ОАО "АкваБелСистем"

220089 г.Минск ул. Прилукская 48 Тел/факс: +375 17 252 35 50 www.abs.aquaby.by abs@aquaby.by

УВАЖАЕМЫЕ КОЛЛЕГИ

На этих страницах представлены результаты многолетней практической работы коллектива ОАО «АкваБелСистем» по внедрению информационных технологий в области ЖКХ. В частности в создании комплексных систем автоматизации и диспетчеризации технологических процессов водоснабжения и водоотведения

Инициатором создания ОАО «АкваБелСистем» выступила Научно-производственная Ассоциация организаций водопроводно-канализационного хозяйства Республики Беларусь «Аква-Бел».

Миссией предприятия стала профессиональная организация и сопровождение инновационных проектов на предприятиях ЖКХ.

Поэтому сегодня ОАО «АкваБелСистем» развивается как проектно-ориентированная организационная структура, в арсенале которой методы и технологии инновационного менеджмента.

Сфера профессиональных интересов ОАО «АкваБелСистем» включает в себя:

- внедрение информационных технологий;
- пусконаладочные работы вводимых в эксплуатацию объектов ВКХ:
- работы по оптимизации технологических процессов водоснабжения водоотведения и теплоснабжения;
 - услуги Инженера в строительстве объектов ЖКХ.

ОАО «АкваБелСистем» удалось наладить эффективные связи с производителями, поставщиками и подрядчиками, связав их работу в единые кооперационные цепочки. А также объединить под своей крышей лучшие интеллектуальные ресурсы для решения инновационных задач.

Благодаря результатам своей работы сегодня ОАО «АкваБелСистем» по праву признаётся одной из ведущих организаций-новаторов в Республике Беларусь в области ЖКХ.

С.А. Романюк,

директор ОАО «АкваБелСистем»

Научно-производственная ассоциация организаций водопроводно-канализационного хозяйства Беларуси «Аква-Бел» своей основной целью считает объединение творческого потенциала специалистов в деле содействия научно-техническому прогрессу в области водного хозяйства (водообеспечения и водоотведения) и связанных с ним производств.

Перспективы развития водопроводно – канализационного хозяйства в первую очередь связываются с эффективностью инновационной деятельности в отрасли.

Этим и обуславливается существование в настоящий момент потребности в квалифицированном инновационном менеджменте.

С этой целью Ассоциация инициировала создание ОАО «АкваБелСистем», как профессионального менеджера в сфере инновационной деятельности в ВКХ.

В свою очередь, для выделения инновационных процессов белорусского водного Сообщества был создан Брэнд «АкваБел», который призван символизировать собой единство:

- Профессиональных Знаний и Креативных идей;
- Практичность опыта и Энтузиазм новаторства;
- Смелость Планов и Результативность Действий по их реализации.

Графически Брэнд «АкваБел» выражается в виде двух внешне различных, но открытых друг другу людей с распахнутыми на встречу руками.

Сегодня Брэнд «АкваБел» - это ежедневная деятельность Ассоциации «Аква-Бел», это общественные мероприятия ОАО «АкваБелСистем», это работа отраслевого интернет-портала www.aquaby.com.

Надеемся, что инновационные решения, предлагаемые ОАО «АкваБелСистем» под брэндом «АкваБел», будут полезны и в Вашей практической работе.

П.С. Ерофеенко,

исполнительный директор Ассоциации «Аква-Бел»

И І инженерные услуги пусконаладочные работы ОПТИМИЗАЦИЯ

профессионализм Креативность практичность ЭНТУЗИАЗМ ПРАГМАТИЧНОСТЬ инициативность

Главная задача предприятий ВКХ – обеспечить стабильную работу и непрерывное развитие, инженерной инфраструктуры, в соотвествии с потребительскими, санитарными, экологическими, экономическими и прочими стандартами, нормами и правилами.

При этом для Водоканала, всегда важными вопросами остаются оптимальность принимаемых решений, эффективность контроля над ситуацией, обеспечение управляемости существующих процессов, а порой и наведение элементарного порядка в хозяйстве.

В целом основными направлениями в оптимизации работы предприятия ВКХ являются:

Оптимизация технологических процессов

Приведение технологических процессов в соответствие с требуемыми эксплуатационными параметрами и необходимыми технологическими регламентами, при этом с минимальными затратами ресурсов и с учётом территориальной удаленности объектов. Снижение всевозможных потерь и утечек в процессе производства, транспортировки и потребления ресурсов.

Оптимизация управления бизнес-процессами на предприятии

Повышение эффективности управления материальными ресурсами, финансовыми активами, реализацией кадрового потенциала, документооборотом и информационными потоками.

Повышение эффективности (производительности) труда

Снижение негативного влияния человеческого фактора, проявляющегося в неправильных решениях, или в несвоевременных решениях, либо в задержке исполнения правильных и своевременных решений.

Акцентирование работы персонала на реализации своего интеллектуального потенциала, за счет избавления от рутины ручного труда в оперативном управлении оборудованием и механизмами.

Оптимизация инвестиционных усилий

Повышение эффективности диагностики «узких» мест и критических точек в работе предприятия, прогнозирования возможных вариантов развития событий, планирования своих действий и оценки полученных результатов.

Эффективность оптимизации деятельности ВКХ во многом зависит от информационного сопровождения этого процесса. Поэтому сегодня такое внимание уделяется привлечению информационных технологий для решения острых задач в работе Водоканалов.

Исходя из опыта работы ОАО «АкваБелСистем» определило для себя базовые требования к создаваемым продуктам – идеологию информатизации:

Комплексность в подходе и локальность в решениях

Каждое решение разрабатывается исходя из общей политики информатизации на предприятии. Но внедряемые продукты работоспособны независимо от уровня развития информационных технологий на смежных участках технологических процессов. Это позволяет внедрять комплексные инновационные проекты с разбивкой на отдельные этапы и пуско-наладочные комплексы.

Связь и передача данных

Применяемые средства связи должны позволять следить за ситуацией и управлять работой в режиме реального времени (режим on-line), вовремя получать предупреждения о возникновении аварийной ситуации и оперативно принимать меры к ее устранению, независимо от географической удаленности объектов.

Доступность в эксплуатации

Возможности в настройке режимов работы и установления контрольных параметров должны обеспечить максимальную свободу действий в эксплуатации Решения реализуются на основе широко известных и доступных средств и технологий.

Безопасность

Система защиты позволяет исключить несанкционированный доступ и распределить обязанности пользователей в системе, ограничить права доступа к функциональным возможностям.

Способность к модернизации

Возможность поэтапного дополнения новыми функциями контроля и управления, внедрения дополнительного оборудования и сервисов, модернизации с учетом развития информационных технологий.

Интеграция и преемственность

Обеспечение возможности интеграции решений с существующей информационной сетью предприятия (базы данных, ГИС-системы, АСУ ТП и др.) по принципу «Развитие от существующего», а не «Замена на новое с нуля».

ДА!

информационным Технологиям и прогрессу

если хаос нельзя предотвратить — его нужно возглавить...
...и хорошо организовать

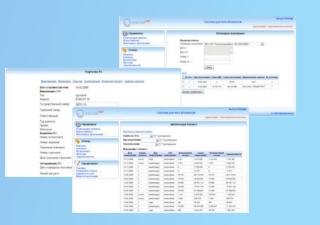
3

если вы не знаете **КУДа ИДТИ,** вас приведёт туда любая дорога

информационные технологии ОАО "АкваБелСистем"

касуп **Арма-Рго**

Комплексная автоматизированная система управления технологическими процессами «Арма-Pro» (КАСУП)


Программно-аппаратный комплекс предназначен для автоматизации и диспетчеризации технологических процессов водоснабжения, водоотведения и теплоснабжения

см. страницу 6

Геоинформационная система (ГИС)

на базе продуктов в области геоинформационных технологий и компьютерного моделирования инженерных коммуникаций компании «Политерм» (Zulu, г. Санкт-Петербург) см. страницу 19

ERP-система «Арма-Erp».

Система планирования ресурсов предприятия — программный комплекс, предназначенный для автоматизации процессов учёта, управления и документооборота

см. страницу 20

Комплексная автоматизированная система управления технологическими процессами «Арма-Pro»

Общее описание

Для обеспечения оптимальных режимов работы технологического оборудования КАСУТП «Арма-Pro» решает следующие задачи:

Информационное обеспечение (статистический учет)

- непосредственное измерение технологических параметров для контроля состояния технологического оборудования.
- своевременный сбор, обработка, отображение (визуализация) и передачи достоверной информации о контролируемых и управляемых параметрах
- протоколирование всех штатных и внештатных ситуаций, действий операторов и оборудования
 - хранение учетных данных и архивирование информации

Оценка ситуации (контроль процесса, аварийное оповещение)

Сравнение в режиме реального времени учетной информации с требуемыми или критическими значениями. Анализ обнаруженных отклонений. Аварийное оповещение с включением звуковой и световой сигнализации.

Настройка параметров работы оборудования (планирование процессов)

Определение предельных и пороговых значений технологических параметров, диапазонов их значений, или создание графиков их изменений. Программирование алгоритмов работы технологического оборудования.

Управление процессами

Формирование и оперативная передача командных сигналов для управления как отдельным оборудованием, включенным в систему, так и технологическим процессом в целом.

эффективный инструмент оптимизации работы водоканала

автоматизация — не роскошь, а средство управления

касуп **Арма-Рго**

Управление технологическим оборудованием, включенным в Комплексную автоматизированную систему управления технологическими процессами «Арма-Pro» может осуществляться в нескольких режимах:

- **1. режим «ABTOMAT»** управление по алгоритмам, установленным на данный момент в АСУТП, без участия диспетчера. Является основным режимом работы технологического оборудования.
- 2. режим «ДИСТАНЦИОННЫЙ» управление диспетчером из диспетчерского пункта, в ситуациях, требующих оперативного вмешательства в технологический процесс.
- **3. режим «РУЧНОЙ»** управление с пультов и щитов непосредственно возле объекта, производится в аварийных ситуациях или для проведения ремонтных и пусконаладочных работ. Перевод оборудования в этот режим производится с обязательным автоматическим уведомлением диспетчера.

Особенности передачи данных

Для выполнения приема и передачи данных между клиентскими программами Комплексной системы управления технологическими процессами «AsconPro» и автоматизированными объектами могут применяться: витая пара, оптоволокно, RS-232, GSM, GPRS, беспроводная связь стандарта WI-FI, радиосвязь и др..

Передача данных может быть осуществлена, как в режиме реального, так и псевдореального времени в зависимости от используемой линии связи.

На практике наибольшее распространение нашла беспроводная GSM/GPRS-связь. По GSM-каналу передаются команды управления и задания режимов работы, а также пороговые и аварийные уровни работы технологического оборудования. По каналу GPRS производится непрерывный опрос технологического оборудования и передача статистических данных.

Выбранный способ связи не требует прокладывания и обслуживания проводок. Стоимость и возможность подключения не зависит от расстояния между удаленным объектом и диспетчерским пунктом. Качество связи обеспечивает оператор, предоставляющий услугу. Наличие GSM-связи не требует грозозащиты и защиты от механических повреждений линии связи.

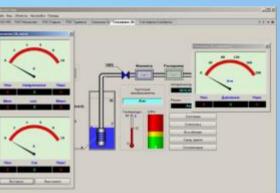
АСУТП первого подъема (скважина)

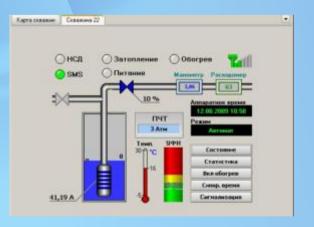
АСУТП первого подъема предназначена для организации контроля и управления процессом добычи воды и подачи ее на сооружения второго подъема или потребителю.

Включение в работу или выключение одной или нескольких скважин, их ротация может осуществляться по решению Диспетчера исходя из уровня воды в резервуаре чистой воды или требуемого давления в сети. Так же возможна автоматическая работа в соответствии с заданными графиками управления артезианскими скважинами (последовательность включения и выключения в зависимости от производительности скважин, времени суток, уровня в резервуаре чистой воды и т.д.).

Система позволяет бесперебойно и круглосуточно измерять и контролировать следующие технологические параметры:

- давление в напорном трубопроводе;
- расход воды в напорном трубопроводе
- нагрузка (ток) электродвигателя насоса;
- состояние электродвигателя насоса;
- режим работы (автоматический, дистанционный, ручной);
- температуру воздуха в павильоне скважины;
- динамический уровень воды в скважине;

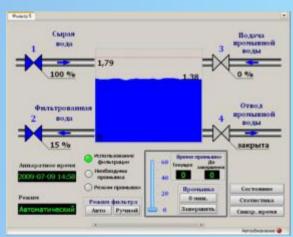

Произвести аварийное оповещение в случае:


- отклонения от нормы контролируемых (измеряемых) параметров.
 - несанкционированного доступа в помещение скважины;
 - «сухого хода» насоса;
 - аварии защиты электродвигателя насоса;
 - аварии устройства плавного пуска;
 - аварии электропривода задвижки;
 - аварии устройства управления приводом задвижки;
 - затопления помещения скважины;
 - выхода из строя источника питания контроллера;

Осуществить функции управления:

- управление погружным насосом артезианской скважины (включение/выключение от устройства плавного пуска).
- управление обогревом павильона скважины в зависимости от температуры воздуха в павильоне (включение/выключение).
- управления приводом запорно-регулирущей арматуры (закрытие, открытие, дроселирование)

ХОРОШО нужно ещё и ВОВРЕМЯ


управление – автоматике руководство ЛЮДЯМ

касуп **Арма-Рго**

9

АСУТП Станции обезжелезивания

Автоматизированная система управления технологическим процессом работы станции обезжелезивания предназначена для организации контроля и управления процессом обезжелезивания воды на фильтрах.

При автоматическом режиме работы предусмотрено два режима промывки фильтров обезжелезивания:

- **1 промывка по времени** диспетчер задает период времени, по истечению которого будет произведена промывка фильтра;
- **2 промывка по уровню** выход на промывку при достижении уровня воды в фильтре выше установленного предельного значения.

Включение и выключение промывных насосов и воздуходувок происходит на основании:

- сигнала о выходе фильтра в промывку;
- управляющих команд диспетчера.

ННасосы и воздуходувки включаются и выключаются в автоматическом режиме. Диспетчеру требуется только указать в программе агрегаты, участвующие в работе.

Система позволяет бесперебойно и круглосуточно измерять и контролировать следующие технологические параметры:

- ток электродвигателя насоса;
- ток электродвигателя компрессора;
- уровень воды в фильтре;
- расход воды на входе станции;
- расход промывной воды;
- положение запорной арматуры;
- состояние электродвигателя насоса;
- состояние электродвигателя компрессора;
- режим работы АСУТП

Произвести аварийное оповещение в случае:

- отклонения от нормы контролируемых (измеряемых) параметров;
 - затопления зала фильтров;
 - затопления машинного отделения;
 - выхода из строя источника питания контроллера.

Функции управления:

- насосами промывной воды;
- компрессорами воздуха;
- электроприводом запорной арматуры.

АСУТП ВНС

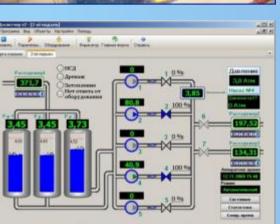
Автоматизированная система управления технологическим процессом работы водопроводной насосной станции (2-го и 3-го подъема, ПНС) предназначена для организации контроля и управления процессом подачи воды в сеть требуемого расхода с требуемым напором.

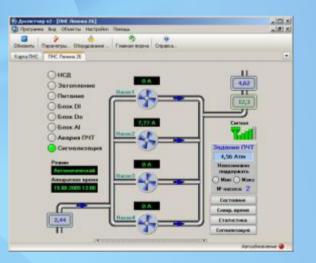
В автоматическом режиме АСУТП параметры работы насосных агрегатов могут задаваться:

- разово, путем установки Диспетчером требуемого порогового значения для соответствующего параметра;
- в виде суточных графиков изменения контрольных параметров.

Кроме включения и выключения насосных агрегатов управление насосами может осуществляться через ПЧТ, с учетом возможности переключения работы одного ПЧТ между насосами.

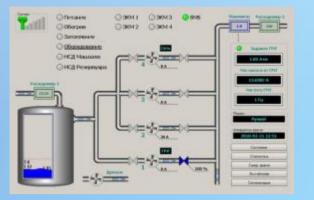
Также алгоритм работы насосов может определяться с учётом показаний, определяемых в контрольных точках.


Система позволяет бесперебойно и круглосуточно измерять и контролировать следующие технологические параметры:

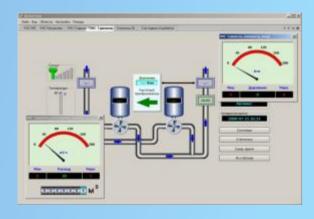

- уровень воды в резервуаре чистой воды;
- давление воды в напорном трубопроводе;
- расход воды в напорном трубопроводе;
- нагрузку частотного преобразователя;
- состояние электропривода насоса;
- состояние частотного преобразователя;
- нагрузку электропривода насоса;положение запорно регулирующей арматуры
- режим работы (автоматический, дистанционный, ручной).

Произвести аварийное оповещение в случае:

- отклонения от нормы контролируемых (измеряемых) параметров,
 - затопления машинного зала;
 - затопления дренажного приямка;
 - аварии защиты двигателя;
 - «сухого хода» насоса;
 - аварии частотного преобразователя
 - выхода из строя источника питания контроллера;
 - несанкционированного доступа на сооружение (РЧВ).



сила есть – УМ Надо



КАСУП Арма-Рго

касуп **Арма-Рго**

Функции управления:

- управление насосами в режиме «от сети» (включение и выключение по пороговым контрольным параметрам;
- управление повысительными насосами в режиме «от сети» с возможностью управления от частотного преобразователя в зависимости от давления воды в напорном трубопроводе;
 - переключение повысительных насосов на ПЧТ;
 - управление системой развоздушивания насосов;
- управление приводом запорно-регулирущей арматуры (закрытие, открытие, дросселирование).

Автоматизированная система управления технологическим процессом работы водопроводной насосной станции формируется с учетом её технической комплектации и технологических режимов работы (наличие РЧВ, станции водоподготовки, необходимость зонирования и т.п.).

АСУ ТП «Контрольные точки»

Автоматизированная система управления технологическим процессом «Контрольные точки» предназначена для оперативного сбора статистической информации о работе водопроводной сети.

Система позволяет круглосуточно измерять и контролировать следующие технологические параметры:

- расход воды на контрольном участке;
- направление движения воды на контрольном участке;
- давление воды в контрольной точке;
- состояние источника питания.

Произвести аварийное оповещение в случае:

• отклонения от нормы контролируемых (измеряемых)

Функциональные возможности контрольных точек позволяют

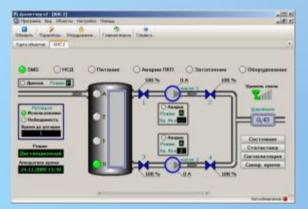
- при составлении водных балансов сети;
- при составлении пьезометрических графиков;
- в качестве «диктующих» точек для определения режимов работы ВНС.

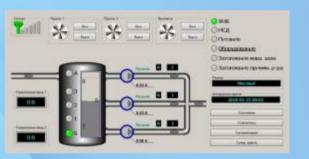
АСУТП КНС

Автоматизированная система управления технологическим процессом работы канализационной насосной станции предназначена для организации контроля и управления процессом перекачки стоков из приемных резервуаров в канализационную сеть.

Система позволяет бесперебойно и круглосуточно измерять и контролировать следующие технологические параметры:

- ток электродвигателей насосов;
- уровень сточных вод в приемном резервуаре;
- состояние электродвигателей насосов;
- режим работы АСУТП;
- давление воды в напорном трубопроводе;
- положение запорно регулирующей арматуры;
- режим работы системы вентиляции.

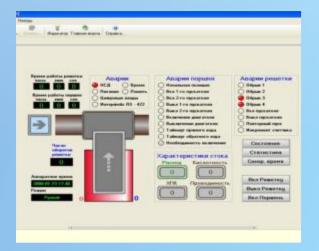

Произвести аварийное оповещение в случае:

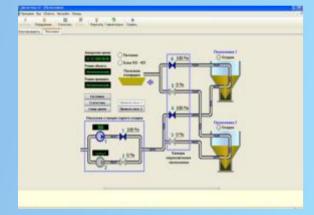

• отклонения от нормы контролируемых (измеряемых)

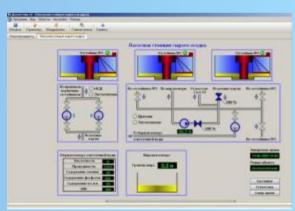
- несанкционированного доступа в здание КНС;
- затопления машинного зала КНС;
- затопления дренажного приямка;
- выхода из строя источника питания контроллера;
- аварии ПЧТ.

Функции управления:

- канализационными насосами по мере наполнения приемного резервуара;
- канализационными насосами от частотного преобразователя с поддержанием требуемого уровня сточных вод в приемном резервуаре;
 - дренажными насосами;
 - вентиляцией;
 - электроприводом запорной арматуры.




KTO предупреждён – вооружен


11

надежность — признак мастерства

уровень ЦИВИЛИЗАЦИИ определяется качеством Канализации

13

АСУТП Очистных сооружений

АСУТП Очистных сооружений состоит из модулей АСУ ТП объектов и сооружений входящих в их состав и Автоматизированной системы контроля качества технологического процесса.

АСУТП решетки процеживания

Система позволяет автоматизировать следующие технологические процессы:

- работа решеток;
- работа транспортеров;
- работа шиберов.

Управление (включение/выключение, ротация в работе) решеток производится:

- по уровню сточных вод в подводящем канале;
- по временному графику, установленному в алгоритме управления;
 - по указанию оператора.

Открытие и закрытие шиберов на подводящих и отводящих каналах, а также включение транспортных линий решеток осуществляется оператором дистанционно в ручном режиме.

АСУТП песколовок

Система позволяет автоматизировать следующие процессы:

- гидроудаление песковой пульпы;
- работа шиберов.

Удаление осадка производится:

- по уровню осадка в секции песколовки (но не реже одного раза в сутки);
 - по временному графику;
 - по указанию оператора.

При удалении осадка из песколовки в соответствии с установленным алгоритмом автоматически открываются и закрываются задвижки на трубопроводах, а также включается и выключается насос гидроэлеватора.

При необходимости предусматривается ротация насосов гидроудаления.

Для перекрытия секций песколовок предусматривается дистанционное управление открытием и закрытием шиберов на подводящих каналах секций песколовок.

АСУТП первичных отстойников и насосной станции сырого осадка

Система позволяет автоматизировать следующие процессы:

- работа илоскребов;
- удаление сырого осадка;
- удаление жировых и плавающих веществ;
- опорожнение отстойников;
- работа шиберов.

Удаление сырого осадка производится:

- по уровню сырого осадка в первичном отстойнике;
- по временному графику;
- по указанию оператора.

Удаление жировых и плавающих веществ из жиросборника роизводится:

- в зависимости от уровня жировых и плавающих веществ;
- по временному графику;
- по указанию оператора.

Закрытие и открытие задвижек на трубопроводах, шиберов на каналах и в распределительной камере, управление насосными агрегатами и илоскребами осуществляется автоматически в соответствии с установленными алгоритмами:

- алгоритм удаления сырого осадка;
- алгоритм удаления жировых стоков;
- алгоритм опорожнения отстойника.

АСУТП аэротенок и воздуходувной станции

Система позволяет автоматизировать следующие процессы:

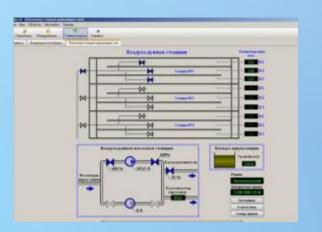
- подача воздуха в аэротенки;
- подача активного ила в аэротенки.

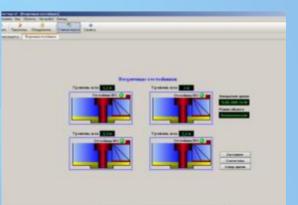
Объем подаваемого воздуха и активного ила определяется качеством подаваемых на очистку сточных вод.

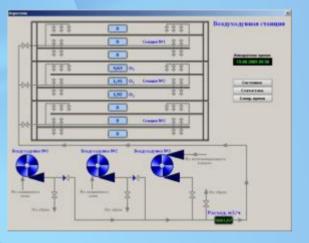
В зависимости от содержания загрязнений в сточной жидкости определяется необходимая концентрация активного ила, а также требуемая концентрация растворенного кислорода.

Подача воздуха в аэротенки осуществляют воздуходувки, установленные в воздуходувной станции. Воздуходувки, расположенные в здании воздуходувной станции, обеспечивают подачу воздуха в секции аэротенок.

Насосы циркуляции ила обеспечивают подачу циркуляционного активного ила в регенератор аэротенок, а также подачу избыточного ила на илоуплотнители.


АСУТП вторичных отстойников


Система позволяет автоматизировать следующие процессы:


- работа илососов;
- опорожнение отстойников;
- работа щитовых затворов.

Закрытие и открытие задвижек на трубопроводах, шиберов на каналах и в распределительной камере, управление насосными агрегатами и илоскребами осуществляется автоматически в соответствии с установленными алгоритмами:

- алгоритм регулирования нагрузки на отстойник задается исходя из уровня и стояния активного ила во вторичном отстойнике, возможно автоматическое изменение нагрузки на отстойник путем частичного закрытия шибера на подводящем канале;
 - алгоритм удаления осадка активного ила;
 - алгоритм опорожнения отстойника.

как очистим СЕГОДНЯ так попьём Завтра

без контроля Начинается

АСУ ТП Контроль качества стоков ОС

Контроль качества стоков на очистных сооружениях предназначен для анализа поступающих стоков и очищенной воды на выходе очистных сооружений, а так же в зависимости от требований заказчика на промежуточных фазах очистки сточных вод. По результатам непрерывного контроля качества стоков можно оперативно регулировать работу системы АСУТП очистных сооружений для реализации требуемых технологических режимов.

Комплекс контролируемых параметров технологических процессов очистных сооружений во многом определяется возможностями комплектации устанавливаемого контрольно-измерительного оборудования (датчики, анализаторы, пробоотборники).

Наиболее распространенными параметрами автоматизированного контроля являются:

- уровень кислотности (рН);
- проводимость;
- содержание взвешенных веществ;
- содержание органических веществ (ХПК);
- содержание фосфатов;
- содержание аммония.

Система позволяет:

- оперативно получать данные о качестве стоков,
- аккумулировать их в базе данных, для дальнейшего анализа со стороны технологических служб.

АСУТП иловой насосной станции

Автоматизированная система управления технологическим процессом работы иловой насосной станции предназначена для управления и контроля процесса перекачки осадка на иловые площадки или сооружения для последующей обработки (переработки) осадка.

Удаление поступившего осадка из приемного резервуара иловой насосной станции предусматривается:

- по уровню осадка в приемном резервуаре;
- по временному графику установленному диспетчером;
- по указанию оператора.

Выбор типа управления процессом удаления (уровень/временной график) производится диспетчером в меню ПО «Диспетчер» верхнего уровня.

АСУТП насосной станций очистных сооружений

Для перекачки дренажных вод получаемых в результате сбора отделяемой влаги с песковых площадок, иловых площадок и иных сооружений обезвоживания, а также хозяйственно-фекальных стоков и дождевых сточных вод на очистных сооружения предусматриваются соответствующие насосные станции.

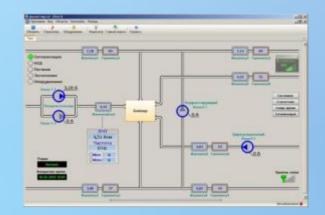
Автоматизированная система управления технологическим процессом работы насосных станций очистных сооружений предназначена для управления и контроля процесса перекачки поступающих в приемные резервуары стоков в соответствующие объекты.

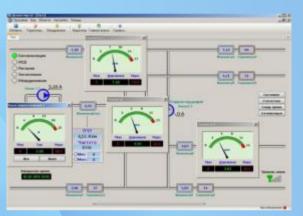
Удаление поступивших стоков из приемного резервуара производится:

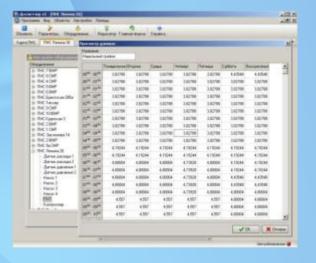
- по уровню стоков в приемном резервуаре;
- по временному графику установленному диспетчером;
- по указанию оператора.

Выбор типа управления удалением (уровень/временной график) производится диспетчером в меню ПО «Диспетчер» верхнего уровня.

АСУТП ЦТП


Система диспетчеризации и автоматизации ЦТП предназначена для мониторинга и эффективного управления технологическим оборудованием центрального теплового пункта и контроля расхода теплоносителя.


Система позволяет бесперебойно и круглосуточно измерять и контролировать следующие технологические параметры:


- давление и температуру теплоносителя на подающем и обратном трубопроводах
 - расход теплоносителя на подающем трубопроводе;
- давление и температуру ГВС на подающем и обратном трубопроводах;
 - расход ГВС на подающем и обратном трубопроводах;
- температуру, давление и расход воды холодного водоснабжения в напорном трубопроводе;
 - нагрузку частотного преобразователя;
 - состояние электропривода насоса;
 - состояние частотного преобразователя;
 - нагрузку электропривода насоса;
 - терморегуляторов;
 - положение запорно регулирующей арматуры;
 - режим работы (автоматический, дистанционный, ручной).

Произвести аварийное оповещение в случае:

- отклонения от нормы контролируемых (измеряемых) параметров;
 - затопления машинного зала;
 - затопления дренажного приямка;
 - аварии защиты двигателя;
 - «сухого хода» насоса;
 - аварии частотного преобразователя;
 - выхода из строя источника питания контроллера;
 - несанкционированного доступа на сооружение.

ЭКОНОМИЯ — не когда дешевле а когда НЕТ ЛИШНЕГО

15

касуп **Арма-Рго**

...до модернизации

Функции управления:

- управление повысительными насосами холодной воды с возможностью управления от частотного преобразователя в зависимости от давления воды в напорном трубопроводе.
- управление повысительными подачи теплоносителя с возможностью управления от частотного преобразователя в зависимости от давления воды в напорном трубопроводе;
 - переключение повысительных насосов на ПЧТ
 - управление циркуляционными насосами;
 - управление корректирующим насосом;
- управления приводом запорно-регулирущей арматуры (закрытие, открытие, дросселирование).

АСУТП Индивидуального теплового пункта

Система позволяет бесперебойно и круглосуточно измерять и контролировать следующие технологические параметры:

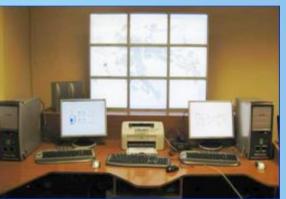
- температура и давление в подающей линии контура отопления;
 - температура и давление в обратном контуре отопления;
 - давление в линии подачи холодной воды;
 - температура в линии подачи горячего водоснабжения; Функции управления:
 - регулирование технологических режимов;
 - автоматическая задача регулирования температуры.

АРМ Специалиста

Взаимодействие Пользователя с КАСУТП «Арма-Pro» осуществляется через соответствующие автоматизированные рабочие места специалистов (АРМ)

Программное обеспечение АРМ специалиста представлено программным комплексом:

- «Диспетчер», 1 Программное обеспечение обеспечивающее оперативное управление Пользователем АСУТП
- обеспечение 2 Программное «Аналитика», позволяющее Пользователю анализировать накапливаемую статистическую информацию о состоянии и работе технологического оборудования в форме отчетов (в виде таблиц или графиков).
- 3 Программное обеспечение «Аварийное **оповещение**» – гарантирующее своевременное уведомление диспетчера о сложившейся аварийной ситуации.

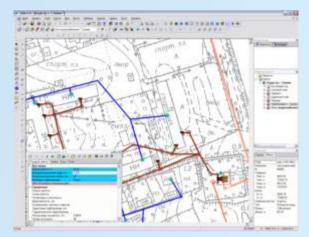

Возможности настройки КАСУТП «Арма-Pro» и система авторизации Пользователей позволяет формировать АРМ специалиста с различным набором сервисов и функциональных возможностей:

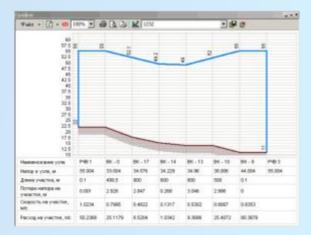
По степени охвата – от локальных АРМ оператора отдельной АСУТП до Единого диспетчерского пункта, который позволяет осуществлять полное управление всеми действующими на предприятии АСУ ТП.

По уровню доступа – от предоставления отдельных функции управления и контроля, или доступа к определенной статистической информации (АРМ главного инженера, технолога, мастера, аналитика и т.п.) до полного доступа ко всем функциям и сервисам (АРМ «Диспетчер»).

С учетом возможностей технологий применяемых для передачи данных КАСУТП «Арма-Pro» позволяет создавать конфигурацию пользовательской сети с максимальной адаптацией под требования организационной структуры Водоканала. В частности с возможностью создания Центральной диспетчерской и сети локальных (местных) диспетчерских пунктов и операторских, где функции контроля и управления конкретными АСУ ТП могут распределяться или дублироваться между субъектами управления.

...после модернизации


экономьте.. смысле


17

пришёл увидел Сделал

Геоинформационная система

Сегодня эффективное управление территориально – распределенной системой инженерных сетей населенного пункта невозможно без представления об их пространственной структуре.

С учетом наметавшейся тенденцией укрупнения эксплуатирующих организаций в результате поглощения и слияния, а также роста обслуживающей инфраструктуры водоснабжения и водоотведения за счет строительства и присоединения ведомственных сетей и сооружений проблема территориальной удаленности объектов обостряется.

Геоиформационная система реализована на основе продуктов компании «Политерм» (Zulu) (г. Санкт-Петербург). Тесные партнерские отношения с разработчиками системы позволяют оперативно учитывать пожелания и замечания клиентов.

Применение ГИС в практической работе предприятия ВКХ позволяет воспользоваться следующими преимуществами программы:

Визуализация данных — графическое представление инженерных сетей и объектов с привязкой к масштабному плану местности элементов системы. Топографическое фиксирование событий на сетях и сооружениях (авария, отключение участков и т.п.) Выделение на схеме сети объектов с заданными свойствами (ремонт, чужой баланс, колодцы с гидрантами и т.п.).

Систематизация данных – паспортизация инженерных сетей и объектов путем приведения в единую унифицированную форму всей имеющейся информации о структуре, размерах и характеристиках инфраструктуры.

Моделирование — определение отключенных (включенных) абонентов и участков при переключении запорной арматуры. Определение месторасположения запорной арматуры для отключения требуемого (аварийного) участка. Гидравлический расчет водопроводной сети (поверочный, конструкторский). Построение профилей и пьезометрических графиков вдоль заданного пути. Моделирование потокораспределения в сети и его изменения. Оценка перспектив развития сетей.

Главное эксплуатационное преимущество предлагаемой ГИС заключается в созданной возможности взаимодействия её с другими информационными продуктами ОАО «АкваБелСистем». В результате информация от КАСУ ТП принимается ГИС как исходные данные для расчетов и моделирования. Благодаря объему и качеству информации поступающей от КАСУ, её постоянной актуализации, формируется максимально правдоподобная математическая модель работы системы водоснабжения и водоотведения. Постоянное сравнение и анализ математической модели с реальными данными контрольных точек и основных объектов водоснабжения позволяет оперативно выявлять проблемные участки сети и производить оптимизацию работы инженерных сетей (в том числе зонирование).

ERP-система «Arma-ERP»

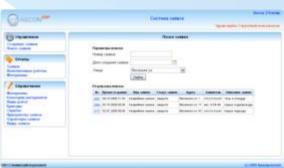
ERP-система (англ. Enterprise Resource Planning System — Система планирования ресурсов предприятия) — программный комплекс, предназначенный для автоматизации учёта, управления и документооборота.

Система «Арма-Егр» построена по модульному принципу в виде специализированных самостоятельных модулей (Приложений), позволяющих сформировать электронный документооборот по ключевым процессам управления ресурсами.

В настоящее время в рамках системы «Арма-Erp» реализованы приложения:

- система заявок;
- биллинговая система;
- автотранспорт.

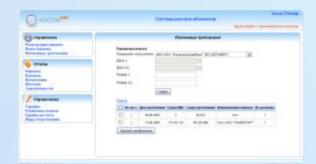
Приложение «Система заявок»


Приложение «Система заявок» предназначено для регистрации и обработки заявок от организаций и населения на аварийновосстановительные, плановые и другие работы, для ведения истории работ по заявкам, учета материалов, которые были израсходованы во время выполнения работ по заявкам. Также данное приложение предназначено для получения соответствующих отчетов по заявкам, выполненным работам и потраченным материалам, обеспечения оперативного контроля в этой сфере и формирования необходимого документооборота в электронной форме.

Приложение «Система заявок» должно поддерживать следующие функциональные возможности:

- Формализация видов, характеров и приоритетов заявок с помощью справочников;
- Формализация служб и бригад, обрабатывающих заявки, с помощью справочников;
- Формализация видов работ и потраченных материалов по заявкам с помощью справочников;
- Регистрация заявок, просмотр и редактирование информации по заявкам, фиксирование выполненных заявок и их удаление из системы;
 - Ведение истории выполненных работ по заявкам;
- Ведение списка потраченных материалов по выполненным аботам;
- Просмотр отчетов по заявкам, выполненным работам и потраченным материалам.

Приложение «Система заявок» призвано поддерживать систему контроля над действиями пользователей.



полезная и нформация – когда точная и своевременная

копейка рубль бережёт

Приложение «Биллинговая система»

Приложение «Биллинговая система» предназначено для информационного сопровождения отношений с Абонентами и состоит из следующих подсистем:

- система расчета абонентов;
- система учета абонентов.

Приложение «Система расчета абонентов»

Приложение «Система расчета абонентов» предназначено для ведения балансов клиентов: выполнение начислений клиентам с формированием платежных требований и выдачей счет-фактур, регистрация платежей клиентов, выполнение оплаты и списания начислений. Также данное приложение предназначено для получения отчетов по балансу клиентов, выполненным начислениям, сформированным платежным требованиям, выполненным списаниям, платежам и задолженностям клиентов за отчетный период.

Приложение «Система расчета абонентов» должно поддерживать следующие функциональные возможности:

- Регистрация клиентов, просмотр и редактирование информации по зарегистрированным клиентам, удаление клиентов из системы;
- Выполнение начисления по группе расчета и виду потребления, согласно текущим тарифам и учтенным объемам потреблений в системе учета абонентов по абонентам, которых оплачивает клиент, с возможностью детализации начисления по абонентам;
- Возможность выполнения начисления перерасчета с возможностью детализации его расчета, при наличии оплат предыдущих начислений, если тариф на момент оплаты не равен тарифу на момент начисления;
- Возможность выполнения начисления индексации с возможностью детализации ее расчета, при наличии предыдущих начислений, тариф которых не соответствует тарифу в истории (ввод новых тарифов задним числом);
 - Регистрация платежей клиента;
- Просмотр информации по балансу клиента, с возможностью детализации по группам расчета и видам потреблений: неоплаченный объем, задолженность (сальдо дебет), переплата (сальдо кредит);
- Ведение истории начислений по клиенту, платежей клиентов, тарифов по группам расчета и видам потреблений, списаний;
- Получение счет-фактур по начислениям клиента с детализацией по группам расчета, видам потреблений, перерасчету и индексации;
 - Ведение реестра платежных требований;
- Просмотр отчетов по платежным требованиям, реестру платежных требований, начислениям, платежам, списаниям, задолженностям, с использованием фильтров.

Приложение «Система учета абонентов»

Основное назначение программы «Система учета абонентов» заключается в электронном представлении информации по потребляемым абонентами объемам, с хранением и возможностью просмотра истории по потреблению.

Основным информационным элементом программы является потребляемый абонентом объем и история потребления. Информация программы оформляется в виде электронных карточек. Также для формализации данных используются справочники. Выделены следующие карточки:

- Карточка абонента. Данная карточка содержит информацию об абоненте, об источниках показаний абонента и об учетах потреблений по абоненту;
- Карточка источника показаний. Данная карточка содержит информацию об источнике показаний, историю показаний и историю счетчиков;
- Карточка учета потреблений. Данная карточка содержит информацию об учете потреблений и историю учета.

При работе с отчетами программы «Система учета абонентов» поддерживаются следующие функциональные возможности:

- Просмотр отчета с выбранным фильтром (по абонентам, по счетчикам, по учетам потреблений);
 - Просмотр отчета определенной структуры;
 - Просмотр отчета по карточке;
 - Печать отчетов.

Приложение «Автотранспорт»

Приложение «Автотранспорт» предназначено для информационного сопровождения в отношении автотранспортной и тракторной техники и состоит из следующих подсистем:

- система учета автотранспорта;
- система расчета автотранспорта.

Приложение «Система учета автотранспорта»

Основное назначение программы заключается в электронном представлении информации по транспортному средству (TC), с хранением и возможностью просмотра истории по его эксплуатации.

Основным информационным элементом программы является само транспортное средство и история его эксплуатации. Информация программы оформляется в виде электронных карточек. Также для формализации данных используются справочники. Выделены следующие карточки:

- Карточка сотрудника. Данная карточка содержит информацию о сотруднике службы автотранспорта;
- Карточка ТС. Данная карточка содержит информацию о ТС и историю его эксплуатации;
 - Карточка материала. Данная карточка содержит

сберёг заработал

информацию о материале, по которому необходимо вести учет эксплуатации (шины, аккумуляторы и др.) и его историю.

При работе с отчетами поддерживаются следующие функциональные возможности:

- Просмотр отчета с выбранным фильтром (по сотрудникам, по ТС, по мероприятиям, по выполненным работам, по материалам, по карточкам материалов);
 - Просмотр отчета определенной структуры;
 - Просмотр отчета по карточке;
 - Печать отчетов и документов.

Приложение «Система расчета автотранспорта»

Основное назначение программы заключается в электронном представлении информации по путевым листам транспортного средства, по движению материалов, по учету рабочего времени сотрудников.

Учетная информация о путевых листах транспортных средств, о материалах и рабочем времени сотрудника, фиксируются в программе в виде соответствующих электронных документов.

При работе с отчетами поддерживаются следующие функциональные возможности:

- Просмотр отчета с выбранным фильтром (по учету материалов, по учету рабочего времени, по расходу топлива, по расходу материалов, по путевым листам);
 - Просмотр отчетов по путевому листу, историям учета;
 - Печать отчетов.

Наряду с модернизацией и развитием уже созданных информационных продуктов идет работа над решением принципиально новых задач.

Среди проектов находящихся в стадии разработки и опытной эксплуатации выделяются:

- Проект «Автоматизированная система мониторинга стоков»
- Корпоративная информационная система предприятия ВКХ (КИС)

Автоматизированная система контроля качества стоков

Контроль качества стоков начинается с контроля сбросов основных предприятий загрязнителей. Для этого на выходном канализационном коллекторе у Абонентов устанавливается пробоотборник с набором необходимых датчиков и анализаторов, которые осуществляют анализ превышения норм по содержанию веществ загрязняющих сточные воды. В случае превышения требований, контроллер дает команду пробоотборнику на забор пробы, а так же оповещает дежурные службы водоканала о произошедшем событии. Это позволяет мобильно принять решение о подготовке дополнительных мер на очистных сооружениях, а так же дает основание для создания рекламации к предприятию – загрязнителю.

С учетом работы АСУ ТП «Контроль стоков ОС» специалисты получают уникальные данные для анализа процессов очистки и информационной подготовки соответствующих решений.

Корпоративная информационная система предприятия ВКХ (КИС)

Создание и развитие КАСУ ТП «Арма-Pro», ERP-системы «Арма-Erp» и ГИС на основе единой идеологии ОАО «АкваБелСистем» позволило подойти к объединению их в единую комплексную информационную систему.

Результатом этой работы стало появления АРМ центрального диспетчерского пункта (ситуационного центра, оперативного штаба и т.п.), где в режиме реального времени сводится вся оперативная информация от автоматизированных объектов и от АРМ специалистов.

Создание специализированного программного обеспечения для хранения, архивирования и обработки данных, поступающих на АРМ ЦДП, открывает новые возможности для аналитической работы на предприятии. АРМ «Аналитика» позволяет формировать различные отчеты в виде таблиц и диаграмм, сопоставляя данные из различных источников и производя расчеты на их основе.

чем больше ЗНАЕМ тем меньше подозреваем

для оптимизации работы

энергосбережение ресурсосбережение срок эксплуатации Надежность качество очистки производительность труда

утечки и потери **ХИЩЕНИЯ** разгильдяйство

В оптимизации технологических процессов:

Внедрение АСУ ТП позволяет организовать рациональную работу технологического оборудования в автоматическом режиме в зависимости от реального водопотребления и в строгом соответствии с требуемыми алгоритмами, и тем самым снизить давление в сети, избежать перегрузок насосного оборудования, устранить гидравлические удары. Как результат: снижение потерь воды, уменьшение количества аварий (повышение надежности), снижение электропотребления, увеличения срока службы оборудования и сетей. Создаются реальные условия для проведения работ по наладке и интенсификации водопроводной сети.

В оптимизации управления бизнес-процессами на предприятии:

Возможность реализовать контроль и управление процессами в режиме реального времени независимо от расстояния между субъектами и объектами управления, позволяет по-новому взглянуть на формирование организационной структуры Водоканала и организацию оперативной и аналитической работы. Тем самым изыскав новые резервы для повышения оперативности в действиях и снижение эксплуатационных затрат на обслуживание территориально распределенных объектов.

Постоянное автоматическое фиксирование событие позволяет повысить качество контроля над процессами предприятия и тем самым снизить непроизводительные потери и затраты.

В повышении эффективности (производительности) руда:

Рабочий персонал избавляется от рутины в управлении технологическим оборудованием, в сборе и документировании контрольных параметров. Система работает в соответствии с выверенными оптимизированными алгоритмами 24 часа в сутки без перерывов на обед и прочих пересменок. Действие персонала автоматически протоколируется. Всё это позволяет снизить отрицательное проявление «человеческого фактора», повысить ответственность персонала, и сконцентрировать усилия сотрудников на реализации своего интеллектуального потенциала на анализе ситуации и поиске эффективных решений.

В оптимизации инвестиционных усилий:

Наличие учетных данных о состоянии оборудования и технологических процессов, о действии персонала в формате удобном для соответствующей обработки позволяет повысить качество аналитической работы на предприятии, повысить эффективность прогнозирования развития ситуации, в том числе за счёт применения методов математического моделирования и статистического анализа. Следствием этого выступает повышение качества планирования на предприятии и качества инженерных расчетов при проектировании и подборе решений.

Наряду с выгодами в области оптимизации процесс внедрения информационных технологий позволяет получить дополнительные плюсы.

Инвентаризация имущественного комплекса

В ходе паспортизации объектов и сооружений, заполнения справочников программного обеспечения, привязки на местности оборудования АСУ ТП и внедрения ГИС происходит учет имеющегося имущественного комплекса, оценка его состояния и фиксирование полученной информации. В процессе непосредственной работы с продуктами информационных технологий существующая информация постоянно актуализируется.

Система мониторинга целевых показателей

В итоге автоматизации и диспетчеризации процессов на предприятии появляется возможность создания эффективной системы мониторинга целевых контрольных показателей. В частности в отношении показателей энергосбережения, ресурсосбережения и т.п.

Критический анализ существующих бизнес-процессов

В процессе внедрения информационных технологий, возникает необходимость в анализе сложившихся на предприятии бизнеспроцессов. Следствием этой работы часто является полная реорганизация отношений на предприятии с выходом на новый качественный уровень в организации работы.

Модернизация кадрового ресурса

Информационные технологии — это не решение проблем, а только инструмент. И эффективность его применения определяется профессионализмом тех, кто этим инструментом пользуется. Для профессионалов — это расширение своих возможностей, для остальных — ещё одна головная боль. Следствием работы по внедрению информационных технологий является формирование квалификационной команды специалистов, способной решать задачи стратегического развития предприятия.

Эффективное управление удаленными объектами, в том числе и в сельской местности или иных населенных пунктах

Использование интернет - технологий и GPRS-связи позволяет передать на любое расстояние оперативную информацию, необходимую для мониторинга и оперативного управления производственными процессами.

контрольные показатели эффективные бизнес-процессы команда профессионалов расширение сферы влияния

выгоднее всего не прозевать Выгоду

Сопровождение инвестиционного проекта на всех этапах его реализации

- обследование и разработка технического задания;
- разработка проектно-сметной документации;
- поставка полного комплекта оборудования;
 квалифицированный и качественный монтаж;
- р проведение пуско-наладочных работ и обучение

обслуживающего персонала;

• гарантийное и сервисное обслуживание.

Индивидуальный подход

Модульность продуктов и технических решений, тесное взаимодействие с производителями оборудования и программного обеспечения, открытость протоколов и программного кода позволяет гибко формировать предложения для Заказчика:

- исходя из планируемого бюджета;
- исходя из требуемых сроков;
- исходя из рекомендаций Заказчика в отношении поставщиков и подрядчиков;
- исходя из необходимости взаимодействия с уже существующими у Заказчика оборудованием и программным обеспечением и т.п.

Уважение независимости Заказчика

Широкое применение уже созданных, известных и зарекомендовавших себя решений, программных продуктов и оборудования позволяет Заказчику не только избежать лишних затрат связанных с «индивидуальностью разработки», но и уйти от «диктата поставщика» в процессе эксплуатации.

4

Рациональность

Как показывает практика, не существует предприятий ЖКХ, за исключением самых запущенных, на которых отсутствовали бы какие-либо приборы учёта, системы локальной автоматизации и прочее. Благодаря своим профессиональным возможностям и широким партнерским отношениям мы способны работать с практически любым сторонним оборудованием. Идеологией нашего предприятия является не «выбросить всё и поставить новое», а «дополнить и обновить существующее».

Отраслевая специализация

Основным направлением нашей деятельности является именно ЖКХ (водоканалы, теплосети, ЖЭКи и пр.). По данному направлению мы работаем уже не один год. Нам хорошо известны проблемы и трудности предприятий ЖКХ, нюансы и специфика их работы.

IT – раздвигай границы сокращай расстояния

наши продукты работают

29

МГКУП «Теплоэнергетика» (г.Могилев)

ОАО «Верхнедвинский маслосырзавод» ОАО «Слонимский водоканал»

РУП «Белорусский Металлургический Завод» (г. Жлобин)

УКПП «Чериковский жилкоммунхоз»

УП «Полоцкводоканал»

УП «Речицаводоканал»

Филиал «Телеханский ГУПП «Ивацевичского ЖКХ»

Российская Федерация

МУП «Водоканал» (г.Обнинск) ОАО «Автодизель» (г.Ярославль)

Украина

Коммунальное предприятие «Ильичевксводоканал» Коммунальное предприятие «Теплотранссервис» (г.Ровно)

На предприятиях информационные технологии с момента своего внедрения стали незаменимым инструментом в практической работе. Это проявляется в постоянно растущих запросах и требованиях со стороны Пользователей.

Откликаясь на это, идет постоянная работа по развитию уже существующих систем автоматизации и диспетчеризации: охватываются новые объекты, расширяются функциональные возможности, модернизируется оборудование и технологии.

Процесс внедрения информационных технологий необратим. Потребность в нем продиктована требованиями уже нынешнего дня.

И Передовики в этой области всё дальше уходят вперед, открывая перед собой всё новые возможности для своего развития.

Нужно понимать, что сегодня откладывание на завтра может стоить отставанием на годы...

ул. Прилукская 48 220089 г.Минск Тел/факс: +375 17 252 35 50 www.abs.aquaby.by abs@aquaby.by

ОАО "АкваБелСистем" готово в кратчайшие сроки

предоставить

исчерпывающую консультацию

провести презентацию

с демонстрацией возможностей своих решений в удобном для Вас месте

организовать обучающий семинар

на базе действующих предприятий ВКХ для ознакомления с мнением Ваших коллег об эксплуатируемых решениях

мы радуемся когда они есть

в любом деле важно: знать, как сделать взять и сделать

