{nose}^{\Pi\Pi} \text{ m}^3., \tag{1.40}$$

где $Q_{nose}^{H\Pi}$ - расход воды на пожаротушение для населенного пункта, м 3 ;

 $Q_{noж}^{\Pi\Pi}$ - расход воды, необходимый для тушения пожара на предприятии, м³.

Расход воды на пожаротушение за 1 час

$$Q_{\text{vac.nosc.}} = \frac{Q_{\text{nose}}}{3} \text{ m}^3/\text{ч}. \tag{1.41}$$

Секундный расход воды на пожаротушение

$$Q_{\text{макс.сек.}} = \frac{Q_{\text{макс.час.}}}{3.6} \text{ л/c.}$$
 (1.42)

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ ПО РАЗДЕЛУ І

Пример 1. Определить расходы воды на хозяйственно-питьевые нужды жителей города с плотностью населения P=160 чел/га и площадью жилой застройки -1000 га. Здания оборудованы внутренним водопроводом, канализацией и централизованным горячим водоснабжением. Город расположен на северо-востоке Украины.

Решение. Исходя из природно-климатических условий и степени благоустройства города по табл. 1 (приложение 1), принимаем норму хозяйственно-питьевого водопотребления на одного жителя равной 290 л/сут.

При определении расходов воды на хозяйственно-питьевые нужды населения города необходимо определить количество населения города по отношению (1.3):

$$N = 1000 \cdot 160 = 160000$$
 чел.

Расчетный (средний за год) суточный расход воды на хозяйственно-питьевые нужды населения города в ${\rm m}^3/{\rm сут}$. В формулу (1.4) подставляем числа и получаем

$$Q_{\text{макс.сут.}} = \frac{160000 \cdot 290}{1000} = 46400 \text{ m}^3/\text{cyt.}$$

Расчетные расходы воды в сутки наибольшего и наименьшего водопотребления находим по формулам (1.5) и (1.6)

$$Q_{\text{макс.сут.}} = 1.1 \cdot 46400 = 51040 \text{ m}^3/\text{cyt}$$

 $Q_{\text{мин.сут.}} = 0.7 \cdot 46400 = 32480 \text{ m}^3/\text{cyt.}$

Расчетные часовые расходы воды определяем по формулам (1.7), (1.8) с учетом формул (1.9), (1.10)

$$Q_{\textit{vac.Makc.}} = 1,2 \cdot 1,05 \cdot \frac{51040}{24} = 1,26 \cdot \frac{51040}{24} = 2679,6, \text{ M}^3/\text{Y};$$

$$Q_{\text{час.мин.}} = 0.4 \cdot 0.85 \cdot \frac{32480}{24} = 0.34 \cdot \frac{32480}{24} = 460.13 \text{ м}^3/\text{ч.}$$

Коэффициент, учитывающий количество жителей в городе, β принимаем по табл. 4 [1].

Максимальный секундный расход воды, рассчитываем по формуле (1.11)

$$Q_{\text{макс.сек.}} = \frac{2679,6}{3,6} = 744,3 \text{ л/c.}$$

Пример 2. Площадь жилой застройки города составляет 500 га. Расчетная плотность населения — 180 га. Расход воды на хозяйственно-питьевое водопотребление — 250 л/чел. в сутки среднего водопотребления. Коэффициент суточной неравномерности водопотребления K_{cym} =1,2. Определить расходы воды на хозяйственно-питьевые нужды жителей города.

Решение. При определении расходов воды на хозяйственно-питьевые нужды населения города необходимо определить количество населения города по отношению (1.3)

$$N = 180 \cdot 500 = 90000$$
 чел.

Расчетный (средний за год) суточный расход воды на хозяйственнопитьевые нужды населения города. В формулу (1.4) подставляем числа и получаем

$$Q_{\text{макс.сут.}} = \frac{90000 \cdot 250}{1000} = 22500 \text{ m}^3/\text{cyt.}$$

Расчетные расходы воды в сутки наибольшего и наименьшего водопотребления находим по формулам (1.5) и (1.6)

$$Q_{\text{макс.сут.}} = 1,2 \cdot 22500 = 27000 \text{ m}^3/\text{cyt.};$$

 $Q_{\text{мин.сут.}} = 0,8 \cdot 22500 = 18000 \text{ m}^3/\text{cyt.}$

Расчетные часовые расходы воды определяем по формулам (1.7), (1.8) с учетом формул (1.9), (1.10)

$$Q_{\text{час.макс.}} = 1,3 \cdot 1,1 \cdot \frac{27000}{24} = 1,43 \cdot \frac{27000}{24} = 1608,75 \text{ , } \text{м}^3/\text{ч};$$

 $Q_{\text{час.мин.}} = 0,5 \cdot 0,7 \cdot \frac{18000}{24} = 0,35 \cdot \frac{18000}{24} = 262,5 \text{ m}^3/\text{ч}.$

Коэффициент, учитывающий количество жителей в городе, β принимаем по табл. 4 [1] или табл. 1, приложение 1.

Максимальный секундный расход воды рассчитываем по формуле (1.11)

$$Q_{\text{макс.сек.}} = \frac{1608,75}{3.6} = 446,88 \text{ J/c.}$$

Пример 3. Определить суточный расход воды на поливку покрытий и зеленых насаждений города при площади покрытий $F_n = 800000 \text{ м}^2$ и площади зеленых насаждений $F_3 = 904358 \text{ м}^2$. Число поливок в сутки n принять равным двум.

Решение. Суточный расход воды на поливку покрытий и насаждений города

$$Q_n = \frac{F_n \cdot q_n \cdot n}{1000} + \frac{F_3 \cdot q_3 \cdot n}{1000} = \frac{800000 \cdot 0,4 \cdot 2}{1000} + \frac{904358 \cdot 4 \cdot 2}{1000} = 7874,9 \text{ м}^3/\text{сут.}$$
 Норма расхода воды на поливку q_n и q_3 в л/м 2 принимается в зависимо-

Норма расхода воды на поливку q_n и q_3 в л/м² принимается в зависимости от типа покрытия территории, способа ее поливки вида насаждений, климатических и других местных условий по табл. 6 [1].

Пример 4. Определить суточный расход воды на поливку покрытий и зеленых насаждений города с населением N=160000 жителей, приняв поливочный расход воды в пересчете на одного жителя q равным 50 л/сут.

Решение. Суточный расход воды на поливку покрытий и насаждений города

$$Q_{n.cym} = q \cdot N = 50 \cdot 160000 = 8000000$$
 л/сут = 8000 м³/сут.

Пример 5. Определить вместимость бани и расход воды в ней для города с населением N=160000 жителей, приняв норму водопотребления согласно приложению 3 [2] равной $q_{\delta}=180$ л/сут.

Решение. Количество мест в бане n_{δ} определяется из расчета 7 мест на 1000 жителей (с учетом перспективы повышения степени благоустройства оно может быть снижено до 5). В городах и поселках, обеспеченных благоустроенным жилым фондом, нормы вместимости бань следует уменьшать до 3 мест на 1000 человек, тогда вместимость бани

$$n_6 = \frac{3 \cdot N}{1000} = \frac{3 \cdot 160000}{1000} = 480$$
 Mect.

Вместимость бань может быть принята равной 50, 100, 200 и 300 мест. Приняв две бани вместимостью $n_{\delta 1}=200$ мест и $n_{\delta 2}=300$ мест, определим их суточное водопотребление

$$Q_{\delta.cym.} = \frac{(n_{\delta 1} + n_{\delta 2}) \cdot q_{\delta} \cdot t_{\delta}}{1000} = \frac{(200 + 300) \cdot 180 \cdot 16}{1000} = 1440 \text{ m}^3/\text{cyt.}$$

Продолжительность работы бани принимается обычно равной t_{δ} =16 ч (с 7 до 23 ч).

Часовой расход воды в бане

$$q_{\delta.4.} = \frac{Q_{\delta.cym.} \cdot K_{\delta}}{t_{\delta}} = \frac{1440 \cdot 1}{16} = 90 \text{ M}^3/\text{ч}.$$

Коэффициент часовой неравномерности водопотребления в бане принимается равным $K_{\delta} = 1$.

Пример 6. Определить общее количество белья, поступающего в прачечную за одну смену, и расход воды в прачечной, приняв норму расхода воды на I кг сухого белья равной $q_{np} = 75$ л (табл. 2 [2]).

Решение. Количество белья, поступающего в прачечную за одну смену ($t_{\scriptscriptstyle CM}=8\,$ ч) от 1000 жителей, принимается равным $q_{\scriptscriptstyle np}=100\,$ кг. Общее количество белья, поступающего в прачечную за одну смену

$$G_{np} = \frac{q_{np} \cdot N}{1000} = \frac{100 \cdot 160000}{1000} = 16000 \text{ Kg.}$$

В соответствии с [2] прачечные следует проектировать производительностью 500, 1000, 2000, 3000, 5000, 75000, 10000 кг и более белья в смену. Обычно работа в прачечной производится в две смены n_{cu} = 2 (с 7 до 23 ч).

Принимаем производительность прачечной 17500 кг белья в смену, тогда суточное водопотребление прачечной составит

$$Q_{np.cym.} = \frac{G_{np.} \cdot n_{cm.} \cdot q_{np.}}{1000} = \frac{17500 \cdot 2 \cdot 75}{1000} = 2625 \text{ m}^3/\text{cyt.}$$

Часовой расход воды в прачечной

$$q_{np.} = \frac{Q_{np.cym.} \cdot K_{np.}}{n_{cm.} \cdot t_{cm.}} = \frac{2625 \cdot 1}{2 \cdot 8} = 164,06 \text{ m}^3/\text{ч}.$$

Коэффициент часовой неравномерности водопотребления в прачечной $K_{np} = 1$.

Пример 7. Определить количество коек и расход воды в больнице, приняв норму водопотребления, отнесенной к одной койке и равной $q_{\delta ox} = 250$ л/сут.

Peшение. Количество коек в больнице $n_{\scriptscriptstyle \deltaon.}$ определяется из расчета 12 коек на 1000 жителей

$$n_{\text{бол.}} = \frac{12 \cdot N}{1000} = \frac{12 \cdot 160000}{1000} = 1920$$
 коек.

Приняв число коек в больнице равным 2000, определяем суточное водопотребление больницы

$$Q_{\delta o n. cym.} = \frac{q_{\delta o n.} \cdot n_{\delta o n.}}{1000} = \frac{250 \cdot 2000}{1000} = 500 \text{ m}^3/\text{cyt.}$$

Пример 8. Определить количество мест в гостинице и суточное водопотребление гостиницы, приняв норму суточного водопотребления на одного постояльца $q_s = 300$ л (табл. 2 [2]).

Peшение. Количество мест в гостинице $\it n_{\rm z}$ определяется из расчета 6 мест на 1000 жителей

$$n_{z} = \frac{6 \cdot N}{1000} = \frac{6 \cdot 160000}{1000} = 960 \text{ Mect.}$$

Суточное водопотребление гостиницы равно

$$Q_{z.cym.} = \frac{q_z \cdot n_z}{1000} = \frac{300 \cdot 960}{1000} = 288$$
 Mect.

Пример 9. Определить расход воды на хозяйственно-питьевые нужды рабочих на промышленном предприятии. Количество рабочих на предприятии составляет 6680 человек. В горячих цехах работают 880 человек, из них: на I смене – 350; на II - 280, на III -250. В холодных цехах работают 5800 человек, из них: на I смене -2I50; на II - I960, на III - 1750.

Решение. Исходя из норм расхода воды на хозяйственно-питьевые нужды на промышленных предприятиях (табл. 7 [1]), определяем сменные расходы воды отдельно в цехах с тепловыделением более 20 ккал. на I м³ (горячие цеха) $Q_{x,y}^{cM}$ и в остальных цехах (холодные цеха) $Q_{x,y}^{cM}$.

$$Q_{\varepsilon.u.}^{Ic.M} = 0,001 \cdot 45 \cdot 350 = 15,75 \text{ m}^3/\text{cyt.};$$

$$Q_{z.\mu.}^{IIcM} = 0,001 \cdot 45 \cdot 280 = 12,60 \text{ m}^3/\text{cyt.};$$

$$Q_{z.\mu.}^{IIIcM} = 0,001 \cdot 45 \cdot 250 = 11,25 \text{ m}^3/\text{cyt.};$$

$$\sum Q_{z.\mu.} = 39,60 \text{ m}^3/\text{cyt.};$$

$$Q_{x.\mu.}^{IcM} = 0,001 \cdot 25 \cdot 2150 = 53,75 \text{ m}^3/\text{cyt.};$$

$$Q_{x.\mu.}^{IIcM} = 0,001 \cdot 25 \cdot 1900 = 47,50 \text{ m}^3/\text{cyt.};$$

$$Q_{x.\mu.}^{IIlcM} = 0,001 \cdot 25 \cdot 1750 = 43,75 \text{ m}^3/\text{cyt.};$$

$$\sum Q_{z.\mu.} = 145 \text{ m}^3/\text{cyt.};$$

Пример 10. Пользуясь исходными данными предыдущего примера, определить расход воды на нужды душевых, имея в виду, что производственный процесс в горячих цехах вызывает загрязнение одежды и рук, а в холодных цехах не вызывает такого загрязнения. В горячих цехах душем пользуются 70% рабочих, а в холодных - 20%.

Решение. В горячих цехах пользуются душем по сменам

I смена
$$-350 \cdot 0.7 = 245$$
 чел.;
II смена $-280 \cdot 0.7 = 196$ чел.;
III смена $-250 \cdot 0.7 = 175$ чел.

В холодных цехах пользуются душем по сменам

I смена
$$-2160 \cdot 0.2 = 430$$
 чел.;
II смена $-1900 \cdot 0.2 = 380$ чел.;
III смена $-1750 \cdot 0.2 = 350$ чел.

Исходя из нормы расхода воды на одну душевую сетку $q_{\delta.c.}=500\,$ л/ч и продолжительности пользования душем $t_{\delta}=45\,$ мин. после окончания смены, сменный расход воды на предприятии для душевых в м 3 может быть определен из выражения

$$Q_{\partial y u.}^{c M} = \frac{0.001 \cdot q_{\partial.c.} \cdot t_{\partial} \cdot N_i}{n_i},$$

где N_i - количество работающих, пользующихся душем в смену, с і-й санитарной характеристикой технологического процесса;

 n_i - расчетное количество человек на одну душевую сетку в цехах с і-й санитарной характеристикой технологического процесса (табл. 8 [1]).

В цехах, вызывающих загрязнение одежды и рук,

$$Q_{\partial yu}^{Icm} = \frac{0,001 \cdot 500 \cdot 0,75 \cdot 245}{7} = 13,13 \text{ m}^{3}/\text{cm.};$$

$$Q_{\partial yu}^{Ilcm} = \frac{0,001 \cdot 500 \cdot 0,75 \cdot 196}{7} = 10,50 \text{ m}^{3}/\text{cm.};$$

$$Q_{\partial yu}^{IIIcm} = \frac{0,001 \cdot 500 \cdot 0,75 \cdot 175}{7} = 9,38 \text{ m}^{3}/\text{cm.}.$$

$$\sum Q_{\partial yu} = 33,01 \text{ m}^{3}/\text{cm.}$$

В цехах, не вызывающих загрязнение одежды и рук,

$$Q_{\partial yu}^{Icm} = \frac{0,001 \cdot 500 \cdot 0,75 \cdot 430}{15} = 10,75 \text{ m}^3/\text{cm.};$$

$$Q_{\partial yu}^{Ilcm} = \frac{0,001 \cdot 500 \cdot 0,75 \cdot 380}{15} = 9,50 \text{ m}^3/\text{cm.};$$

$$Q_{\partial yu}^{Illcm} = \frac{0,001 \cdot 500 \cdot 0,75 \cdot 350}{15} = 8,75 \text{ m}^3/\text{cm.}.$$

$$\sum Q_{\partial yu} = 29,00 \text{ m}^3/\text{cm.}$$

Пример 11. Определить максимальный секундный расход воды для производственных целей для тракторного завода, суточная продукция которого составляет 100 тракторов, работа в 3 смены, удельный расход воды для производства одного трактора 45 m^3 .

Решение. Максимальный суточный расход предприятия на производственные нужды определяем по формуле (1.34).

Так как средний удельный расход воды для производства одного трактора $45 \, \mathrm{m}^3$, следовательно, суточный расход будет

$$Q_{\text{макс.cym}} = 100 \cdot 45 = 4500 \text{ m}^3/\text{cyt.}$$

Принимая расход воды на производственные нужды равномерным в течение суток, максимальный часовой расход определяется по формуле (1.35) и равен

$$Q_{\text{макс.час}} = \frac{4500}{24} = 187,5 \text{ m}^3/\text{час.}$$

Максимальный секундный расход

$$Q_{\text{макс.сек}} = \frac{187,5}{3,6} = 52,1$$
 л/сек.

Пример 12. Определить расчетный расход воды для тушения пожара в населенном пункте и на промышленном предприятии, имеющих общий противопожарный водопровод, при следующих исходных данных:

- 1. Численность населения города 160000 человек;
- 2. Этажность зданий 5;
- 3. Площадь территории промышленного предприятия 60 га;
- 4. Объем наибольшего здания (цеха) предприятия 60 тыс.м³;
- 5. Категория производства по пожарной опасности Б;
- 6. Степень огнестойкости зданий II.

Решение. Расчетный расход воды для тушения пожаров в населенном пункте и на промышленном предприятии можно определить по формуле (1.37).

Расчетный расход воды на тушение пожара в населенном пункте

$$Q_{noxc}^{c} = 3 \cdot (40 + 2 \cdot 2.5) = 135 \text{ J/c.}$$

Расчетный расход воды на тушение пожара на промышленном предприятии составит

$$Q_{nose}^{n.np.} = 1 \cdot (30 + 2 \cdot 2.5) = 35 \text{ m/c.}$$

Расчетный расход воды для объединенного водопровода, обслуживающего населенный пункт и промышленные предприятия, надлежит определять как сумму потребного большего расхода (на предприятии или в населенном пункте)

плюс 60% потребного меньшего расхода (на предприятии или в населенном пункте). Тогда расчетный расход воды для тушения пожара составит

$$Q_{noxc} = 135 + 35 \cdot 0.5 = 152.5 \text{ m/c.}$$

ВАРИАНТЫ ЗАДАЧ ДЛЯ РЕШЕНИЯ

Задача 1

Определить максимальный суточный расход воды (средний за год) для жилого микрорайона города, а также в сутки наибольшего и наименьшего водопотребления.

При составлении задачи допущена условность – степень благоустройства зданий не увязана с заданной этажностью зданий.

Исходные данные для решения задачи приведены в табл. 1 и 2.

таолица т	T	аблица	1
-----------	---	--------	---

Исходные данные	Номера вариантов				
	1	2	3	4	5
Площадь жилой застройки мик-					
рорайона F , га	180	160	130	200	150
Степень благоустройства жилых					
зданий (по табл. 2)	5	1	4	3	2
Плотность населения P , чел/га	400	330	380	450	440
Число этажей жилой застройки	8	5	8	12	12

Таблица 2

No	Степень благоустройства жилых зданий
1	Жилые дома квартирного типа с водопроводом, канализацией и газо-
	снабжением
2	То же, с ваннами и газовыми водонагревателями
3	То же, с быстродействующими газовыми водонагревателями с много-
	точечным водоразбором
4	То же, с централизованным горячим водоснабжением, оборудованные
	умывальниками, мойками, душами
5	То же, с сидячими ваннами, оборудованными душами

Задача 2

Определить расход воды на коммунальные нужды города.

Исходные данные	Номера вариантов					
	1	2	3	4	5	
Площадь улиц и площадей, F_n , м ²	1500	3500	6000	5320	7485	
Площадь зеленных насаждений						
F_3 , M^2	5000	10500	20000	50500	95000	
Норма расхода воды для поливки						
q_n , л/м ² на 1 м ²	1,2	1,5	0,3	0,35	0,4	
Норма расхода воды для поливки						
q_3 , л/м ² на 1 м ²	3,5	3	4	5	6	
Число поливок (моек) в сутки, п	2	1	2	1	2	

Задача З

	Номера вариантов					
	1	2	3	4	5	
Определить количество	мест	коек	мест	коек	белья	
и суточный расход						
Исходные данные						
Число жителей, чел.	100000	300000	140000	200000	50000	
Норма водопотребления на 1						
единицу, л	250	115	360	200	40	
Продолжительность работы						
предприятия 1 смены, ч	16	-	-	1	8	
Коэффициент часовой нерав-						
номерности водопотребления	1	1	1	1	1	

Задача 4 Определить расход воды на хозяйственно-питьевые нужды рабочих на промышленном предприятии.

Исходные данные		Номера вариантов						
		2	3	4	5			
Количество рабочих на предприятии, чел.	1000	6000	2000	5340	7800			
В горячих цехах работают, из них:	600	1500	1280	3500	4900			
на I смене, чел.	480	500	640	2400	2690			
на II смене, чел.	120	500	360	800	1310			
на III смене, чел.	-	500	280	300	900			
В холодных цехах работают, из них:	400	4500	720	1840	2900			
на I смене, чел.	300	2800	450	1000	1680			
на II смене, чел.	100	1000	150	600	880			
на III смене, чел.	-	700	120	240	340			

Задача 5 Определить расход воды на нужды душевых.

Исходные данные		Номера вариантов						
		2	3	4	5			
Количество рабочих на предприятии, чел.	2000	5000	1500	7200	5580			
В горячих цехах работают, %	15	40	80	60	70			
В холодных цехах работают, %	10	25	70	40	20			
Группа производственных процессов и санитарные характеристики производственных процессов (см. приложение 1,								
табл. 3)	I, a	Ι, б	II, г	II, в	I, a			

Задача 6 Определить максимальный секундный расход воды для производственных целей для:

11	Номера вариантов							
Исходные данные	1	2	3	4	5			
Предприятие	Обувная фабрика	Автозавод	Молокоза- вод	Колбасное производ- ство	Пивова- ренный			
Продукция	обувь	машина	молоко	колбаса	пиво			
Суточная продукция предприятия.	5000 пар	240 шт.	30 т.	8 т.	25 т.			
Средний удельный расход на производство единицы	•							
продукции, q_{yo} , м ³	30	45	20	15	15			

Задача 7

Определить расчетный расход воды для тушения пожара в населенном пункте и на промышленном предприятии, имеющих общий противопожарный водопровод, при следующих исходных данных:

Исходные данные		Номера вариантов					
		2	3	4	5		
Численность населения города, тыс. чел.	110	230	560	470	24		
Этажность зданий	5	9	12	5	3		
Площадь территории промышленного предприятия, га	70	100	200	250	160		
Объем наибольшего здания (цеха) предприятия, тыс. м ³	70	100	200	250	60		
Категория производства по пожарной опасности	Б	A	В	Γ	В		
Степень огнестойкости зданий	I	II	I	II	II		

РАЗДЕЛ ІІ. СВОБОДНЫЕ НАПОРЫ В ВОДОПРОВОДНОЙ СЕТИ

В любой точке наружной водопроводной сети напор должен быть достаточным для того, чтобы вода под его действием могла поступать из наружной по внутренней водопроводной сети до самого верхнего и наиболее отдаленного водозаборного прибора.

Необходимый свободный минимальный напор (H_{cs}) в водопроводной сети в точке присоединения ввода в здание определяется как сумма геометрической высоты подъема воды (H_c), запаса напора для нормальной работы водоразборных приборов (H_{us}) и потерь напора по длине трубопровода от ввода до наиболее удаленного водоразборного прибора ($h_{\partial n}$):

$$H_{ce} = H_{z} + H_{us} + h_{\partial u},$$
 (2.1)

При одноэтажной застройке необходимый свободный минимальный напор составляет не менее 10 метров. При многоэтажной — на первый этаж принимается 10 метров, а на каждый последующий в час максимального водопотребления — по 4 метра, в другие часы — по 3,5 метра.

$$H_{ce} = 10 + h_1 \cdot (n-1),$$
 (2.2)

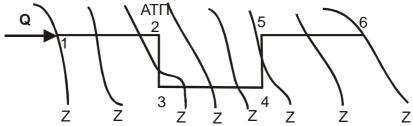
где h_I – принимаемый напор на один этаж, м;

n — количество этажей здания.

Под пьезометрической отметкой в узле водопроводной сети подразумевается сумма отметки земли и свободного напора в этом узле.

$$\Pi_i = H_{cs}^i + Z_i, \tag{2.3}$$

где Π_i - пьезометрическая отметка, м;


 H_{cs}^{i} - свободный напор в *i*-й точке, м;

 Z_i - отметка земли в i-й точке, м.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ ПО РАЗДЕЛУ ІІ

Пример 1.

Определить Нсв и пьезометрические отметки узловых точек тупиковой сети. Этажность – 5 этажей. h_{1-2} =0,8 м, h_{2-3} =1,2 м, h_{3-4} =1,1 м, h_{4-5} =0,9 м, h_{5-6} =0,7 м. Отметки поверхности земли в узловых точках равны: Z_1 =94 м, Z_2 =96,2 м, Z_3 =95,8 м, Z_4 =98,4 м, Z_5 =99,2 м, Z_6 =101 м.

Решение: 1. Находим свободный напор в точке 6.

$$H_{cs}^6 = 10 + 4 \cdot (5 - 1) = 26$$
 M.

2. Находим пьезометрическую отметку в точке 6.

$$\Pi^6 = 26 + 101 = 127$$
 M.

3. Находим пьезометрическую отметку в точке 5.

$$\Pi^5 = 127 + 0.7 = 127.7$$
 M.

4. Находим свободный напор в точке 5.

$$H_{cs}^{5} = 127,7 - 99,2 = 28,5 \text{ M}.$$

5. Находим пьезометрическую отметку в точке 4.

$$\Pi^4 = 127.7 + 0.9 = 128.6 \text{ M}.$$

6. Находим свободный напор в точке 4.

$$H_{cs}^4 = 128,6 - 98,4 = 30,2$$
 M.

7. Находим пьезометрическую отметку в точке 3.

$$\Pi^3 = 128,6 + 1,1 = 129,7 \text{ M}.$$

8. Находим свободный напор в точке 3.

$$H_{c6}^3 = 129,7 - 95,8 = 33,9 \text{ M}.$$

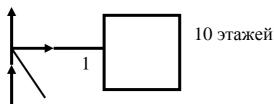
9. Находим пьезометрическую отметку в т. 2.

$$\Pi^2 = 129,7 + 1,2 = 130,9 \text{ M}.$$

10. Находим свободный напор в точке 2.

$$H_{ce}^2 = 130.9 - 96.2 = 34.7$$
 M.

11. Находим пьезометрическую отметку в точке 1.


$$\Pi^1 = 130.9 + 0.8 = 131.7 \text{ M}.$$

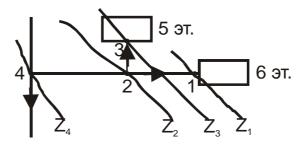
12. Находим свободный напор в точке 1.

$$H_{cs}^1 = 131,7 - 94 = 37,7$$
 M.

Пример 2.

Возможно ли подключение здания к водопроводной сети?

HcB = 36 M


Решение: 1. Находим свободный напор в т. 1.

$$H_{ce}^1 = 10 + 4 \cdot (10 - 1) = 46 \text{ M}.$$

Подключение здания к водопроводной сети не возможно, так как напор при входе в здание 46 м, а требуемый – 36 м.

Пример 3.

Определить Нсв и пьезометрические отметки в узловых точках 1, 2, 3, 4. $h_{1-2}=1,1$ м; $h_{2-3}=0,6$ м; $h_{2-4}=0,8$ м. Отметки поверхности земли в узловых точках равны: $Z_1=90$ м, $Z_2=80$ м, $Z_3=85$ м, $Z_4=75$ м.

Решение: 1. Находим свободный напор в точке 1.

$$H_{cs}^1 = 10 + 4 \cdot (6 - 1) = 30$$
 M.

2. Находим свободный напор в точке 3.

$$H_{ce}^3 = 10 + 4 \cdot (5 - 1) = 26$$
 M.

3. Находим пьезометрическую отметку в точке 3.

$$\Pi^3 = 26 + 85 = 111 \text{ M}.$$

4. Находим пьезометрическую отметку в точке 1.

$$\Pi^1 = 30 + 90 = 120 \text{ M}.$$

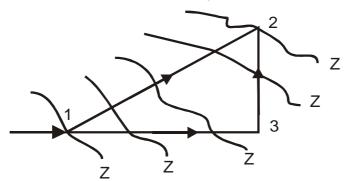
5. Находим пьезометрическую отметку в точке 2.

$$\Pi^2 = 120 + 1,1 = 121,1 \text{ M}.$$

6. Находим свободный напор в точке 2.

$$H_{cs}^2 = 121,1 - 80 = 41,1 \text{ M}.$$

7. Находим пьезометрическую отметку в точке 4.


$$\Pi^4 = 121.1 + 0.8 = 121.9 \text{ M}.$$

8. Находим свободный напор в точке 4.

$$H_{ce}^4 = 121.9 - 75 = 46.9$$
 M.

Пример 4.

Определить Нсв и пьезометрические отметки в узловых точках. Этажность – 5 этажей. h_{1-2} =0,8 м, h_{2-3} =0,6 м, h_{3-1} =1,4 м. Отметки поверхности земли в узловых точках равны: Z_1 =41 м, Z_2 =45 м, Z_3 =43,4 м.

Решение: 1. Находим свободный напор в самой удаленной точке в точке 2.

$$H_{cs}^2 = 10 + 4 \cdot (5 - 1) = 26$$
 M.

2. Находим пьезометрическую отметку в точке 2.

$$\Pi^2 = 45 + 26 = 71 \text{ M}.$$

3. Находим пьезометрическую отметку в точке 3.

$$\Pi^3 = 71 + 0.6 = 71.6$$
 M.

4. Находим свободный напор в точке 3.

$$H_{ce}^3 = 71,6-43,4 = 28,2$$
 M.

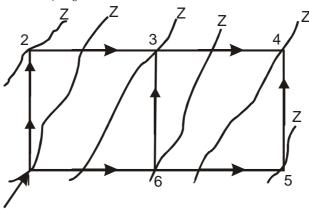
5. Находим пьезометрическую отметку в точке 1.

$$\Pi^1 = 71.6 + 0.8 = 72.4$$
 M.

6. Находим свободный напор в точке 1.

$$H_{ce}^1 = 72,4 - 41 = 31,4$$
 M.

7. Находим пьезометрическую отметку в точке 1.


$$\Pi^1 = 71 + 1.4 = 72.4$$
 M.

8. Находим свободный напор в точке 1.

$$H_{ce}^1 = 72,4-41 = 31,4$$
 M.

Пример 5.

Определить Нсв и пьезометрические отметки в узловых точках. Этажность — 8 этажей. $h_{1-2}=1,5$ м, $h_{2-3}=0,5$ м, $h_{3-4}=1,2$ м, $h_{4-5}=1,3$ м, $h_{5-6}=2,0$ м, $h_{6-1}=0,6$ м. Отметки поверхности земли в узловых точках равны: $Z_1=144,6$ м, $Z_2=144$ м, $Z_3=146$ м, $Z_4=148$ м, $Z_5=149$ м, $Z_6=147$ м.

Решение: 1. Находим свободный напор в точке 4.

$$H_{ce}^4 = 10 + 4 \cdot (8 - 1) = 38 \text{ M}.$$

2. Находим пьезометрическую отметку в точке 4.

$$\Pi^4 = 38 + 148 = 186 \text{ M}.$$

3. Находим пьезометрическую отметку в точке 3.

$$\Pi^3 = 186 + 1,2 = 187,2 \text{ M}.$$

4. Находим свободный напор в точке 3.

$$H_{ce}^3 = 187,2 - 146 = 41,2$$
 M.

5. Находим пьезометрическую отметку в точке 2.

$$\Pi^2 = 187,2 + 0,5 = 187,7$$
 M.

6. Находим свободный напор в точке 2.

$$H_{ce}^2 = 187,7 - 144 = 43,7 \text{ M}.$$

7. Находим пьезометрическую отметку в точке 1.

$$\Pi^1 = 187,7 + 1,5 = 189,2$$
 M.

8. Находим свободный напор в точке 1.

$$H_{ce}^1 = 189,2 - 144,6 = 44,6 \text{ M}.$$

9. Находим пьезометрическую отметку в точке 5.

$$\Pi^5 = 186 + 2,0 = 188 \text{ M}.$$

10. Находим свободный напор в точке 5.

$$H_{cg}^5 = 188 - 149 = 39$$
 M.

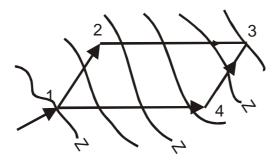
11. Находим пьезометрическую отметку в точке 6.

$$\Pi^6 = 188 + 0.6 = 188.6$$
 M.

12. Находим свободный напор в точке 6.

$$H_{ce}^6 = 188,6 - 147 = 41,6$$
 M.

13. Находим пьезометрическую отметку в точке 1.


$$\Pi^1 = 188,6 + 0,6 = 189,2 \text{ M}.$$

14. Находим свободный напор в точке 1.

$$H_{cs}^1 = 189,2 - 144,6 = 44,6 \text{ M}.$$

Пример 6.

Определить Нсв и пьезометрические отметки. Этажность – 6 этажей. $h_{1-2}=1,8$ м; $h_{2-3}=1,4$ м; $h_{3-4}=0,5$ м; $h_{4-1}=3,6$ м. Отметки поверхности земли в узловых точках равны: $Z_1=194$ м, $Z_2=195,5$ м, $Z_3=199$ м, $Z_4=197,2$ м.

Решение: 1. Находим свободный напор в точке 3.

$$H_{ce}^3 = 10 + 4 \cdot (6 - 1) = 30$$
 M.

2. Находим пьезометрическую отметку в точке 3.

$$\Pi^3 = 30 + 199 = 229 \text{ M}.$$

3. Находим пьезометрическую отметку в точке 2.

$$\Pi^2 = 229 + 2,3 = 231,3 \text{ M}.$$

5. Находим свободный напор в точке 2.

$$H_{ce}^2 = 231,3 - 195,5 = 35,8 \text{ M}.$$

6. Находим пьезометрическую отметку в точке 1.

$$\Pi^1 = 231,3 + 1,8 = 233,1 \text{ M}.$$

7. Находим свободный напор в точке 1.

$$H_{ce}^1 = 233,1 - 194 = 39,1 \text{ M}.$$

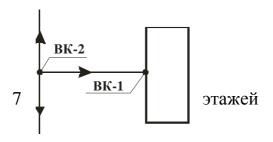
8. Находим пьезометрическую отметку в точке 4.

$$\Pi^4 = 229 + 0.5 = 229.5$$
 M.

9. Находим свободный напор в точке 4.

$$H_{ce}^4 = 229,5 - 197,2 = 32,1 \text{ M}.$$

10. Находим пьезометрическую отметку в точке 1.


$$\Pi^1 = 229.5 + 3.6 = 233.1 \text{ M}.$$

11. Находим свободный напор в точке 1.

$$H_{ce}^1 = 233,1-194 = 39,1 \text{ M}.$$

Пример 7.

Определить пьезометрические отметки в узловых точках ВК-1, ВК-2 и свободные напоры, если Z_1 =85,0 м, Z_2 =84,5 м, $h_{1\text{-}2}$ = 1,9 м.

Решение: 1. Находим свободный напор в точке ВК-1.

$$H_{ce}^{BK-1} = 10 + 4 \cdot (7 - 1) = 34 \text{ M}.$$

2. Находим пьезометрическую отметку в точке ВК-1.

$$\Pi^{BK-1} = 34 + 85 = 119$$
 M.

3. Находим пьезометрическую отметку в точке ВК-2.

$$H_{cs}^{BK-2} = 119 + 1.9 = 120.9$$
 M.

4. Находим свободный напор в точке ВК-2.

$$\Pi^{BK-2} = 120.9 - 84.5 = 36.4 \text{ M}.$$

ВАРИАНТЫ ЗАДАЧ ДЛЯ РЕШЕНИЯ

Задача 1. Определить Нсв и пьезометрические отметки узловых точек тупиковой сети. Исходные данные для решения задачи приведены в таблице. Рисунок (см. пример 1).

Have any to possess	Номера вариантов					
Исходные данные	1	2	3	4	5	
Этажность застройки	12	14	16	9	12	
Потери напора на участках, м:						
h_{1-2}	0,7	1,0	1,3	0,5	1,1	
h_{2-3}	1,0	1,4	1,7	0,7	1,5	
h_{3-4}	1,3	1,3	1,5	0,9	1,4	
h_{4-5}	0,6	1,1	1,4	1,0	1,2	
h ₅₋₆	1,1	0,9	1,2	0,6	0,9	
Отметки поверхности земли в						
узловых точках, м:						
Z_1	75	52	100	224	137	
Z_2	77,5	54,5	102,6	226,4	139,4	
Z_3	76,7	53,9	101,8	225,6	138,9	
Z_4	79,8	56,8	104,9	228,8	141,8	
Z_5	80,2	57,1	105,3	229,1	142,0	
Z_6	84	59	107	231	144	

Задача 2. Возможно ли подключение здания к водопроводной сети? Рисунок к задаче (см. пример 2).

<u> </u>							
Исходные данные	Номера вариантов						
Исходные данные	1	2	3	4	5		
Этажность застройки	12	14	16	9	12		
Свободный напор в точке под-							
ключения.	38	46	34	27	34		

Задача 3. Определить Нсв и пьезометрические отметки в узловых точках 1, 2, 3, 4. Исходные данные для решения задачи приведены в таблице. Рисунок к задаче (см. пример 3).

узада те (ем. пример 3).							
Иохоли то полито	Номера вариантов						
Исходные данные	1	2	3	4	5		
Этажность застройки в т. 3.	7	6	8	9	12		
Этажность застройки в т. 1.	9	10	11	14	15		
Потери напора на участках, м:							
h_{1-2}	1,5	0,8	1,3	0,9	1,6		
h_{2-3}	1,0	0,3	0,8	1,7	1,2		
h ₃₋₄	1,2	0,5	1,4	1,9	1,3		
Отметки поверхности земли в							
узловых точках, м:							
Z_1	70	40	45	20	100		
Z_2	75	41	50	25	105		
Z_3	80	42	55	30	110		
Z_4	85	43	60	35	115		

Задача 4. Определить Нсв и пьезометрические отметки в узловых точках. Исходные данные для решения задачи приведены в таблице. Рисунок к задаче (см. пример 4).

Исходные данные	Номера вариантов								
исходные данные	1	2	3	4	5				
Этажность застройки	16	12	14	10	8				
Потери напора на участках, м:									
h_{1-2}	0,7	1,0	1,2	0,5	1,1				
h_{2-3}	0,5	0,8	1,0	0,3	0,9				
h ₃₋₁	0,6	0,9	1,1	0,4	1,0				
Отметки поверхности земли в									
узловых точках, м:									
Z_1	78	60	95	214	147				
Z_2	82	64	115	225,6	151				
Z_3	80,3	62,2	105,4	218	149,5				

Задача 5. Определить Нсв и пьезометрические отметки в узловых точках. Исходные данные для решения задачи приведены в таблице. Рисунок к задаче (см. пример 5).

Моходин го долин го	Номера вариантов								
Исходные данные	1	2	3	4	5				
1	2	3	4	5	6				
Этажность застройки	9	10	12	13	15				
Потери напора на участках, м:									
h_{1-2}	1,7	1,9	1,3	1,1	1,8				
h_{2-3}	0,7	0,9	0,2	0,1	0,8				
h ₃₋₄	1,4	1,6	1,0	0,8	1,5				
h ₄₋₅	1,5	1,7	1,1	0,9	1,6				

Продолжение таблицы

1	2	3	4	5	6
h ₅₋₆	2,2	2,4	1,8	1,6	2,3
h ₆₋₁	0,8	1,0	0,4	0,2	0,9
Отметки поверхности земли в					
узловых точках, м:					
Z_1	42	105	69	53	20
Z_2	41	100	68	52	15
Z_3	43	110	70	54	25
Z_4	45	120	72	56	35
Z_5	46	125	73	57	40
Z_6	44	115	71	55	30

Задача 6. Определить Нсв и пьезометрические отметки в узловых точках. Исходные данные для решения задачи приведены в таблице. Рисунок к задаче (см. пример 6).

Исходные данные		Номера вариантов								
исходные данные	1	2	3	4	5					
Этажность застройки	5	12	15	16	10					
Потери напора на участках, м:										
h_{1-2}	2,0	2,2	1,5	1,1	2,8					
h_{2-3}	1,6	1,8	1,1	0,7	2,4					
h_{3-4}	2,7	2,9	2,2	1,8	4,5					
h ₄₋₁	1,8	2,0	1,3	0,9	3,6					
Отметки поверхности земли в										
узловых точках, м:										
Z_1	145	805	29	63	120					
Z_2	146,5	85,6	30,7	64,4	125,5					
Z_3	148,1	95,2	32,3	66,1	135,2					
Z_4	150	105	34	68	145					

Задача 7. Определить пьезометрические отметки в узловых точках ВК-1, ВК-2 и свободные напоры. Исходные данные для решения задачи приведены в таблице. Рисунок к задаче (см. пример 7).

Иомодина домина	Номера вариантов								
Исходные данные	1	2	3	4	5				
Этажность застройки	6	10	9	8	11				
Потери напора на участках, м:									
h_{1-2}	2,0	2,1	2,5	1,4	2,3				
Отметки поверхности земли в									
узловых точках, м:									
$Z_{ m BK-1}$	154	80	19	63	124				
$Z_{ m BK-2}$	156	85	19,7	65,4	125,5				

СПИСОК ЛИТЕРАТУРЫ

- 1. СНиП 2.04.02-84. Водоснабжение. Наружные сети и сооружения. М.: Стройиздат, 1985.
- 2. СНиП 2.04.01-85. Внутренний водопровод и канализация зданий. М.: ЦИТП Госстроя СССР, 1986. 56 с.
 - 3. Абрамов Н.Н. Водоснабжение. М.: Стройиздат, 1982. 440 с.
- 4. Тугай А.М., Терновцев В.О., Тугай Я.А. Розрахунок і проектування споруд систем водопостачання. К.: КНУБА, 2001. 256 с.
- 5. Найманов А.Я. и др. Водоснабжение. Донецк: Норд-пресс, 2004. 649 с.
- 6. Тугай А.М., Орлов В.О. Водопостачання: Підручник для вузів. Рівне: РДТУ, $2001.-429~\mathrm{c}.$

ПРИЛОЖЕНИЕ 1

Таблица 1 – Нормы водопотребления для городов и поселков

Характер	рудо	НОГ	Водопотребление на одного жителя, л/сутки									
			•					-	среднесуточное (за год)			
Внутренн	ий вс	допр	овод,	канал	тизаци	я и це	нтрали	-				
зованное	горяч	ее во	одосна	бжені	ие				230 - 350			
Внутренн	ий в	одоп	ровод,	кана	лизаци	ия и в	анны (2	230 - 330			
газовыми	коло	нкам	И						160 - 230			
Внутренн	ий во	допр	овод и	і кана	лизаци	ия без і	занн		125 - 160			
	31	начен	ния коз	оффиі	циенто	в часо	вой нер	авном	ерност	ГИ		
Кол-во жи-											1000 и	
телей, тыс. чел.	1 1.5 2.5 4 6 10 20								100	300	более	
$\beta_{\text{макс.}}$	2	1,8	3 1,6 1,5 1,4 1,3 1,2 1						1,1	1,05	1	
В мин.	0,1	0,1	0,1	0,2	0,25	0,4	0,5	0,6	0,7	0,85	1	

Таблица 2

Назначение воды	Измеритель	Расходы воды на поливку, л/м ²
Механизированная мойка усовершенство-		
ванных покрытий проездов и площадей	1 мойка	1,2-1,5
Механизированная поливка усовершенст-		
вованных покрытий проездов и площадей	1 поливка	0,3-0,4
Поливка вручную (из шлангов) усовер-		
шенствованных покрытий тротуаров и		
проездов	То же	0,4-0,5
Поливка городских зеленных насаждений	«	3 - 4
Поливка газонов и цветников	»	4 - 6

Таблица 3

Группа производст-	Санитарные характеристики	Расчетное число мою-
венных процессов		щихся на одну душевую
		сетку
I	а) Не вызывающих загрязне-	
	ния одежды и рук	15
	б) Вызывающие загрязнения	
	одежды и рук	7
II	в) С выделением больших	
	количеств пыли или особо	
	загрязненных веществ	3
	г) С применением воды	5

ПРИЛОЖЕНИЕ 2

Заданием на контрольную работу предусматривается решение задач по вариантам, номера которых указаны в таблице

Номера											F	Іомер	ра ва	риан	ТОВ										
задач	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25
											По	I pa	зделу	,											
1	1	2	3	4	5	1	3	5	2	4	1	2	3	4	5	1	2	3	4	5	1	2	3	4	5
2	5	1	2	3	4	2	4	1	3	5	3	4	1	2	3	4	5	3	1	2	5	1	5	4	5
3	4	5	1	2	3	3	5	2	4	1	2	3	2	3	5	5	1	4	4	4	1	2	3	5	1
4	3	4	5	1	2	4	1	3	5	2	5	1	3	4	1	1	2	2	5	5	2	3	4	3	4
5	2	3	4	5	1	5	2	4	1	3	1	5	5	1	2	4	2	1	2	3	3	4	3	4	5
6	1	2	3	4	5	1	3	5	2	4	2	3	4	5	4	3	4	5	3	1	4	5	1	1	3
7	5	1	2	3	4	2	4	1	3	5	1	4	5	4	3	4	5	3	1	5	3	2	4	2	2
											По	II pa	здел	y											
1	5	3	1	4	2	5	3	1	2	3	5	3	1	4	2	5	3	1	4	2	4	5	1	4	2
2	5	5	5	1	5	3	1	3	3	4	4	2	5	4	1	2	3	4	2	4	5	1	2	3	1
3	1	3	1	4	1	5	2	2	4	5	3	1	4	5	2	4	4	5	3	3	1	2	3	2	5
4	4	4	2	5	2	1	3	5	5	1	2	5	3	3	3	5	2	1	4	1	2	3	4	1	4
5	5	3	3	2	2	2	5	1	1	2	1	4	2	4	4	3	1	4	1	5	3	4	5	5	3
6	3	1	4	3	4	4	4	2	2	3	5	3	1	1	5	1	5	3	5	3	4	5	1	4	2
7	2	4	3	1	5	3	5	1	3	4	4	2	5	2	2	5	3	4	4	4	5	1	2	3	1

СОДЕРЖАНИЕ

Общие указания	3
РАЗДЕЛ I. Водопотребление города	
1.1. Определение расхода воды на хозяйственно-питьевые	
нужды населения города	4
1.2. Расход воды на коммунальные нужды города	5
1.3. Определение расхода воды для промышленных предприятий.	6
1.4. Расход воды на пожаротушение	8
Примеры решения задач по разделу І	9
Варианты задач для решения	
РАЗДЕЛ II. Свободные напоры в водопроводной сети	
Примеры решения задач по разделу II	18
Варианты задач для решения	
Список литературы	
	27
	28

Учебное издание

Методические указания к практическим занятиям по курсу "Водоснабжение" РАЗДЕЛ І. "Водопотребление города". РАЗДЕЛ ІІ. "Свободные напоры в водопроводной сети" (для студентов дневной, заочной форм обучения, экстернов и иностранных студентов специальностей 6.092100 «Водоснабжение и водоотведение», 6.092100 «Промышленное и гражданское строительство», 6.092100 «Охрана труда в строительстве» 6.092100 «Техническое обслуживание ремонт и реконструкция зданий», 6.092100 «Городское строительство и хозяйство»).

Составители: Станислав Станиславович ДУШКИН, Галина Ивановна БЛАГОДАРНАЯ

Редактор: Н.З. Алябьев Корректор: З.И.Зайцева

План 2006, поз. 247

Подп. к печати 7.09.04 г.	Формат 60х84 1/16	Бумага офисная.
Печать на ризографе.	Услпеч. лист. 1,7	Учетизд. лист. 2,2.
Зак. №	Тираж 200 экз.	Цена договорная.

61002, Харьков, ХНАГХ, ул. Революции, 12

Сектор оперативной полиграфии при ИВЦ ХНАГХ

61002, Харьков, ул. Революции, 12