Данный файл представлен исключительно в ознакомительных целях.

Уважаемый читатель!
Если вы скопируете данный файл,
Вы должны незамедлительно удалить его сразу после ознакомления с содержанием.
Копируя и сохраняя его Вы принимаете на себя всю ответственность, согласно действующему международному законодательству.
Все авторские права на данный файл сохраняются за правообладателем.
Любое коммерческое и иное использование кроме предварительного ознакомления запрещено.

Публикация данного документа не преследует никакой коммерческой выгоды. Но такие документы способствуют быстрейшему профессиональному и духовному росту читателей и являются рекламой бумажных изданий таких документов.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ХАРЬКОВСКАЯ НАЦИОНАЛЬНАЯ АКАДЕМИЯ ГОРОДСКОГО ХОЗЯЙСТВА

К печати разрешаю Первый проректор

Г.В.Стадник

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

К КУРСОВОМУ ПРОЕКТУ И ПРАКТИЧЕСКИМ ЗАНЯТИЯМ ПО КУРСУ «МАТЕМАТИЧЕСКИЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ НАДЕЖНОСТИ ВК СИСТЕМ»

(для студентов 3-5 курсов дневной и заочной форм обучения, экстернов и иностранных студентов специальности 7.092601 «Водоснабжение и водоотведение»)

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ УКРАИНЫ ХАРЬКОВСКАЯ НАЦИОНАЛЬНАЯ АКАДЕМИЯ ГОРОДСКОГО ХОЗЯЙСТВА

МЕТОДИЧЕСКИЕ УКАЗАНИЯ

К КУРСОВОМУ ПРОЕКТУ И ПРАКТИЧЕСКИМ ЗАНЯТИЯМ ПО КУРСУ «МАТЕМАТИЧЕСКИЕ МЕТОДЫ РЕШЕНИЯ ЗАДАЧ НАДЕЖНОСТИ ВОДОПРОВОДНО-КАНАЛИЗАЦИОННЫХ СИСТЕМ»

(для студентов 3-5 курсов дневной и заочной форм обучения, экстернов и иностранных студентов специальности 7.092601 «Водоснабжение и водоотведение»)

Методические указания к курсовому проекту и практическим занятиям по

курсу «Математические методы решения задач надежности водопроводно-

канализационных систем» (для студентов 3-5 курсов дневной и заочной форм

обучения, экстернов и иностранных студентов специальности 7.092601

«Водоснабжение и водоотведение»).- Сост.:Душкин С.С, Солодовник М.В.,

Благодарная Г.И., Булгакова О.В., - Харьков: ХНАГХ, 2005. - с.

Составители: С.С. Душкин,

М.В.Солодовник,

Г.И. Благодарная,

О.В.Булгакова

Рецензент: канд. техн. наук, доц. В.А. Ткачев

Рекомендовано кафедрой водоснабжения, водоотведения и очистки вод,

протокол № 5 от 26.12.2005

4

ОБЩИЕ УКАЗАНИЯ

Дисциплина «Математические методы решения задач надежности водопроводно-канализационных (ВК) систем» водопроводно-канализационных принадлежит к циклу выборочных профессионально - ориентированных дисциплин по направлению «Водные ресурсы» специальности 7.0926.01 «Водоснабжение и водоотведение».

Предметом изучения дисциплины являются теория, методы, расчет и устройство сетей водоснабжения и водоотведения населенных мест и промпредприятий.

Целью изучения дисциплины является подготовка специалиста, который будет владеть знаниями, связанными с решением вопросов эксплуатации систем в отрасли водоснабжения и водоподготовки.

Основные задачи дисциплины состоят в формировании знаний и умений, которые необходимы для исполнения профессиональных заданий по специальности 7.0926.01 «Водоснабжение и водоотведение».

Методические указания к курсовому проекту и практическим занятиям по курсу «Математические методы решения задач надежности ВК систем» предусматривают освещение теоретических вопросов, и решение спецзадач, которые могут быть использованы при выполнении дипломного проектирования, а также расчетно - графических и контрольных работ. Они составлены в соответствии с действующим учебным планом и охватывают основные разделы курса. Методические указания предназначены для студентов дневной и заочной форм обучения специальности 7.0926.01 «Водоснабжение и водоотведение».

5

1. СОСТАВ КУРСОВОГО ПРОЕКТА

Курсовой проект состоит из двух разделов:

- 1 Теоретическая часть;
- 2 Расчетно-технологическая часть.

Теоретическая часть предусматривает рассмотрение двух проблемных вопросов по курсу. При выполнении расчетно-технологической части студент решает пять задач по конкретным ситуациям в области надежности работы ВК систем.

Ниже приведены варианты вопросов по теоретической части и варианты задач. При выполнении курсового проекта необходимо использовать рекомендованную литературу.

2. ТЕОРЕТИЧЕСКАЯ ЧАСТЬ

Вариант №1

- 1. Математическое ожидание дискретных и случайных величин [1].
- 2. Специфические особенности режимов работы систем водоснабжения и определения их расчетных параметров [3].
- 3. Продолжительность ликвидации аварий на водоводах, анализ показателей надежности для водовода [1].

Вариант №2

- 1. Характеристика функций систем водоснабжения и ее основных состояний [3].
- 2. Математическое ожидание непрерывных случайных величин [1].
- 3. Надежность работы водопроводных очистных сооружений [2]

Вариант №3

- 1. Методы определения расчетных объемов и режимов водопотребления, предусматриваемые действующими нормативными документами [3].
- 2. Биноминальное распределение [1].
- 3. Оценка факторов надежности и долговечности канализационных сетей [2].

- 1. Виды отказов в системе водоснабжения [3].
- 2. Дисперсия случайных дискретных величин, дисперсия непрерывных случайных величин, дисперсия величины при биноминальном распределении, среднее квадратичное отклонение [1].
- 3. Влияние коррозионных условий среды на эксплуатационную надежность канализационных сетей [2].

- 1. Влияние отказов на показатели качества функционирования систем водоснабжения [3].
- 2. Понятие надежности объекта: безотказность, долговечность, ремонтопригодность, сохраняемость, эффективность [1].
- 3. Снижение воздействия биологической коррозии при эксплуатации канализационных трубопроводов [2].

Вариант №6

- 1. Гидравлические взаимосвязи элементов систем водоснабжения населенных мест [3].
- 2. Отказ [1].
- 3. Надежность работы водопроводных очистных сооружений [2]

Вариант №7

- 1. Теоретические законы распределения случайных величин и методы установления соответствия этим законам опытных данных [3].
- 2. Надежность работы водопроводных очистных сооружений [2]
- 3. Надежность работы канализационной сети и причины ее нарушения [2].

Вариант №8

- 1. Методы получения и статистической обработки данных об объеме и режиме водопотребления населенных мест [3].
- 2. Параметр потока отказов [1].
- 3. Оценка факторов надежности и долговечности канализационных сетей [2].

- 1. Простейшие случайные процессы [3].
- 2. Резервирование скважин подземных водозаборов [1].
- 3. Надежность работы водопроводных очистных сооружений [2]

- 1. Методы и формы регистрации повреждений водопроводных линий и статистическая обработка полученных данных для определения показателей их надежности [3].
- 2. Вероятность безотказной работы [1].
- 3. Коррозия бетонных канализационных трубопроводов под действием биологических факторов [2].

Вариант №11

- 1. Методы получения численных характеристик надежности природных источников воды [3].
- 2. Системы с раздельным резервированием [1].
- 3. Снижение воздействия биологической коррозии при эксплуатации канализационных трубопроводов [2].

Вариант №12

- 1. Показатели надежности простейших комбинаций элементов систем водоснабжения [3].
- 2. Надежность работы насосных станций [1].
- 3. Влияние коррозионных условий среды на эксплуатационную надежность канализационных сетей [2].

Вариант №13

- 1. Общие принципы резервирования систем водообеспечения [3].
- 2. Математическое ожидание непрерывных случайных величин [1].
- 3. Надежность работы канализационной сети и причины ее нарушения [2].

- 1. Резервированные системы с параллельным включением элементов [3].
- 2. Интенсивность отказа [1].
- 3. Оценка факторов надежности и долговечности канализационных сетей [2].

- 1. Системы, состоящие из последовательно и параллельно включенных комбинаций элементов [3].
- 2. Вероятность отказа [1].
- 3. Резервирование в системах водоводов с резервуарами [1].

Вариант №16

- 1. Нерезервированные системы с последовательным соединением элементов [3].
- 2. Факторы, влияющие на надежность работы водозаборных сооружений поверхностных источников [1].
- 3. Снижение воздействия биологической коррозии при эксплуатации канализационных трубопроводов [2].

Вариант №17

- 1. Определение показателей надежности простейших резервированных систем из восстанавливаемых элементов [3].
- 2. Влияние условий эксплуатации на отказы и остановки насосных агрегатов [1].
- 3. Причины отказов водоводов водопроводных систем [1].

Вариант №18

- 1. Оценка надежности водопроводных насосных станций и методы их резервирования [3].
- 2. Продолжительность ликвидации аварий на водоводах, анализ показателей надежности для водовода [1].
- 3. Коррозия бетонных канализационных трубопроводов под действием биологических факторов [2].

- 1. Оценка надежности нерезервированных систем водоснабжения из восстанавливаемых элементов [3].
- 2. Виды показателей надежности ВК систем [1].

3. Параметр потока отказов [1].

Вариант №20

- 1. Резервирование и оценка надежности водоприемных сооружений и станций очистки воды [3].
- 2. Вероятность восстановления ВК системы [1].
- 3. Наработка на отказ [1].

Вариант №21

- 1. Системы с параллельно-последовательным включением элементов [3].
- 2. Частота отказа [1].
- 3. Влияние интенсивности и качества ремонтов на надежность водопроводной сети [1].

Вариант №22

- 1. Средняя наработка до первого отказа [1].
- 2. Надежность работы водопроводных очистных сооружений [2]
- 3. Определение показателей надежности простейших резервированных систем из восстанавливаемых элементов [3].

Вариант №23

- 1. Особенности определения показателей безотказной работы элементов систем водоснабжения с учетом процессов их восстановления [3].
- 2. Надежность работы насосных станций [1].
- 3. Оценка факторов надежности и долговечности канализационных сетей [2].

- 1. Общий анализ процесса проектирования и расчета кольцевых сетей городских водопроводов с учетом требований надежности [3].
- 2. Коэффициент готовности [1].
- 3. Влияние коррозионных условий среды на эксплуатационную надежность канализационных сетей [2].

- 1. Вероятностные показатели надежности основного оборудования насосных станций [3].
- 2. Коэффициент простоя [1].
- 3. Снижение воздействия биологической коррозии при эксплуатации канализационных трубопроводов [2].

3. РАСЧЕТНО-ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ

Варианты задач расчетно-технологической части указывает преподаватель. Пример их решения рассмотрен в приложении.

ВАРИАНТЫ ЗАДАЧ ДЛЯ РЕШЕНИЯ

No					№ за	дачи					
варианта	1	2	3	4	5	6	7	8	9	10	
по списку		№ варианта задачи									
1	5	-	3	-	1	-	3	-	-	1	
2	-	3	-	1	ı	1	2	-	3	-	
3	3	-	5	-	2	5	-	3	-	-	
4	-	1	-	4	-	-	4	-	1	3	
5	1	-	4	-	4	-	5	-	2	-	
6	-	-	5	-	1	-	2	1	-	1	
7	-	-	4	-	3	4	-	2	-	2	
8	3	-	3	-	2	-	3	-	-	4	
9	-	-	2	1	5	-	4	4	-	-	
10	5	5	-	4	-	1	-	-	1	-	
11	1	2	-	-	5	-	-	3	2	-	
12	4	-	5	-	-	3	2	-	-	4	
13	-	4	-	3	2	-	-	5	2	-	
14	1	-	3	-	-	4	2	-	-	2	
15	-	4	-	3	4	-	-	3	5	-	
16	3	-	5	-	-	2	4	-	-	1	
17	-	2	-	1	-	1	-	2	4	-	
18	5	-	4	-	2	-	1	-	-	5	
19	-	5	-	4	-	4	-	3	-	4	
20	3	-	1	-	5	-	3	-	1	-	
21	-	3	-	3	ı	2	-	1	-	2	
22	4	-	4	-	5	-	1	-	4	-	
23	-	1	-	5	-	5	-	5	-	5	
24	2	-	5	-	3	-	5	-	1	-	
25	-	4	-	2	-	2	-	3	-	4	

ВАРИАНТЫ ЗАДАЧ ДЛЯ РЕШЕНИЯ

Задача №1. Определить математическое ожидание m_x , дисперсию D(X) и среднее квадратичное отклонение σ_x числа бракованных разбрызгивателей биофильтра.

Исходные данные	Номера вариантов					
	1	2	3	4	5	
Вероятность, (Р)	0,05	0,08	0,12	0,15	0,20	
Количество разбрызгивателей (n)	80	120	150	175	200	

Задача №2. Определить математическое ожидание появления события m.

Исходные данные	Номера вариантов				
	1	2	3	4	5
Вероятность появления события т	0,02	0,04	0,06	0,08	0,1

Задача №3. Определить вероятность безотказной работы системы, частоту отказов и среднюю наработку до первого отказа. Во время работы фильтр не регенерировался.

Исходные данные	Номера вариантов						
	1	2	3	4	5		
Время безотказной работы	100	140	160	180	200		
Интенсивность отказа λ, 1/час	1,25·10 ⁻⁴						

Задача №4. Определить вероятность безотказной работы сети определенный период лет t, частоту отказов a(t) и количество отказов n(t).

Исходные данные	Номера вариантов						
пеходные данные	1	2	3	4	5		
Количество участков тупиковой сети N_0	100	140	160	180	200		
Интенсивность отказа λ, 1/час	$0,25\cdot10^{-4}$	$0,25\cdot10^{-4}$	$0,25\cdot10^{-4}$	$0,25\cdot10^{-4}$	$0,25\cdot10^{-4}$		
Продолжительность эксплуатации t, лет	6	8	10	12	14		

Задача №5. Определить среднюю наработку на отказ.

Исходные данные	Номера вариантов						
пеходиые данные	1	2	3	4	5		
Общая наработка установки на отказ $t_{1,}$ час.	1500	1700	1800	180	200		
Время работы установки до начала испытаний t_2 , час.	150	170	190	200	210		
Количество отказов, п	5	7	9	11	13		

Задача №6. Определить среднюю наработку на отказ для разбрызгивающих установок оросительной системы.

Исходные данные	Номера вариантов						
пеходиые данные	1	2	3	4	5		
Наработка первой установки на отказ t_1 , час.	150	170	190	210	230		
Наработка второй установки на отказ t_1 , час.	190	210	230	250	270		
Наработка третьей установки на отказ t_1 , час.	165	175	185	195	205		
Количество отказов по первой установке, п	5	7	9	11	13		
Количество отказов по второй установке, n	7	9	11	13	15		
Количество отказов по третьей установке, n	8	10	12	14	16		

Задача №7. Определите вероятность безотказной работы разбрызгивателей оборотной системы.

Исходные данные	Номера вариантов						
пеходиве даниве	1	2	3	4	5		
Количество разбрызгивателей, N_0	70	90	110	130	150		
Количество вышедших из строя			,				
разбрызгивателей оборотной							
системы за период, n _t :							
0-100	12	14	16	18	20		
100-200	13	15	17	19	21		
200-300	5	7	9	11	13		

Задача №8. Определите вероятность безотказной работы, вероятность отказа, среднее время безотказной работы и среднее время восстановления работы насосной станции.

Исходные данные	Номера вариантов						
пелодные данные	1	2	3	4	5		
Интенсивность отказа λ1/час,	1,2·10 ⁻⁴						
Интенсивность восстановления µ,1/час	0,3·10 ⁻²	0,3·10 ⁻²	0,3·10 ⁻²	$0.3 \cdot 10^{-2}$	0,3·10 ⁻²		
Период эксплуатации t, лет	1	3	4	5	6		

Задача №9. Определить вероятность безотказной работы воздуходувки в компрессорной станции с резервом и без резерва, а также среднее время безотказной работы.

Исходные данные	Номера вариантов						
пеходные данные	1	2	3	4	5		
Интенсивность отказа воздуходувки λ, 1/час	1,2·10 ⁻⁴						
Кратность резервирования т	1	1	1	1	1		
Период работы системы t, час.	4000	4200	4400	4600	4800		

Задача №10. Определить вероятность безотказной работы системы химической водоочистки.

Исходные данные	Номера вариантов						
ислодные данные	1	2	3	4	5		
Интенсивность отказа катионитного фильтра λ, 1/час	0,2·10 ⁻⁴						
Интенсивность отказа анионитного фильтра λ, 1/час	0,4·10 ⁻⁴						
Период безотказной работы t, час.	700	900	1100	1300	1500		

СПИСОК ЛИТЕРАТУРЫ

- 1. Найманова А.Я., Насонкина Н.Г.и др.- Основы надежности инженерных систем коммунального хозяйства- Донецк: ИЕП НАН Украины, 2001.-152 с.
- 2. Душкин С.С., Куликов Н.И., Дрозд Г.Я. Эксплуатация водоотводящей сети.- Харьков: XГАГX, 1999.
- 3. Абрамов Н.Н. Надежность систем водоснабжения М:. Стройиздат, 1984г. -216 с.

ПРИМЕРЫ РЕШЕНИЯ ЗАДАЧ

Задача №1. При обследовании 100 разбрызгивателей обнаружено X бракованных изделий. Вероятность появления бракованного изделия - 0,01. Определить математическое ожидание, дисперсию и среднее квадратичное отклонение числа бракованных разбрызгивателей.

Решение. Закон распределения для данной системы - биноминальный. Математическое ожидание такой системы равно

$$T_x = \Pi \cdot P = 100 \cdot 0.01 = 1$$
 разбрызгиватель

Дисперсия:

$$D(X) = n \cdot P \cdot q = 100 \cdot 0.01 \cdot 0.99 = 0.99$$

Среднее квадратичное отклонение:

$$\sigma_x = \sqrt{D} = \sqrt{0.99 = 0.99} \approx 1$$
 разбрызгиватель.

Задача №2. Проведено 100 независимых испытаний. Вероятность того, что появится некоторое событие m, равно 0,05. Определите математическое ожидание появления события m.

Решение. Вероятность появления события m равна 0,05, а вероятность того, что это событие не появится -q = 1-p = 1-0,05 = 0,95. Тогда математическое ожидание появления события m будет равно

$$M(m)\sum m \cdot p \cdot q^{m-1} = \frac{1}{p} = \frac{1}{0.05} = 20,$$

т.е. при вероятности поломки 0,05 математическое ожидание срока службы составляет 20 лет.

Задача №3. Изменение пропускной способности фильтра подчиняется экспоненциальному закону с параметром λ = 1,25·10⁻⁴ 1/час. Определить вероятность безотказной работы системы, частоту отказов и среднюю наработку до первого отказа за 120 часов. Во время работы фильтр не регенерировался.

Решение. Вероятность безотказной работы фильтра

$$P(t) = e^{-\lambda \cdot t} = e^{-1.25 \cdot 10^{-4} \cdot 120} = 0.98.$$

Частота отказов

$$a(t) = \lambda(t) \cdot P(t) = 1,25 \cdot 10^{-4} \cdot 0,98 = 1,23 \cdot 10^{-4} \text{ 1/yac.}$$

Наработка до первого отказа

$$T = \frac{1}{\lambda} = \frac{1}{1.25 \cdot 10^{-4}} = 8000 \,\text{vac}.$$

Задача №4. Тупиковая сеть состоит из 100 участков. Продолжительность эксплуатации сети - 10 лет, она подчиняется экспоненциальному закону с параметром λ =0,25·10⁻⁴1/час. Определить вероятность безотказной работы сети за 10 лет, частоту отказов и количество отказов при условии, что оно прямо пропорционально количеству участков.

Решение. Вероятность безотказной работы сети

$$P(t) = e^{-\lambda \cdot t} = e^{-0.25 \cdot 10^{-4} \cdot 10.8760} = 0.99.$$

Частота отказов

$$a(t) = \lambda(t) \cdot P(t) = 0.25 \cdot 10^{-4} \cdot 0.99 = 0.25 \cdot 10^{-4} \text{ 1/yac.}$$

Количество отказов

$$n(t) = N_0 \cdot Q(t) = 100 \cdot (1 - 0.99) = 1$$

Задача №5. При испытании установки было зарегистрировано 10 отказов.
До начала испытаний установка проработала 200 часов. Общая наработка установки - 2000 часов. Определить среднюю наработку на отказ.

Решение. Продолжительность испытаний

$$t = t_1 - t_2 = 2000 - 200 = 1800$$
 час.

Средняя наработка на отказ

$$t_{cp} \frac{\sum_{i=1}^{n} t_i}{n} = \frac{1800}{10} = 180 \text{ часов.}$$

Задача №6. При наблюдении за работой трех оросительных установок было зарегистрировано: по первой установке - 10 отказов, по второй - 12, по третьей - 9. Наработка первой установки составила - 200 часов, второй - 240 часов, третьей - 180 часов. Определить среднюю наработку на отказ для оросительных установок.

Решение. Общая наработка установок

$$t_{\Sigma} = \sum_{j=1}^{N} \sum_{j=1}^{nj} t_{ij} = 200 + 240 + 180 = 620 \text{ Hac.}$$

Общее количество отказов

$$n_{\Sigma} = \sum_{j=1}^{N} nj = 10 + 12 + 9 = 31_{\text{отказ.}}$$

Средняя наработка на отказ

$$t_{cp} = \frac{\sum_{j=1}^{N} \sum_{i=1}^{n_j} t_{lj}}{\sum_{j=1}^{N} n_j i} = \frac{620}{30} = 20 \text{ qac.}$$

Задача №7. Для исследований на трубопровод установили 100 одинаковых разбрызгивателей. Конструкция разбрызгивателей позволяет производить их прочистку. Поэтому вышедшие из строя разбрызгиватели после прочистки возвращались в работу. В процессе испытаний установлено, что в первые 100 часов из строя вышло 10, за период 100-200 часов - 12, за период 200-300 часов - 9 разбрызгивателей. Определите вероятность безотказной работы за интервалы: 0-100, 100-200 и 200-300 часов.

Решение. Разбрызгиватели после ремонта возвращаются в работу, поэтому можно определить систему, как восстанавливаемую.

Вероятность безотказной работы системы

$$P_{1}(t) = 1 - \frac{n_{1}(t)}{N_{0}} = 1 - \frac{10}{100} = 0.9;$$

$$P_{2}(t) = 1 - \frac{n2(t)}{N_{0}} = 1 - \frac{12}{100} = 0.88;$$

$$P_{3}(t) = 1 - \frac{n_{3}(t)}{N_{0}} = 1 - \frac{9}{100} = 0.91.$$

Задача №8. Время работы насосной станции и время восстановления подчиняются экспоненциальному закону с параметрами: $\lambda=1,2\cdot10^{-4}$ 1/час, $\mu=0,3\cdot10^{-2}$ 1/час, соответственно. Определите вероятность безотказной работы, вероятность

отказа, среднее время безотказной работы и среднее время восстановления за два года эксплуатации.

Решение. Вероятность безотказной работы

$$P(2) = e^{-\lambda t} = e^{-1.2 \cdot 10^{-4} \cdot 2 \cdot 36524} = 0.12$$

Вероятность отказа

$$Q(2) = 1 - P(2) = 1 - 0.12 = 0.88.$$

Среднее время безотказной работы

$$T = \frac{1}{\lambda} = \frac{1}{1.2 \cdot 10^{-4}} = 8333 \,\text{часов}.$$

Среднее время восстановления

$$T_u = \frac{1}{\mu} = \frac{1}{0.3 \cdot 10^{-2}} = 333$$
 vaca

Задача №9. В компрессорной станции установлены две воздуходувки, одна из которых является ненагруженным резервом. Интенсивность отказа каждой воздуходувки - 1,2·10⁻⁴ 1/час. Система подчиняется экспоненциальному закону распределения. Определить вероятность безотказной работы системы с резервом и без резерва, а также среднее время безотказной работы за 5000 часов.

Решение. Система с общим резервированием замещением с целой кратностью. Тогда вероятность безотказной работы системы без резерва

$$P(t) = e^{-\lambda_c \cdot t} = e^{-1.2 \cdot 10^{-4} \cdot 5000} = 0.55$$

Вероятность безотказной работы резервированной системы

$$P(t) = e^{-\lambda \cdot t} \sum_{i=0}^{m} \frac{(\lambda \cdot t)^{i}}{i!} = e^{-\lambda \cdot t} (1 + \lambda \cdot t) = e^{-1.2 \cdot 10^{-4} \cdot 5000} (1 + 1.2 \cdot 10^{-4} \cdot 5000) = 0.96$$

Среднее время безотказной работы системы

$$T_c = \frac{1}{\lambda_0} (m+1) = \frac{1}{1,2 \cdot 10^{-4}} (1+1) = 16667 \text{ yacob}$$

Задача №10. На фильтровальной станции установлены два фильтра (катионитный и анионитный). Интенсивность отказа фильтров - $0.2 \cdot 10^{-4}$ 1/час и

 $0,4\cdot 10^{-4}$ 1/час. Каждый фильтр имеет резервный. Определить вероятность безотказной работы системы за 1000 часов.

Решение. Система - с раздельным резервированием замещением. Тогда вероятность безотказной работы системы

$$P(t) = \prod_{i=1}^{m} P_i(t) = P_1(t) \cdot P_2(t).$$

Вероятность безотказной работы катионитовых фильтров

$$P(t) = e^{-\lambda \cdot t} \sum_{i=0}^{m} \frac{(\lambda \cdot t)^{i}}{i!} = e^{-\lambda \cdot t} (1 + \lambda \cdot t) = e^{-0.2 \cdot 10^{-4} \cdot 1000} (1 + 0.2 \cdot 10^{-4} \cdot 1000) = 0.99$$

Вероятность безотказной работы анионитовых фильтров

$$P_2(t) = e^{-\lambda \cdot t} \sum_{i=0}^{m} \frac{(\lambda \cdot t)^i}{i!} = e^{-\lambda \cdot t} (1 + \lambda \cdot t) = e^{-0.4 \cdot 10^{-4} \cdot 1000} (1 + 0.4 \cdot 10^{-4} \cdot 1000) = 0.99$$

тогда

$$P(t)=0.99\cdot0.99=0.98$$
.

СОДЕРЖАНИЕ

	Стр
Общие указания	3
1.СОСТАВ КУРСОВОГО ПРОЕКТА	4
2.ТЕОРЕТИЧЕСКАЯ ЧАСТЬ	5
3. РАСЧЕТНО-ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ	11
Список литературы	16
ПРИЛОЖЕНИЕ	17

Учебное издание

Методические указания к курсовому проекту и практическим занятиям по курсу «Математические методы решения задач надежности водопроводно-канализационных систем» для студентов 3-5 курсов дневной и заочной форм обучения, экстернов и иностранных студентов специальности 7.092601 «Водоснабжение и водоотведение»

Составители: Станислав Станиславович Душкин, Мария Владимировна Солодовник, Галина Ивановна Благодарная, Олеся Викторовна Булгакова

Редактор: Н.З. Алябьев

Корректор: З.И. Зайцева

План 2006, поз.355

Подп. к печати 26.01.2006	Формат 60х84 1/16	Бумага офисная
Печать на ризографе.	Услпеч. лист. 1,0	Учет изд. лист 1
Зак. №	Тираж 150 экз.	Цена договорная
61002, Харьков, ХНАГХ, ул. Революции, 12		

Сектор оперативной полиграфии при ИВЦ ХНАГХ 61002, Харьков, ул. Революции,12