Научно-производственное предприятие ЭргоМера измерения в энергетике

Счетчик жидкости ультразвуковой двухканальный «Эргомера-125.Б»

Руководство по эксплуатации ЭУС 125.03 РЭ. Версия 02

Днепропетровск 2006

СОДЕРЖАНИЕ

Введение
1. Назначение
2. Технические данные
3. Комплект поставки
4. Устройство и принцип работы
5. Использование по назначению
6. Техническое обслуживание
7. Маркировка и пломбирование
8. Поверка
9. Неисправности
10. Хранение и транспортирование
Приложение А. Условное обозначение счетчика при заказе и в документации
другой продукции
Приложение Б. Лист заказа для приобретения счётчика на предприятии –
изготовителе
Приложение В. Внешний вид преобразователей пьезоэлектрических
Приложение Г. Внешний вид расходомерных участков
Приложение Д. Шлюзовая камера, чертеж
Приложение Е. Внешний вид счетчика «Эргомера-125», габаритный чертеж
Приложение Ж. Коммутационный отсек, обозначение контактов
Приложение И. Подключение внешних преобразователей расхода, давления,
температуры, электрическая схема
Приложение К. Шкаф монтажный, установочные и присоединительные размеры
Приложение Л. Внешний вид преобразователя температуры ТСПР-0196
Приложение М. Размещение информации на индикаторе
Приложение Н. Вид протокола архива
Приложение П. Подключение внешних устройств по интерфейсам RS232/RS485,
построение информационной сети, электрическая схема
Приложение Р. Зависимость кинематической вязкости воды от температуры,
таблица
Приложение С. Зависимость скорости звука в воде от температуры, таблица

ВВЕДЕНИЕ

Руководство по эксплуатации содержит технические данные, описание принципа действия и устройства, а также сведения, необходимые для правильной установки и эксплуатации счетчиков жидкости ультразвуковых двухканальных Эргомера-125.Б.

Руководство по эксплуатации распространяется на счетчики жидкости ультразвуковые Эргомера -125.Б, изготавливаемые для промышленности и коммунального сектора, а также на счетчики, поставляемые на экспорт.

Счётчики выпускаются в следующих исполнениях:

- Эргомера-125.Б-В1, врезной с РУ, тип которого определяется диаметром и требованиями Заказчика:
 - Эргомера-125.Б-В2, врезной с врезкой ППЭ непосредственно в трубопровод по месту;
 - Эргомера-125.Б-Н1, накладной стационарный;
 - Эргомера-125.Б-Н2, накладной переносной с автономным питанием.
 - Эргомера- 125.Б-Ех, взрывобезопасное,
 - Эргомера-125.Б-В2 с применением шлюзовой камеры,
 - Эргомера-125.Б-В2 врезка без опорожнения трубопровода,
 - Эргомера-125.Б-В2 для измерений при давлении до 90 МПа,
 - Эргомера-125.Б-В2 при температуре до 280°C,
- Эргомера-125.Б-В2 для различных жидких сред (кислоты, пульпа, сжиженный газ, нефте, коксохимические, пищевые продукты),

Монтаж счётчиков накладных не требует остановки потока и разгерметизации трубопровода.

Шлюзовые камеры обеспечивают извлечение ППЭ из трубопровода и последующую установку без остановки потока. Применяются при измерении загрязненных жидкостей и образовании отложений на внутренней поверхности трубопроводов.

Врезка без остановки потока обеспечивает установку ППЭ в случае практической невозможности опорожнения трубопровода.

Счётчики могут применяться как автономно, так и в многоканальных системах сбора информации, в том числе в реальном времени.

Счетчики обеспечивают возможность хранения в энергонезависимой памяти и вывода через интерфейс архивов результатов измерений, аварийных ситуаций, событий.

Счётчики являются программируемыми устройствами и могут обеспечивать различные функции по согласованию с Заказчиком: работа в режиме дозатора, управление насосами, задвижками, измерение реверсивных потоков и другие.

Счётчики аттестованы органами Госстандарта Украины, Белоруссии и допускаются к эксплуатации в пунктах коммерческого и технологического учета холодной и горячей воды, стоков, других жидкостей.

Счётчики соответствуют ТУ У 33.2-24234435.003-2001 и занесены в Госреестр Украины под № У1534-01.

Предприятие – изготовитель оставляет за собой право внесения изменений в схему и конструкцию прибора, не ухудшающих технических и эксплуатационных характеристик счетчика.

По вопросам приобретения, установки, эксплуатации и сервисного обслуживания обращаться на предприятие-изготовитель:

<u>ЧНПП "Эргомера"</u> г. Днепропетровск. Почтовый адрес 49099 а/я 5061, т/факс (0562) 32.22.72, 32.19.69., 35-76-76. Офис 49008 ул. Рабочая 23В. E-mail mailbox@ergomera.dp.ua

Принятые обозначения

ЖКИ жидкокристалический индикатор ПТ преобразователь температуры ПД преобразователь давления

ПИ преобразователь измерительный ППЭ преобразователь пьезоэлектрический

ПЭВМ персональная электронно-вычислительная машина

РУ расходомерное устройство ПО программное обеспечение

УПД устройство переноса данных от счетчика в ПЭВМ

1. НАЗНАЧЕНИЕ

Счетчики Эргомера-125.Б предназначены для измерения объема и объемного расхода жидкости в двух трубопроводах встроенными ультразвуковыми расходомерами и в двух трубопроводах внешними счетчиками с импульсными выходами в соответствии с действующими правилами учета отпуска и потребления воды и других жидкостей на промышленных объектах и объектах коммунального хозяйства.

Счетчики Эргомера-125.Б предназначены также для измерения температуры жидкости тремя термопреобразователями сопротивления, избыточного давления жидкости тремя датчиками давления, времени наработки и простоя.

Счетчики Эргомера-125.Б предназначены для работы в автоматизированных системах измерения, контроля и управления, обеспечивают непрерывное преобразование измеряемых величин – расхода, температуры, давления в унифицированные токовые, импульсные сигналы, в цифровой сигнал по протоколу обмена интерфейса RS-232 или RS-485.

Счетчики Эргомера-125.Б предназначены для коммерческого и технологического учёта воды, стоков и любых других жидкостей в промышленности, в том числе пищевой.

Счетчики обеспечивают индикации физических величин и служебной информации, ведение обширного архива.

Счетчики обеспечивают измерение массы и массового расхода воды. В случае использования другой жидкости возможность измерения массы и массового расхода согласуются с предприятием – изготовителем.

Счетчики исполнения Эргомера-125.Б-Ех предназначены для работы во взрывоопасных условиях согласно ГОСТ22782.0, ГОСТ22782.5.

Условное обозначение счётчика для заказа и использования в другой документации составляется по структурной схеме, приведенной в Приложении А.

При заказе счетчиков следует указать данные, приведенные в листе заказов (Приложение Б).

2. ТЕХНИЧЕСКИЕ ДАННЫЕ

2.1. Измерительные каналы и их характеристики.

2.1.1. Вид и количество каналов измерения и вывода данных.

Каналы измерения расхода ультразвуковые	2
Импульсные входы для подключения внешних расходомеров	2
Каналы измерения температуры	3
Каналы измерения давления	3
Токовые выходы, пропорциональные расходам, по заказу	2
Импульсные выходы пропорциональные расходам	2
Интерфейс RS232	1
Интерфейс RS485, по заказу	1

2.1.2. Метрологический диапазон измерения объемного расхода жидкости - от $0.02~q_{max}$ до q_{max} . Максимальный расход соответствует скорости потока 5 м/с, по заказу 10 м/с.

Числовое значение q_{max} , выраженное в метрах кубических в час, определяется по формуле:

$$q_{max} = 4500\pi^{\times} d^{2}$$
,

где d – числовое значение измеренного внутреннего диаметра РУ, выраженное в метрах.

Диапазоны измерения расхода с нормированной точностью при различных номинальных внутренних диаметрах трубопровода или РУ приведены в таблице 2.1.

Таблица 2.1.

Номинальный внутренний	Минимальный расход, q (m) _{min} , м ³ /ч		Максимальный расход,
диаметр DN, мм	исполнение В-1, В-2	исполнение H-1, H-2	q (m) _{max} , м ³ /ч (τ/ч)
10	0,028	-	1,4
20	0,11	_	5,6
25	0,18	_	8,8
40	0,46	_	23
50	0,7	_	35
80	1,8	4,5	90
100	2,8	7,0	140
150	6,3	15,8	330
200	11,2	28,0	560
300	25,2	63,0	1260
400	45	112,5	2250
500	70	175	3500
800	180	450	9000
1000	280	700	14000
1400	548	1370	27400
2000	1120	2800	56000
3000	2520	6300	126000

Метрологический диапазон измерения расхода с нормированной погрешностью соответствует скорости потока 0.1-5.0 м/с для врезного счетчика и 0,25-5,0 м/с для накладного счетчика.

Технологический диапазон измерения расхода для врезного счётчика 0.01-10 м/с, накладного счетчика 0,025-10 м/с.

По заказу изготавливаются счетчики для максимального расхода соответствующего скорости потока 10 м/с.

2.1.3. Диапазоны измерения:

- температуры жидкости от 1 до 150 °C (до 280 °C по спецзаказу);
- избыточного давления жидкости от 0 до 2,4 МПа (до 90 МПа по спецзаказу);
- объемного расхода покупными счетчиками воды с импульсным выходом, входящими в состав счётчиков, в зависимости от номинального диаметра от 0,06 до 1260 м³/час.

Диапазоны измерения температуры, давления и объемного расхода счетчиками воды с импульсным выходом определяются типом датчиков и покупных счетчиков, применяемых в конкретной комплектации.

2.1.4. Цена импульса выходного сигнала в зависимости от диаметра РУ устанавливается программно.

Диаметр, мм	Цена импульса, дм ³	Диаметр, мм	Цена импульса, дм ³
20 - 40	0.02 - 0.04	200 - 400	2
40 - 60	0,05	400 - 600	5
60 – 100	0,2	600 - 1000	20
100 - 200	0,5	1000 - 2000	50 - 100

2.9.1. Гальваническая изоляция цепей входных и выходных импульсных каналов счетчика от цепей питания прибора до 1500 В.

2.2. Погрешности измерений.

2.2.1. Пределы допускаемой относительной погрешности врезных счётчиков при измерении объема и среднего объемного расхода:

в интервале диапазона объемного расхода от 0,1 q_{max} до q_{max} \pm 1,0 % в интервале диапазона объемного расхода от 0,02 q_{max} до 0,1 q_{max} \pm 1,5 %

2.2.2. Пределы допускаемой относительной погрешности накладных счётчиков при измерении объема и среднего объемного расхода:

в интервале диапазона объемного расхода от 0,1 q_{max} до q_{max} \pm 1,5 % в интервале диапазона объемного расхода от 0,05 q_{max} до 0,1 q_{max} \pm 2,0 %

- 2.2.2. Пределы допускаемой относительной погрешности ПИ при $\pm 0,5$ %. преобразовании входных сигналов от счетчиков воды с импульсными выходами в значение объема и массы
- 2.2.3. Пределы допускаемой приведенной погрешности счётчиков при $\pm 0,5\%$. преобразовании значений объёмного (массового) расхода, температуры, давления в токовый выходной сигнал 0-5 мA (4-20 мA) без учёта погрешности измерения этих физических величин
- 2.2.4. Пределы допускаемой абсолютной погрешности ПИ при индикации $\pm\,0,2\,^{\circ}$ С температуры и преобразовании входных сигналов, поступающих от термопреобразователей сопротивления
- 2.2.5. Пределы допускаемой приведенной погрешности счётчиков при измерении избыточного давления:

при использовании преобразователей избыточного давления класса 0,25 \pm 0,75 % при использовании преобразователей избыточного давления класса 0,5 \pm 1,0 % при использовании преобразователей избыточного давления класса 1,0 \pm 1,5 %

- 2.2.6. При использовании термопреобразователей сопротивления класса точности «В» допускаемая абсолютная погрешность счётчиков при измерении температуры не более \pm (0,5 + 0,002t) °C, где t числовое значение измеряемой температуры, выраженное в градусах Цельсия.
- 2.2.7. Пределы допускаемой абсолютной погрешности счётчиков при измерении времени наработки и простоя за 24 часа ±1 мин

2.3. Отображение информации

- 2.3.1. Для отображения информации на лицевой панели счетчика находится символьный ЖКИ с подсветкой и размером экрана 80 х 20 мм . ЖКИ имеет 2 строки по 16 знакомест в строке.
- 2.3.2. Физические величины и служебная информация, которые выводятся на ЖКИ, приведены в таблице 2.3.

Таблица 2.3 - Физические величины и служебная информация, выводимые на индикатор.

Наименование	Единица измерения
1. Объемный (массовый) расход жидкости	м ³ /час (т/час)
2. Объем жидкости нарастающим итогом	M ³
3. Масса жидкости нарастающим итогом	Т
4. Температура жидкости	°C
5. Избыточное давление	МПа
6. Время наработки,	сутки, часы, минуты
7. Время простоя,	сутки, часы, минуты
8. Время отсечки (расход меньше минимального)	сутки, часы, минуты
9. Время превышения (расход больше максимального)	сутки, часы, минуты
10. Время реверса	сутки, часы, минуты
11. Время отсутствия сетевого питания	сутки, часы, минуты
12. Дата и время ввода в эксплуатацию	число, месяц, год; час
13. Дата и время последнего изменения параметров	число, месяц, год; часы, мин.
14. Установленные значения расходов	м³/час (т/час)
15. Установленные значения температур	°C
16. Установленные значения давлений	Мпа
17. Ошибки счетчика	
18. Дата	число, месяц, год
19. Время и дата	часы, минуты, секунды

2.4. Программное обеспечение счетчика.

2.4.1. Счетчики обеспечивают хранение в энергонезависимой памяти и вывод через интерфейс RS-232 или, по заказу, RS-485 архивов результатов измерений, аварий и событий.

Содержание архива.

Объем (масса), время работы с нарастающим итогом.

- В часовом архиве среднечасовые данные по каждому измерительному каналу за последние 35 суток:
 - объем (масса) жидкости,
 - температура, давление;
 - время работы;
 - время, когда расход был менее минимального;
 - время работы при отрицательном расходе (реверс),
 - время простоя с расшифровкой по видам нештатной ситуации,
 - время отсутствия сети.
- В суточном архиве среднесуточные данные по каждому измерительному каналу за последние 1,5 года. Содержание аналогично часовому архиву.

По заказу счетчик обеспечивает хранение минутных архивов за последние 14 часов.

- 2.4.2. Суммарные данные, архивные и введенные значения сохраняются в энергонезависимой памяти в случае отсутствия электропитания не менее 8 лет.
 - 2.4.3. Счетчик обеспечивает передачу архивных данных в ПЭВМ:
 - по кабелю связи через интерфейс RS-232 или RS-485;
 - по выделенной или невыделенной телефонной линии через модем, по каналам сотовой, радио связи,
 - с использованием устройства переноса данных Эргомера-210.
- 2.4.4. Счетчик обеспечивает работу в реальном времени при осреднении измеряемых значений от 1 секунды и более.
- 2.4.5. Счетчик обеспечивает передачу данных в ПЭВМ в реальном времени по кабелю связи через интерфейс RS-232 или RS-485, по выделенной телефонной линии через модем, по каналам сотовой, радио связи,

- 2.4.6. Счетчик комплектуется программным обеспечением ПЭВМ для ввода информации, формирования и вывода отчетов.
- 2.4.7. Счетчик комплектуется программным обеспечением конфигурирования счетчика от ПЭВМ по интерфейсам RS-232 или RS-485.
- 2.4.8. В счетчике по заказу программируются функции допускового контроля, дозатора, управления, реверса.
- 2.4.9. Счётчик обеспечивает возможность самодиагностики и вывода сообщений об ошибках.

2.5. Оборудование, подключаемое к счетчику.

К счетчику может быть подключено следующее оборудование.

- Принтер, имеющий интерфейс RS-232. Вывод информации производится или постоянно, или при программном включении раз в час, сутки. Печатается протокол, таблицы.
- Устройство переноса данных ЭУС-210. Производится считывание информации и перенос в ПЭВМ. Рекомендуется производить считывание информации не реже 1 раза в месяц.
- Видеографический регистратор Эргомера-127 для отображения информации в графическом виде (подключается через интерфейс RS 485).
 - Телефонный или сотовый модемы для передачи информации в ПЭВМ.
- В составе счетчика могут использоваться термопреобразователи сопротивления, имеющие номинальную статическую характеристику (НСХ) 100П, 50П, 100М или 50М по ДСТУ 2858.
- В составе счетчика могут использоваться преобразователи давления с выходным токовым сигналом 0-5 мA или 4-20 мA и напряжением питания 9-42 В.

2.6. Масса и габариты.

- 2.6.1. Масса ПИ не более 2 кг.
- 2.6.2. Габаритные размеры ПИ не более 200×200×105 мм.
- 2.6.4. Масса и габариты РУ, в зависимости от номинального диаметра, указаны в таблице 2.4. Варианты исполнения РУ и ПРУ приведены в Приложении Г.

Таблица 2.4 - Масса и габариты РУ

Номинальный диаметр РУ	Габаритные размеры РУ, мм	Масса РУ, кг
DN20	500×200×150	9,0
DN25	500×200×150	11,0
DN40	500×200×170	14,0
DN50	550×210×180	16,0
DN80	700×180×180	18,0
DN100	750×210×210	25,0
DN150	800×250×250	32,0
DN200	850×360×360	65,0

Примечание. Допускается увеличение длины РУ за счет увеличения длины участков до и после ППЭ.

Масса РУ для DN более 200 мм определяется технологией их изготовления.

2.7. Надежность

Средняя наработка на отказ счётчиков не менее 10000 час.

Среднее время восстановления не более 8 часов.

Средний полный срок службы счётчиков не менее 8 лет.

2.8. Рабочие условия применения.

Эксплуатация ПИ должна производиться при следующих условиях:

- температура жидкости до 150 (280) °C и давлении до 9,0 (90) МПа;
- температура окружающего воздуха от 1 до 50 °C (для ППЭ от −40 до 150 °C);
- относительная влажность воздуха до 85% при температуре 35 °C;
- атмосферное давление от 86 до 106,7 кПа;
- по устойчивости к воздействию синусоидальных вибраций ПИ соответствует группе N1 по ГОСТ 12997-94 (диапазон частот 10 55 Гц, амплитуда смещения 0,15 мм).

2.9. Эксплуатационные характеристики

- 2.9.2. Длины кабелей связи с ППЭ 200 м (до 500 м по заказу).
- 2.9.3. Время установления рабочего режима не более 30 мин.
- 2.9.4. Питание счетчиков осуществляется от одного из источников:
 - сеть переменного тока напряжением от 187 до 242 В частотой (50 \pm 1) Гц;
 - источник постоянного тока напряжением от 10,8 до 15,6 В (по заказу).
- 2.9.5. Мощность, потребляемая от сети переменного тока, не более 5 В-А, от сети постоянного тока не более 2,0 Вт.
- 2.9.6. Степень защиты составных частей счетчика от проникновения пыли, посторонних тел и воды по ГОСТ 14254-94:

- для преобразователя измерительного (ПИ)

IP 54;

- для ППЭ

IP 68.

Устойчивость к внешним факторам остальных составных частей счетчика приведена в эксплуатационной документации на соответствующие изделия.

- 2.9.7. Конструкция счетчиков соответствует требованиям безопасности по ГОСТ 12.2.003-91.
- 2.9.8. По способу защиты человека от поражения электрическим током счетчики соответствуют классу II по ГОСТ 12.2.007.0.
 - 2.9.9. По требованиям пожарной безопасности счетчики соответствуют ГОСТ 12.1.004.

3. КОМПЛЕКТ ПОСТАВКИ

3.1 Состав изделия приведен в таблице 3.1. Комплект поставки оговаривается потребителем при оформлении листа заказа.

Таблица 3.1. Базовая конфигурация двухканального счетчика

Наименование	Количество
Преобразователь измерительный, ПИ, с клеммным соединением	1
Преобразователь пьезоэлектрический, ППЭ для температур до 70°C	4 (2)
Расходомерный участок, РУ, для исполнения В1	2 (1)
Бобышка в комплекте с гайкой и уплотнением, для исполнения В2	4 (2)
Накладной ППЭ с комплектом крепления на трубопровод, для исполнения Н1	4 (2)
Кабель с разъемами для подключения ППЭ к ПИ, 20 м	4 (2)
Упаковка	1
Счетчик жидкости ультразвуковой двухканальный Эргомера-125.Б.	1
Руководство по эксплуатации, РЭ	
Счетчик жидкости ультразвуковой двухканальный Эргомера-125.Б.	1
Формуляр, ФО	

В скобках указано количество для одноканального исполнения.

3.2 В состав счетчика может входить дополнительное оборудование и функции, приведенные в таблице 3.2.

Таблица 3.2.

Наименование	Максимальное количество
Дополнение ПИ комплектом разъемов для подключения внешних	1
соединений	
Шкаф монтажный для ПИ	1
Врезной ППЭ для работы до 280 ^о С	4
Врезной ППЭ для высокого давления	4
Шлюзовая камера	4
Кабель с разъемами для подключения ППЭ к ПИ длиной до 500 м	4
Внешний блок питания для датчиков давления	3
Термопреобразователь сопротивления с гильзой и монтажным	3
патрубком	
Преобразователь избыточного давления с монтажным патрубком	3
Кабель для термопреобразователя сопротивления (длина в метрах	3
указывается в проекте на монтаж тепловодосчетчика по согласованию с	
заказчиком)	
Кабель для датчиков давления (длина в метрах указывается в проекте на	3
монтаж тепловодосчетчика по согласованию с заказчиком)	
Устройство считывания данных	1
Принтер	1
Телефонный модем	1
Модем сотовой связи GSM	1
Программное обеспечение для считывания архива	1
Программное обеспечение для учета параметров технологического процесса на ПЭВМ	1
Функция вывода данных на принтер	1
Функция архивирования данных	1
Функция реверса	1
Функция дозатора	1
Функция допускового контроля	1
Инструкция по конфигурированию и вводу в эксплуатацию ЭУС125Б ИК	1
Функция управления	2
Токовый выход	2
Интерфейс RS485	1

Примечание. 1) Модификация счетчика и комплект поставки определяются в соответствии с требованием заказа по количеству каналов измерения расхода, температуры и давления.

- 2) Преобразователи температуры термопреобразователи сопротивления типа ТСПР-0196.БАУИ.405211.048 или аналогичные, которые удовлетворяют ТУ.
- 3) Тип и количество преобразователей давления по отдельному заказу. При поставке счетчика используются преобразователи измерительные Сапфир-22М ТУ 25-2472.0049-89 или аналогичные со стандартным выходным токовым сигналом 0 5 мА (4-20 мА) и пределами допускаемой погрешности не более 1 %, внесенные в Госреестр Украины.
- 4) В состав комплекта счетчика в соответствии с заказом могут входить кабели связи ПИ с ППЭ (типа РК-75-3-32A 75 Ом или аналогичный), ПИ с ПД (типа ПВС 2х0,5 мм) и ПИ с ПТ (типа ПВС 4х0,5 мм); длина кабелей до 100 м. Возможно подключение ПИ к ПД и ПТ

соединительными кабелями с сечением жилы не более 1мм^2 и диаметром внешней оболочки не более 7 мм.

4. Устройство и принцип работы

4.1 Принцип работы счетчика

В ультразвуковом счетчике жидкости измеряются интервалы времени t_1 и t_2 прохождения ультразвуком расстояния L между двумя пьезоэлектрическими преобразователями (ППЭ) по и против потока и на основе этих измерений вычисляется расход и количество жидкости. Производится 16 измерений интервалов времени в секунду по каждому каналу.

Разность интервалов времени пропорциональна скорости потока.

Расход вычисляется как произведение скорости потока v на площадь трубопровода S и гидродинамический коэффициент K_{Γ} . $Q = K_{\Gamma} S v$.

Гидродинамический коэффициент равен отношению скорости потока, осредненной по проходному сечению трубопровода v, к скорости потока осредненной по траектории ультразвука v_y . $K_\Gamma = v/v_y$.

Гидродинамический коэффициент является функцией числа Рейнольдса. Re = v D/v.

 ν – кинематическая вязкость жидкости, зависящая от температуры.

Зависимость гидродинамического коэффициента от числа Рейнольдса в счетчике аппроксимируется полиномом порядка не ниже второго или логарифмической функцией.

При изменении скорости потока жидкости от 0,05 до 5,0 м/с для диаметров трубопроводов до 2 м разность интервалов времени изменяется в интервале от 10 до 8000 наносекунд. Измерения необходимо производить с погрешностью не менее 0,1 нс, что является сложной технической задачей и стало экономически целесообразно только при сегодняшнем уровне развития элементной базы.

4.2. Устройство счетчика

4.2.1. Преобразователи пьезоэлектрические, ППЭ.

Предназначены для излучения и приема ультразвукового сигнала в счетчиках жидкости ультразвуковых.

Корпус врезных ППЭ выполнен из нержавеющей стали в виде цилиндра с кольцевым выступом для уплотнения. В бобышке, ввариваемой в трубопровод или РУ, ППЭ прижимается гайкой. Между ППЭ и бобышкой вкладывается уплотнительное кольцо. ППЭ содержат пьезокерамическую пластину, корпус и элементы крепления пьезокерамической пластины.

Врезные ППЭ выпускаются с наружным диаметром 18 мм для диаметров трубопроводов менее 300 мм и 25 мм для диаметров трубопроводов до 2 метров. ППЭ работают на частоте 1 МГц. Выпускаются для температур 70, 150, 260° С.

Накладные ППЭ содержат призму, в которой крепится пьезокерамическая пластина.

ППЭ являются сложными изделиями, требуют высокой механической точности изготовления, специальных материалов обеспечения качества ультразвукового сигнала: контактные смазки, демпферы.

Внешний вид и размеры применяемых видов ППЭ приведены в Приложении В.

4.2.2. Расходомерные участки, РУ.

Выпускаются в следующих исполнениях.

Виды РУ	Диаметр РУ, мм		У, MM
	10-20	20-50	50-2000
П – образные. Обеспечивают повышенную точность за счет	***	***	
большой акустической базы и ее независимости от диаметра			
трубопровода Dy. Не требуют прямых участков			
Прямоточный с расположением ППЭ в потоке. Применяются		***	
для коксохимических жидкостей			
С отражателями 45 ^о для повышения точности при малых		***	
расходах			
Врезка ППЭ под углом 30 ^о и отражением от внутренней стенки		***	
Врезка ППЭ под углом 30 °		***	
Врезка ППЭ под углом 45 ^о			***

Исполнения по видам материала:

- из нелегированной стали,
- из нелегированной стали со специальным покрытием внутренней поверхности,
- из легированной стали.

Соединение с трубопроводом фланцевое, резьбовое, прижимное ("сэндвич").

Виды и геометрические размеры применяемых типов РУ приведены в Приложении Г.

4.2.3. Шлюзовая камера ЭУС-121.07

Предназначена для замены ППЭ без остановки потока и обеспечения работы ультразвукового счетчика при наличии значительных отложений в трубопроводе: морская вода, цеха дымоочистки, стоки, пульпа и т.п.

Внутренний диаметр трубопровода 200..3000 мм

Давление жидкости ≤ 2,5 (9,0) МПа

Температура жидкости 0..150 (280) °С.

Камера крепится к бобышке. Для извлечения ППЭ открывается шаровой кран, вводится съемник, он ввинчивается в ППЭ и извлекает его в шлюзовую камеру. Шаровой кран закрывается, удаляются специальные страховочные винты, обеспечивающие безопасное извлечение ППЭ при давлении в трубопроводе до 9МПа. Установка ППЭ производится в обратной последовательности. Полное описание процесса монтажа шлюзовой камеры на трубопровод приведено в документе «Шлюзовая камера. Инструкция по монтажу ЭУС-125.01 ИМ». Пример установки шлюзовой камеры на трубопровод показан в Приложении Д.

4.2.4. Комплект инструментов врезки ППЭ в трубопровод без остановки потока ЭУС.121.09.

Применяется для Dy более 300 мм при расстоянии от трубопровода до стен камеры не менее 1,2 м. Время установки ППЭ от 2 до 4 часов.

Используется шлюзовая камера, через которую фрезеруется отверстие с применением электроинструмента с автономным питанием. Полностью процесс врезки описан в документе «Врезка в трубопровод без остановки потока. Инструкция по монтажу ЭУС-125.02 ИМ».

4.2.5. Преобразователь измерительный.

Преобразователь измерительный содержит модуль измерений, модуль контроллера, интерфейсы, индикатор, корпус.

Модуль измерений содержит формирователь зондирующих ультразвуковых сигналов; входной коммутатор каналов; усилитель с автоматической регулировкой усиления; амплитудный селектор; схему интерполяционного измерения задержки принятого сигнала; схему измерения сопротивления термопреобразователей; схему приема токовых сигналов преобразователей давления; микропроцессор ADuC812 фирмы Analog Devices.

Модуль измерений выполняет функции измерения всех параметров, которые сконфигурированы модулем контроллера. Он обеспечивает необходимую точность измерения согласно требованиям ТУ и формирует данные для передачи в модуль контроллера. Модуль измерений снабжен клеммной колодкой или разъемами, к которым подключаются первичные преобразователи.

Модуль контроллера содержит микропроцессор PIC 18F6720; регистр управляющих сигналов; таймер; память данных; узел токовых выходов; узел импульсных входов и выходов с гальванической развязкой; источник питания.

Модуль контроллера выполняет функции обработки, вычисления, управления, представления и архивирования данных, а также хранения и обработки сконфигурированного программного обеспечения, которое решает конкретную задачу измерения.

4.2.6. Интерфейсы счетчика.

Последовательный интерфейс RS-232 обеспечивает возможность доступа ко всем данным и архивам. Интерфейс RS-232 обеспечивает непосредственную связь с одним из устройств: принтером, устройством считывания данных, модемом или ПЭВМ при длине линии связи до 15 м. Скорость обмена составляет от 1200 до 38400 бит/сек.

Наличие интерфейса RS-485 (по заказу) обеспечивается с помощью модуля преобразователя и позволяет считывать информацию от удаленного счётчика или группы счётчиков. Дальность связи по интерфейсу RS-485 без ретрансляции достигает 1200 м. Скорость обмена может составлять от 1200 до 115200 бод.

- 4.2.7. Устройство считывания данных **Эргомера 210** позволяет через разъем интерфейса RS-232 считать архивные значения из счетчика или группы счетчиков и перенести их в ПЭВМ.
- 4.2.8. В счетчике имеются два токовых выхода с выходными сигналами 0-5 мА или 4-20 мА по выбору (по заказу). Параметры, выводимые через токовый выход, и масштаб их величин определяются при конфигурировании счетчика. Сигналы токовых выходов гальванически не развязаны от измерительных цепей счетчика. Схема подключения внешних устройств к токовым выходам счетчика приведена в Приложении И.
- 4.2.9. В счетчике имеются два импульсных выхода ультразвуковых каналов расхода, гальванически развязанных от остальных цепей прибора и друг от друга. Гальваническая развязка выполнена с помощью оптронов. Выходные сигналы электрические импульсы амплитудой до 24 В (определяется величиной напряжения внешнего источника питания), током не более 20 мА и длительностью 5 миллисекунд. Вес импульса задается программно по каждому каналу при конфигурировании счетчика. Схема подключения внешних устройств к импульсным выходам счетчика приведена в Приложении И.

4.2.10. Индикатор и корпус.

Для оперативного управления и контроля в ПИ установлены кнопки управления и двухстрочный ЖКИ индикатор с подсветкой.

Счетчик выполнен в ударопрочном пластмассовом корпусе с прозрачной передней крышкой. Корпус снабжен кабельными вводами для подключения первичных преобразователей, сети питания, интерфейсов. Корпус и кабельные вводы обеспечивают степень защиты ПИ от пыли и влаги IP54. По заказу на корпус устанавливаются разъемы для подключения внешних кабелей от первичных преобразователей. Внешний вид ПИ счетчика приведен в приложении Е.

Схема коммутационного отсека ПИ и обозначение контактов приведены в приложении Ж. 4.2.11. Шкаф монтажный

Шкаф монтажный служит для установки составных частей измерительной системы, прокладывания подводящих жгутов и их фиксации. В монтажном шкафу располагаются ПИ, внешний коммутационный отсек, модем, блоки питания датчиков давления и другое необходимое оборудование.

Габаритный чертеж шкафа монтажного приведен в Приложении К.

4.2.12. Внешние преобразователи расхода.

К счетчику могут быть подключены два внешних счетчика с импульсными выходами. Максимальная длина линии связи между ПИ и счетчиком с импульсным выходом определяется техническими характеристиками используемых покупных счетчиков.

Схемы подключения внешних счетчиков с импульсным выходом приведены в Приложении И.

4.2.13. Преобразователи температуры.

В составе счетчика могут использоваться преобразователи температуры различного типа с четырехпроводной схемой подключения.

Преобразователи температуры помещаются в защитную гильзу, которая располагается в потоке жидкости.

Нормированная длина погруженной части защитной гильзы, в которую вставляется преобразователь температуры, зависит от внутреннего диаметра трубопровода, в котором устанавливается ПТ. Преобразователи температуры могут устанавливаться под углом 45 или 90 градусов к оси трубопровода или в колене трубопровода вдоль оси. Тип штуцера, в который вворачивается защитная гильза, оговаривается при заказе. Длина четырехпроводной линии связи может быть до 200 м при сечении не менее 0,3 мм². Внешний вид ПТ типа ТСПР-0196 и его размеры приведены в Приложении Л.

4.2.13. Преобразователи давления

В составе счетчика могут использоваться преобразователи давления различного типа, которые способны измерять относительное (избыточное) давление, имеющие унифицированный токовый выход 0-5 или 4-20 мА и отвечающие заданным требованиям по точности и условиям применения. Питание преобразователей давления может осуществляться как от внутреннего источника питания счетчика напряжением 36 Вольт, так и от внешнего блока питания напряжением 24 – 42 Вольт.

При типовой поставке используются преобразователи давления типа «МИДА-ДИ» с верхним пределом измерения 1,6 МПа.

Максимальная длина линий связи между ПИ и ПД определяется техническими характеристиками используемых ПД и видом кабеля связи. Схема подключения ПД к счетчику приведена в Приложении И.

5. ИСПОЛЬЗОВАНИЕ ПО НАЗНАЧЕНИЮ

5.1. Общие указания.

- 5.1.1. При получении коробки со счетчиком проверить сохранность тары. В случае ее повреждения следует составить акт.
- 5.1.2. В зимнее время коробки со счетчиками распаковываются в отапливаемом помещении не менее, чем через 12 ч после внесения их в помещение.
 - 5.1.3. Проверить комплектность в соответствии с формуляром на счетчик.
- 5.1.4. В паспорт счетчика рекомендуется вносить данные о его работе: записи по обслуживанию с указанием имевших место неисправностей и их причин; данные о поверке счетчика и т. п.

Предприятие – изготовитель заинтересовано в получении технической информации о работе счетчика и возникших неполадках с целью устранения их в дальнейшем.

Все пожелания по усовершенствованию конструкции счетчика следует направлять в адрес предприятия – изготовителя.

5.2. Меры безопасности.

5.2.1. При эксплуатации и ремонте счетчика персонал должен соблюдать требования ГОСТ 12.2.003-91, «Правила технической эксплуатации», «Правила техники безопасности при эксплуатации электроустановок потребителей» и другие действующие правила по технике безопасности при работе с электроустановками.

Опасными факторами при проведении работ со счетчиком являются:

- переменное напряжение с действующим значением 220 В частотой 50 Гц;
- давление в трубопроводе до 2.5 МПа;
- температура жидкости в трубопроводе.
- 5.2.3. При обслуживании ПИ счетчика корпуса всех измерительных приборов должны быть заземлены.
- 5.2.4. Работы при монтаже на трубопроводе, подсоединение и отсоединение кабелей, снятие и установка крышек ПИ должны производиться при отключенном напряжении питания.
- 5.2.5. К эксплуатации и ремонту счетчика допускаются лица, изучившие правила его эксплуатации и прошедшие инструктаж по технике безопасности.
- 5.2.6. При обнаружении внешних повреждений счетчика или сетевой проводки следует отключить изделие до выяснения специалистами возможностей дальнейшей эксплуатации.
- 5.2.7. В процессе работы со счетчиком запрещается использовать неисправные приборы и инструменты.

5.3. Обеспечение взрывозащиты.

Для измерения объема нефтепродуктов, сжиженных газов, а также других легковоспламеняющихся и взрывоопасных жидкостей могут применяться счетчики жидкости «Эргомера- 125.Б Ех», имеющие взрывозащищенное исполнение.

- 5.3.1. Пьезоэлектрические преобразователи типа ЭУС 121, входящие в комплект счетчика «ЭРГОМЕРА-125.Б Ех», соответствуют требованиям ГОСТ22782.0, ГОСТ22782.5, имеют маркировку взрывозащиты «0ExialIBT5» в комплекте «ЭРГОМЕРА-125.Б Ех» и могут устанавливаться во взрывоопасных зонах помещений и наружных установок в соответствии с гл.7.3 ПУЭ и другими нормативными документами, регламентирующими применение электрооборудования во взрывоопасных зонах.
- 5.3.2. Преобразователи измерительные ПИ счетчика «ЭРГОМЕРА-125.Б Ех» соответствуют требованиям ГОСТ22782.5, имеют входные искробезопасные цепи уровня «ib» и маркировку взрывозащиты ExibIIB и могут устанавливаться только вне взрывоопасных зон.
- 5.3.3. Взрывозащищенность преобразователей ППЭ счетчиков «ЭРГОМЕРА-125.Б Ех» достигается выполнением их с видом взрывозащиты «искробезопасная электрическая цепь» по ГОСТ 22782.5. Искробезопасность цепей преобразователей ППЭ достигается следующими мерами и средствами:
- гальваническим разделением искробезопасных и силовых цепей с помощью силового трансформатора источника питания БП, выполненного в соответствии с требованиями п.1.8 ГОСТ 22782.5;
 - применением цепей искрозащиты в электрической схеме счетчика;
 - ограничением тока и напряжения в искробезопасных цепях до допустимых значений;
- ограничением амплитуды зондирующего импульса Um < 150B и длительностью не более 0,5 мкс;
- конструктивным выполнением источника питания БП, преобразователя измерительного ПИ и преобразователя ППЭ счетчика «ЭРГОМЕРА- 125.Б Ех» в соответствии с ГОСТ22782.0, ГОСТ22782.5;
 - наличием маркировки взрывозащиты и пояснительных надписей.

5.4. Порядок установки

5.4.1. Эксплуатационные ограничения

Эксплуатация счетчика должна производиться в условиях воздействующих факторов, не выходящих за пределы значений, оговоренных в настоящем руководстве.

После транспортировки счетчика при отрицательной температуре окружающего воздуха перед установкой счетчик необходимо выдержать в помещении с положительной температурой не менее трех часов, во избежание образования конденсации влаги.

5.4.2. Требования к установке ППЭ и РУ

ППЭ и РУ устанавливаются на горизонтальных, вертикальных и наклонных участках трубопроводов с направлением потока вверх. При установке РУ необходимо следить, чтобы направление движения жидкости в трубопроводе совпадало со стрелкой на корпусе ППР.

Работа счетчика обеспечивается при выполнении на месте установки счетчика следующих требований:

- трубопровод должен быть полностью заполнен жидкостью;
- должно быть исключено газообразование и попадание воздуха;
- ППЭ не должны располагаться в верхней точке трубопровода;
- в месте установки ППЭ должны быть обеспечены прямолинейные участки трубопровода необходимой длины. Длины прямых участков должны быть не менее, указанных в таблице 10.

Таблица 10

	Длина прямого участка, Ду		
Вид гидросопротивления	Перед	После	
	первым ППЭ	последнего	
		ППЭ	
Диффузор (конусное расширение)	8	3	
Конфузор (сужение конусное 820 ^O)	3	3	
Гильза термометра диаметром до 0,03 D	2	1	
до 0,13 D	7	2	
Одиночное колено 90°, тройник с заглушкой	5	3	
Группа колен в одной плоскости, разветвляющиеся потоки	7	3	
Группа колен в разных плоскостях, смешивающиеся потоки	15	4	
Отвод трубный диаметром до 0,08 D	0,5	0,5	
Равнопроходный шаровой кран	3	1	
Пробковый кран	8	3	
Задвижка	6	3	
Затвор (заслонка), вихревой расходомер, ОНТ	13	4	
Симметричное резкое сужение	15	4	
Симметричное резкое расширение	26	5	
Задвижка регулирующая	18	4	
Насос, сужающее устройство	30	5	
Устройство закрутки потока	20	5	
Струевыпрямитель	11	3	

Если перед ППР или ППЭ последовательно расположено несколько местных гидросопротивлений, то длина прямого участка определяется лишь двумя последними и равна наибольшему значению.

Допустимо сопряжение расходомерного участка с трубопроводом по конусу, имеющему уклон в сторону расходомерного участка не более 1:10 и плавные скругления на концах.

Уплотнительные прокладки между фланцами ППР и трубопровода не должны выступать во внутреннюю полость трубопровода.

Уступ в месте стыковки ППР с трубопроводом не должен превышать 1% диаметра трубопровода.

С целью уменьшения длин прямых участков рекомендуется использовать струевыпрямитель; производить измерения по двум хордам двумя парами ППЭ.

Место установки ППЭ должно быть максимально возможно удалено от источников вибраций и электромагнитных помех (насосы, электромоторы и т.п.). Допустимая амплитуда вибраций - по п.2.8.

Измерение параметров трубопровода для счетчиков исполнения В2 производится службой метрологии Госстандарта или органами ведомственных метрологических служб. После выполнения этих работ должны быть оформлены соответствующие акты и внесены необходимые записи в формуляр счетчика.

5.4.3. Требования к установке преобразователей температуры.

Место установки термопреобразователей на трубопроводе рекомендуется выбирать после соответствующего ППР по направлению потока.

Термопреобразователи устанавливаются перпендикулярно к оси трубопровода, либо наклонно навстречу потоку жидкости под углом 45 град.

Установка термопреобразователей в трубопроводы диаметром 50 мм и менее может осуществляться либо в колено, либо в специальный расширитель соответствующего типоразмера.

В коммутационном отсеке ПИ в случае использования одного или двух термопреобразователей необходимо контакты неиспользуемого входа измерения температуры закоротить перемычкой (Т31, Т32, Т33, Т34 и, при необходимости, Т21, Т22, Т23, Т24). Если не используется ни один канал измерения температуры, перемычки можно не устанавливать. Схема подключения термопреобразователей к счетчику приведена в Приложении И.

5.4.4. Требования к прокладке кабелей

Для защиты от электромагнитных помех, грозовых разрядов и механических повреждений рекомендуется размещать сигнальные кабели в заземленных металлических трубах или металлорукавах. В одной трубе (металлорукаве) допускается размещать одновременно несколько сигнальных кабелей.

В качестве кабелей связи ПИ с ППЭ должен применяться экранированный кабель типа PK - 75 - 3 - 32A 75 Ом , Ø 4,5 мм или аналогичный.

В качестве сигнального кабеля ПТ должен использоваться четырёхжильный кабель в экране с сечением жил от 0,12 до 0,5 мм 2 . Рекомендуется использовать кабель типа: РШВ 4×0,5 мм 2 , ПВС 4×0,5 мм 2 , КМПВ;×0,5 мм 2 , КММ 4×0,12 мм 2 и т.д., при этом сопротивление каждого провода четырехпроводной линии связи с ПТ не должна превышать 10 Ом.

Сигнальные кабели подобранных пар ПТ должны быть одинаковой длины, с разбросом длин – не более ±0.2 м.

На концы сигнальных кабелей, подключаемых к ПТ, должны напаиваться наконечники под винт М4. При подключении кабеля к ПТ должны использоваться пружинные шайбы (гровер-шайбы).

В качестве сигнального кабеля ПД должен использоваться двухжильный кабель в экране с сечением жил не менее $0.35~\text{мm}^2$. Рекомендуется использовать кабель ПВС $2\times0.35~\text{мm}^2$ или КММ $2\times0.35~\text{мm}^2$. Возможно использование четырёхпроводного кабеля КММ $4\times0.12~\text{мm}^2$, при этом рекомендуется попарное объединение проводов при заделке кабеля.

В качестве кабеля питания ПД может использоваться любой двухжильный кабель с сечением не менее 0,5мм.

Кабели связи ПИ с ППЭ, ПИ — сеть, кабели токового или импульсного выходов, RS-232 должны быть закреплены. Кабели ПИ-ППЭ прокладываются вместе и должны быть одинаковой длины. Сетевой кабель прокладывается отдельно на расстоянии не менее 300 мм от остальных кабелей. Кабели связи ППЭ с ПИ при их прокладке вне помещений должны быть механически защищены (проложены в пластмассовых или металлических трубах или металлорукавах, коробах и т.п.).

Не допускается прокладывать кабели вблизи силовых цепей, в незаземленных металлических рукавах или трубах.

5.4.5. Требования и рекомендации по выбору места размещения преобразователя измерительного (ПИ).

ПИ должен располагаться в закрытом, отапливаемом помещении, в шкафу, на щите, панели. Выбор места размещения ПИ определяется следующими условиями:

- длиной кабелей ПИ ППЭ;
- не допускается установка ПИ в помещениях, где температура окружающего воздуха находится вне диапазона +5...+ 50°C;
 - не допускается наличие и попадание на ПИ конденсата либо жидкости с трубопроводов;
 - необходимостью свободного доступа к ПИ;
- свободной площадью в месте установки ПИ, с учетом габаритных размеров ПИ, блока питания ПД и подключения сигнальных кабелей, а также установкой дополнительного оборудования, например, наличием внешнего коммутационного отсека, телефонного модема и т.д.

5.5. Подготовка к работе.

5.5.1. Подготовка изделия к использованию

Монтаж счетчика должен проводиться в соответствии с «Инструкцией по монтажу» ЭУС 125.00ИМ, проектом установки счетчика и эксплуатационной документацией на оборудование, входящее в состав счетчика.

После транспортирования счетчика при отрицательной температуре окружающего воздуха и внесении его в отапливаемое помещение необходимо для предотвращения конденсации влаги выдержать ПИ в упаковке не менее трех часов.

При подготовке изделия к использованию необходимо:

- подключить первичные преобразователи в соответствии с выбранной схемой измерения;
- правильно установить преобразователи расхода по потоку жидкости;

- проверить наличие и соответствие напряжения электрической сети в месте подключения питания счетчика требованиям технических характеристик;
- подключить дополнительное оборудование (компьютер, модем и т. д.) в соответствии с выбранной схемой.

Правильно смонтированный счетчик готов к эксплуатации после выдержки во включенном состоянии в течение времени установления рабочего режима (не менее 15 минут).

5.5.2. Проверка работоспособности.

Подключить кабель питания счетчика к сети переменного тока напряжением 220 В. После подачи на прибор напряжения питания на ЖКИ счетчика последовательно, с интервалом в 2 – 3 секунды должны появиться следующие надписи:

- тип прибора и версия программного обеспечения;
- «Настройка (X X) сек.», где XX убывает от 05 до 00;
- «Текущие данные».

С помощью кнопки на корпусе счетчика перевести прибор в режим индикации текущего времени. В исправном приборе индицируемое время должно соответствовать истинному.

5.5.3. Описание команд пользовательского меню.

Параметры, отображаемые счетчиком на ЖКИ, разбиты на группы. Выбор параметра внутри группы осуществляется нажатием на кнопку прибора. Смена группы осуществляется нажатием на кнопку и удержанием ее в течение 3 секунд. Выбор групп и параметров осуществляется циклически, то есть после последнего снова отображается первый. Структура пользовательского меню, разбивка параметров по группам и обозначения параметров приведены в Приложении Н. В зависимости от заказной спецификации группы меню «УЗ расходомер 2», «Печать», «Архив» могут отсутствовать и не отображаться на ЖКИ.

Группа «**УЗ расходомер 2**» отсутствует в случае использования счетчика в одноканальном режиме.

Использование групп меню «**Печать**» и «**Архив**» необходимо в случае автономного режима работы счетчика, то есть без связи с ПЭВМ, поскольку функции, выполняемые под управлением команд этих групп, удобнее, быстрее и легче выполнять с помощью фирменного ПО, установленного на компьютере, подключенном к счетчику.

Группа меню «Печать» предназначена для получения распечаток суточного или месячного архива данных или событий непосредственно на принтер, подключенный к счетчику через интерфейс RS-232. Для этого необходимо выбрать группу «Печать», затем внутри группы в параметре «По системе=Сист X», выбрать номер системы X (в случае, если X>1). Редактируемый параметр должен находиться в верхней строке ЖКИ. Выбор осуществляется нажатием и удержанием в течение 3 секунд кнопки прибора. Возможные значения параметра начинают перебираться на экране ЖКИ с частотой смены 1 раз в секунду. При достижении нужного значения параметра следует отпустить кнопку, при этом значение параметра зафиксируется. Далее в параметре «Дата: XX. XX. XX» необходимо выбрать дату, за которую требуется получить данные. Дата вводится в формате (число). (месяц). (год (последние 2 цифры)). Для этого необходимо нажать и удерживать 3 сек. кнопку прибора. Появится мигающий курсор, циклически перемещающийся по разрядам. В момент нахождения курсора в разряде, данные которого требуется изменить, кнопку надо отпустить. Мигающий курсор остановится на выбранной позиции. Далее короткими нажатиями кнопки выбрать требуемое значение из циклически меняющегося ряда чисел от 9 до 0 и перейти к редактированию следующего разряда, то есть снова нажать кнопку на 3 сек., выбрать разряд, выбрать значение и т. д. . Для выхода из режима редактирования необходимо сместить курсор в крайнее правое положение за пределы поля даты. При отпускании кнопки мигающий курсор исчезнет. Ввод даты завершен. Далее необходимо выбрать вид данных – учетные данные (суммарный объем, время наработки) – команда «Печать суток» или отчет о ненормальных событиях – команда «Печать ош. за сут». Выбранную команду поместить в верхнюю строку ЖКИ и нажать на 3 сек. кнопку счетчика. На ЖКИ появится на несколько секунд сообщение «Подождите, поиск даты в архиве», затем принтер начнет печать данных. Аналогично исполняются и команды «Печать месяца» и «Печать ош. за мес». Данные печатаются начиная с 01 числа месяца,

введенного в строке «**Дата**», до последнего числа, если месяц уже завершен, или до текущей даты, если выбранный месяц еще не закончился.

Группы **«Суточ. архив»** и **«Часовой архив»** предназначены для оперативного просмотра архивных данных за выбранные сутки или час непосредственно на экране ЖКИ. Для этого необходимо выбрать группу **«Суточ. архив»**, а в ней – параметр **«Выбор записи»**, поместив его в верхнюю строку ЖКИ. В нижней строке будет сообщение **«За: XX. XX. XX»**, где **«**XX. XX. XX» - в формате (число).(месяц).(год) дата последней по времени архивной записи в счетчике. Нажать на 3 сек. кнопку прибора, значение даты начнет посуточно убывать на всю глубину архива. При достижении требуемой даты отпустить кнопку, значения прекратят изменяться, выбранная дата зафиксируется. Далее короткими нажатиями кнопки произвести просмотр архивных данных за выбранные сутки. Для просмотра часового архива перейти к группе **«Часов. архив»** нажатием на 3 сек. кнопки счетчика (следить, чтобы в этот момент в верхней строке ЖКИ **не было** параметра **«Выбор записи»**!). Внутри этой группы снова выбрать параметр **«Выбор записи»**. В нижней строке в формате **«За: XX. XX. XX XXч.»** отобразится дата и час последней во времени часовой архивной записи. При нажатии кнопки на 3 сек. значение параметра начнет убывать с шагом 1 час на всю глубину часового архива. При достижении требуемой точки (час и сутки) отпустить кнопку. Короткими нажатиями кнопки просмотреть архивные данные за выбранный час.

В остальных группах меню параметры можно только просматривать, без редактирования. Процедуры ввода и редактирования параметров описаны в «Инструкции по конфигурированию и вводу в эксплуатацию ЭУС-125Б ИК», поставляемой по заказу.

5.6. Настройка счетчика на объекте.

5.6.1. Счетчик исполнения В1 (с расходомерным участком) поставляется полностью настроенным и сконфигурированным. Ввод параметров, настройка и программирование счетчика производятся на предприятии — изготовителе. После выполнения работ по монтажу счетчика на объекте и заполнения водой трубопровода счетчик готов к работе.

Счетчик исполнения В2 и Н1 требует проведения ответственных и квалифицированных работ по установке ППЭ в существующие трубопроводы. Работы по монтажу и пуско-наладке счетчика должны выполнять представители предприятия — изготовителя или лица, уполномоченные предприятием — изготовителем и имеющие сертификат на проведение данных работ. В случае самостоятельной установки счетчика потребителем при проведении монтажных работ следует руководствоваться требованиями «Инструкции по монтажу ЭУС 125.00 ИМ», а при выполнении работ по пуско-наладке счетчика — требованиями «Инструкции по конфигурированию и вводу в эксплуатацию ЭУС 125Б ИК», поставляемыми по заказу.

5.6.2. Работа с интерфейсом RS232 / RS485.

Считывание информации с выхода RS232 / RS485 может быть организовано с помощью компьютера типа IBM PC AT — совместимого с фирменным программным обеспечением ЭУС - 300 или с помощью устройства переноса архивной информации ЭУС-210. Счетчик может быть соединен с компьютером как непосредственно — с помощью кабеля связи (кабель нуль-модема), так и через телефонный либо сотовый либо радиомодем.

- 5.6.3. Несколько счетчиков могут быть объединены в сегмент информационной вычислительной сети по интерфейсу RS-485. Максимальное количество приборов в одном сегменте 32, максимальная длина линии связи 1200м, максимальная скорость обмена зависит от длины линии связи и для линии длиной 1200 метров составляет 2400 бит/сек, а для линии длиной 120 метров 38400 бит/сек (зависимость экспоненциальная). У всех счетчиков в одном сегменте должна быть установлена одинаковая скорость обмена по интерфейсу RS-485 (группа меню «Служебные», параметр «RS-485»). Пример объединения счетчиков в сегмент сети показан в Приложении П.
- 5.6.4. Для правильной работы программного обеспечения на компьютере должна быть установлена операционная система Windows 2000, XP или выше.
- 5.6.5. Считывание информации из счетчика с помощью устройства переноса архивной информации ЭУС 210 описано в руководстве по эксплуатации ЭУС-210 РЭ.

5.6.6. Назначение контактов клеммника и пример подключения сигнальных цепей к счетчику описаны в Приложении Ж, И.

5.7. Ввод счетчика в эксплуатацию

Конфигурирование параметров счетчика и ввод его в эксплуатацию должны производить специалисты предприятия — изготовителя или лица, уполномоченные предприятием - изготовителем и имеющие сертификат на проведение данных работ.

В случае самостоятельной установки и ввода счетчика в эксплуатацию потребителем следует руководствоваться требованиями «Инструкции по конфигурированию и вводу в эксплуатацию» ЭУС125Б ИК, поставляемой по заказу.

6. ТЕХНИЧЕСКОЕ ОБСЛУЖИВАНИЕ

- 6.1. Веденный в эксплуатацию счетчик не требует специального технического обслуживания. С целью проверки соблюдения условий эксплуатации, отсутствия внешних повреждений, надежности механических и электрических соединений, сохранности пломб проводится периодический осмотр. Порядок осмотра зависит от условий эксплуатации, но не должен быть реже одного раза в две недели.
- 6.2. В процессе эксплуатации необходимо следить за тем, чтобы в трубопроводах отсутствовали воздушные включения, так как они нарушают правильную работу счетчика.
- 6.3. Если свойства жидкости таковы, что со временем на стенках трубопровода и на излучающих поверхностях ППЭ образуется слой осадков, рекомендуется принять следующие меры.
 - 1) Внутреннюю поверхность трубопровода или РУ покрывать специальным покрытием.
 - 2) Изготавливать РУ из специального материала, например, легированная сталь.
 - 3) Применять шлюзовые камеры для замены или очистки ППЭ без опорожнения трубопровода.
- 4) При периодической поверке счетчика чистить внутреннюю поверхность трубопровода, РУ и ППЭ. Признаком необходимости очистки поверхности ППЭ является изменение принимаемого ультразвукового сигнала: амплитуды, отображаемые на ЖКИ, напряжение АРУ тракта приема сигнала.
- 6.4. Отправка ПИ для проведения гарантийного или послегарантийного ремонта или поверки должна производится с формуляром прибора. В сопроводительной документации необходимо указывать почтовые реквизиты, телефоны и факс отправителя, а также способ обратной доставки. При вызове изготовителя для ремонта комплектующих изделий, входящих в комплект счетчика, необходимо указать заводской номер счетчика. Комплектующие изделия перед отправкой необходимо очистить от пыли, грязи и отложений.

7. МАРКИРОВКА И ПЛОМБИРОВАНИЕ

7.1. На передней панели ПИ нанесены:

наименование изготовителя;

наименование и условное обозначение счётчика;

знак утверждения типа по ДСТУ 3400;

заводской номер, в котором две последние цифры соответствуют двум последним цифрам года выпуска;

маркировка взрывозащиты (в случае взрывозащищенного исполнения).

- 7.2. Маркировка, наносимая на ППЭ, содержит заводской порядковый номер.
- 7.3. Маркировка, наносимая на РУ, содержит наименование, заводской порядковый номер, значение номинального внутреннего диаметра в миллиметрах и расстояние между ППЭ.
- 7.4. Составные части счетчика опломбированы для предотвращения несанкционированного доступа к органам регулирования в местах, предусмотренных конструкторской документацией.
- 7.5. При выпуске из производства изготовитель пломбирует винт крепления верхней платы ПИ. Установка на ПИ пломбы поверителем производится в соответствии с методикой поверки ЭУС 125 МП.

После монтажа счетчика клеммный отсек ПИ пломбируется навесными пломбами.

7.6. Пломбирование в необходимых случаях первичных преобразователей расхода, температуры и давления должно исключать возможность их несанкционированного отключения и демонтажа.

Схема пломбирования узлов счетчика показана в Приложении Е.

8. ПОВЕРКА

Счетчик проходит первичную поверку при выпуске из производства и после ремонта. При эксплуатации производится периодическая поверка счетчика один раз в 2 года. Поверка производится в соответствии с методикой поверки « Тепловодосчетчики Эргомера – 125. Методика поверки ЭУС125.00 МП».

Межповерочный интервал 2 или 4 года, поверка беспроливочным методом.

9. НЕИСПРАВНОСТИ

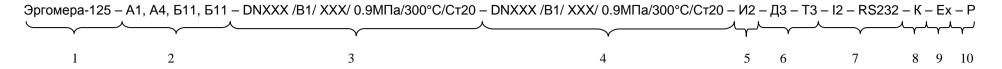
При появлении ошибок расчета расхода, температуры и давления сообщения об ошибках отображаются в группе « **Текущие данные**» вместо значения параметра, при расчете которого возникла ошибка (см. п. 5.8).

Перечень возможных неисправностей и способы их устранения приведены в таблице 12.1.

Таблица 12.1

		таолица т2.1
Наименование неисправности	Вероятная причина	Способ устранения
1. Отсутствует индикация	Отсутствует напряжение	Проверить подключение
ЖКИ индикаторе	питания	счетчика к источнику питания
	Короткое замыкание в цепях	Проверить цепи питания и
	питания	устранить замыкание
	Выход из строя блока питания счетчика	Заменить модуль блока питания
2. Индицируется сообще-	Отсутствует сигнал с ППЭ	Проверить подключение,
ние «Нет сигнала»		исправность ППЭ и сое-
		динительных кабелей
	Неисправен входной усилитель	Устранить неисправность или
	Отсутствие воды или наличие	заменить плату измерения
	газовой фазы в трубопроводе	Заполнить трубопровод полнос
3. Индицируется сообщение	Неисправен микроконтроллер	Устранить неисправность или
«Ошибка FLASH»	или микросхема памяти	заменить плату контроллера
4. Индицируется и мигает	Неисправен микропроцессор	Устранить неисправность или
сообщение «Ошибка платы	ADUC 812 или	заменить плату измерения
из-	соединительный кабель с	
мерения»	платой контроллера	

10. ХРАНЕНИЕ И ТРАНСПОРТИРОВАНИЕ


Счетчик, укомплектованный в соответствии с листом заказа, упаковывается в индивидуальную тару по ГОСТ 23170. Присоединительная арматура поставляется в отдельной упаковке.

Счетчик должен храниться в сухом помещении в соответствии с условиями хранения согласно ГОСТ 15150. В помещении для хранения не должно быть токопроводящей пыли, паров кислот, щелочей, а также газов, вызывающих коррозию и разрушение изоляции.

Счетчик не требует специального технического обслуживания при хранении.

Счетчик можно транспортировать любым видом транспорта.

Приложение А. Структура обозначения тепловодосчетчика при заказе и в документации другой продукции

- Наименование изделия
- Реализованные схемы учёта (согласно приложения ТУ)
- 3 Характеристика первого расходомерного устройства
 - 3.1. Номинальный диаметр расходомерного устройства
 - 3.2. Исполнение расходомерного устройства

расходомерный участок- В1

врезные пьезопреобразователи - В2

накладные пьезопреобразователи стационарные - Н1

накладные пьезопреобразователи переносные Н2

шлюз для обслуживания без опорожнения трубопровода – Ш1

шлюз для врезки без опорожнения трубопровода – Ш2

- 3.3. Длина кабеля между расходомерным устройством и ПИ
- 3.4. Условия применения пьезопреобразователей по давлению и температуре (верхнее граничное значение)
- 3.5. Материал расходомерного устройства 12ХН10Т, Сталь 20 с покрытием
- 4 Характеристика второго расходомерного устройства
 - 4.1. ...
 - 4.5. аналогично п.3
- Количество импульсных входов для подключения внешних счетчиков: отсутствуют ИО, один И1, два И2
- Количество каналов измерения (суммарно до шести)

давления: отсутствуют - Д0, один - Д1, два - Д2, три - Д3

температуры: отсутствуют - Т0, один - Т1, два - Т2... шесть - Т6

Внешние выходы

токовые: отсутствуют - 10, один - 11, два - 12

цифровой – RS232, RS485

Подключение внешних устройств

сальниковый ввод – С

разъемы на корпусе - Р

- Требования к взрывозащите
- 10 Функция учета реверсивных потоков

Отдельно заказывается:

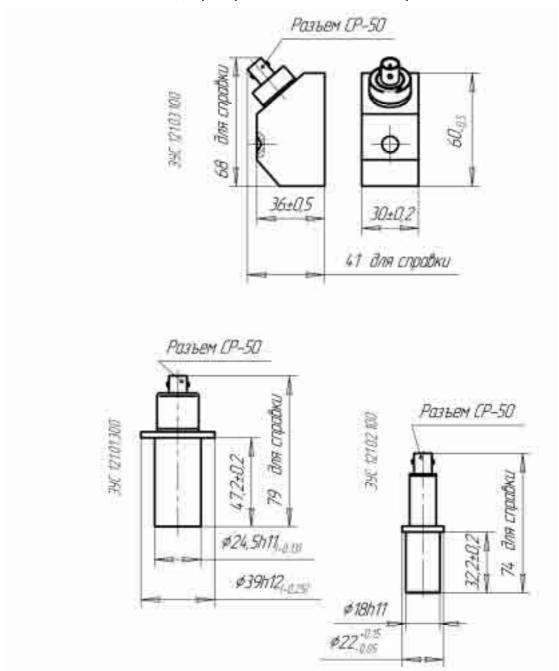
1. Программное обеспечение: ЭУС-301 ErgoRead; ЭУС-302 ErgoView;

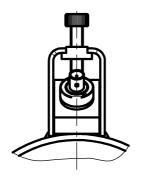
ЭУС-303 ErgoSet.

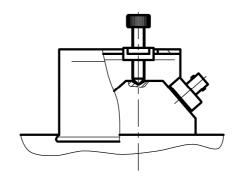
- 2. Устройство переноса данных ЭУС-210.
- 3. Внешний адаптер RS-485.
- 4. Внешний модем на коммутируемые линии, на выделенные линии, GSM модем.

ПРИЛОЖЕНИЕ Б ЛИСТ ЗАКАЗА ДЛЯ ПРИОБРЕТЕНИЯ СЧЕТЧИКА НА ПРЕДПРИЯТИИ-ИЗГОТОВИТЕЛЕ

Параметр		№ трубопровода	
	1	2	
Исполнение (В1, В2, Н1)			
Диапазон измерения расхода, м ³ /час			
Измеряемая среда			
Внутренний диаметр трубопровода			
Толщина стенки трубопровода			
Материал трубопровода			
Диапазон изменения температуры жидкости, ^о С			
Диапазон изменения давления, МПа			
Длина линии для прокладки кабеля связи от трубопровода до ПИ			
Количество измеряемых температур (до 3)			
Количество измеряемых давлений (до 3)			
Напряжение питания (187-242, 10,8-15,6 В)			
Архив (не требуется, суточный, часовой, минутный)			

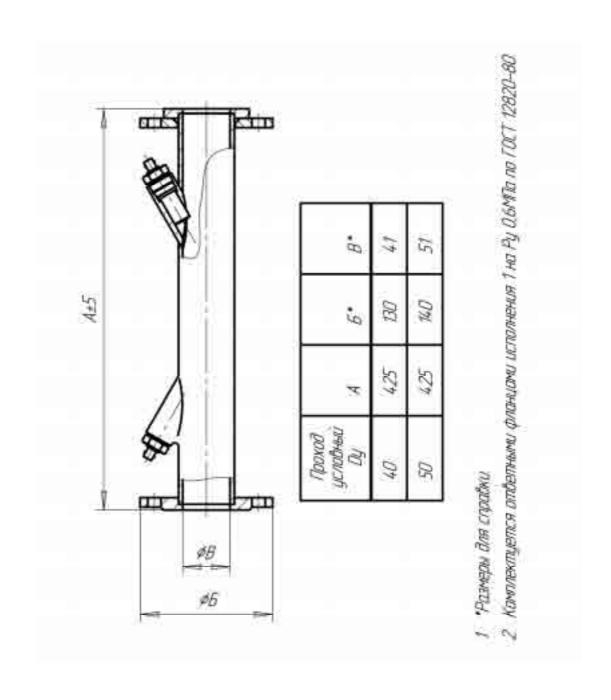

Дополнительные 2 канала измерения расхода внешними счетчиками с импульсным выходом

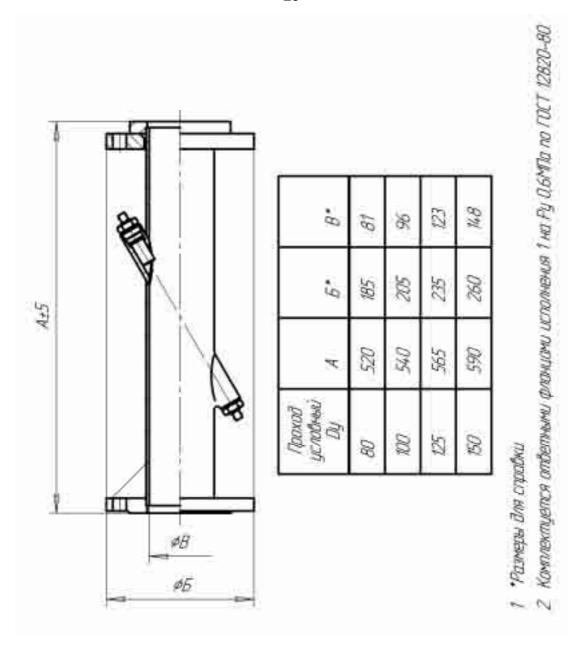

Параметр	№ трубопровода		
	3	4	
Диапазон измерения расхода, м ³ /час			
Внутренний диаметр трубопровода			
Материал трубопровода			
Диапазон измерения температуры жидкости, ⁰ С			
Диапазон измерения давления, МПа			
Длина кабеля связи от трубопровода до ПИ			


Дополнительное оборудование

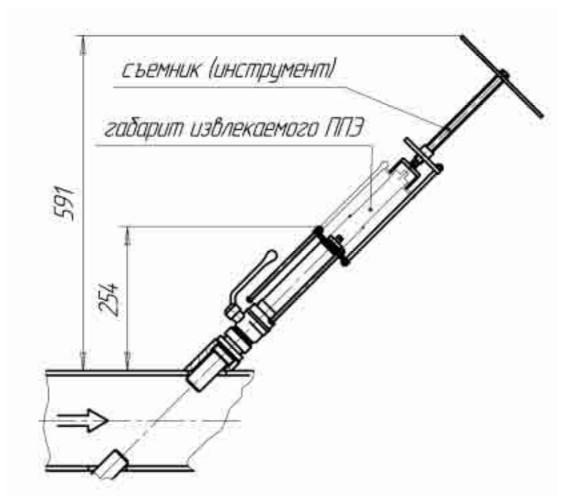
Наименование	Потребность
Дополнение ПИ разъемами	
Врезной ППЭ (до 280 ^o C)	
Врезной ППЭ для высокого давления	
Врезной ППЭ со шлюзовой камерой	
Комплект для установки врезных ППЭ непосредственно на	
трубопровод	
Комплект для установки накладных ППЭ на трубопровод	
Блок питания для датчиков давления	
Аккумулятор	
Устройство считывания архива	
Принтер	
Телефонный модем	
Программное обеспечение для отображения в ПЭВМ измерительной	
информации	
Программное обеспечение для конфигурирования счетчика	
Специальные функции счетчика	
Коммерческий архив	
Реверс	
Дозатор	
Допусковый контроль	
Управление	
Токовый выход	
Интерфейс RS485	

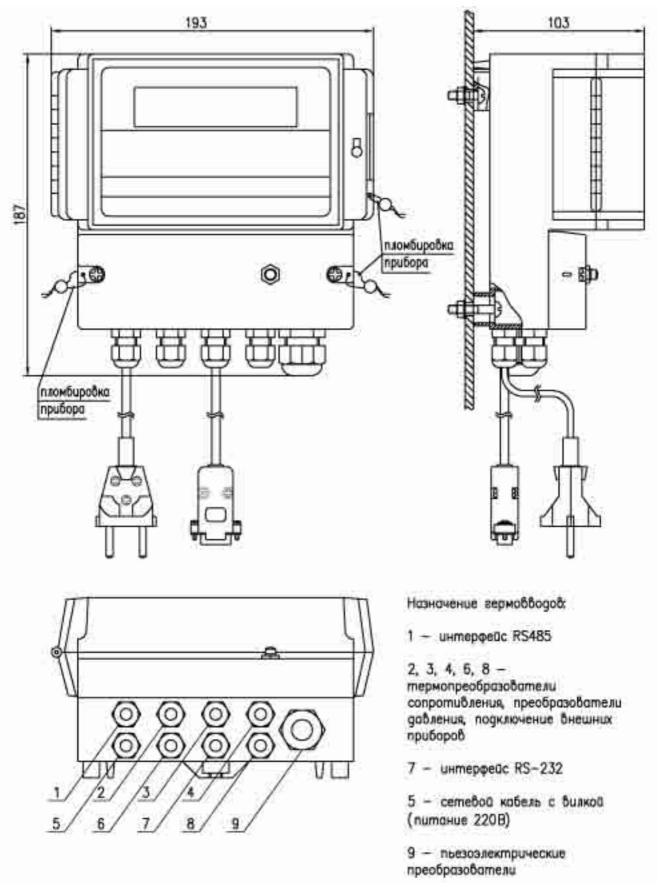
Приложение В. Внешний вид преобразователей пьезоэлектрических.

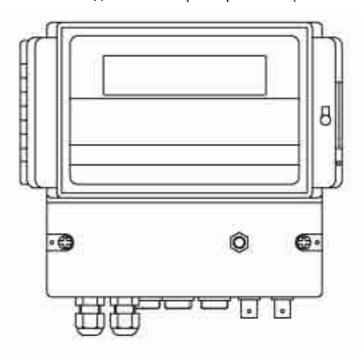


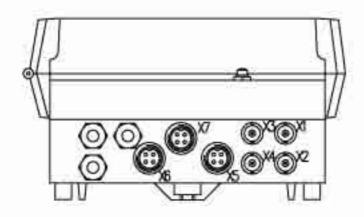


Крепление накладных ППЭ на трубопроводе (исполнение H1)


Приложение Г. Внешний вид расходомерных участков.

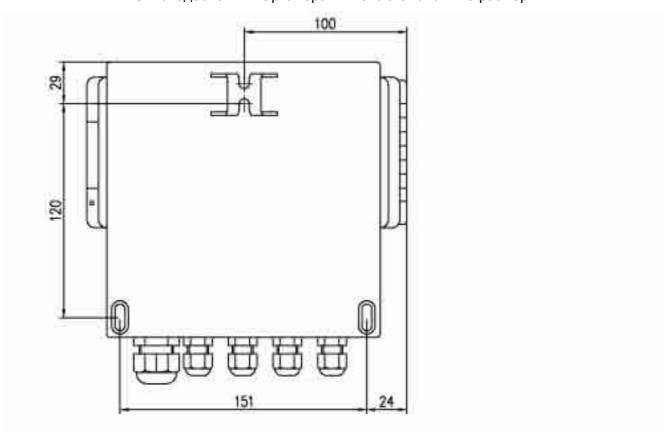


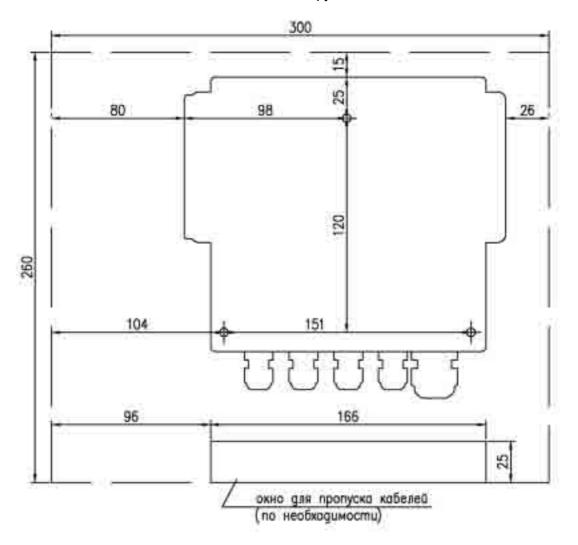

Приложение Д. Внешний вид шлюзовой камеры.



Приложение E Внешний вид счетчика Эргомера – 125 (комплектация корпуса гермовводами).

Внешний вид счетчика Эргомера – 125 (комплектация корпуса разъемами).




XI, X2, X3, X4 - разъемы СР50

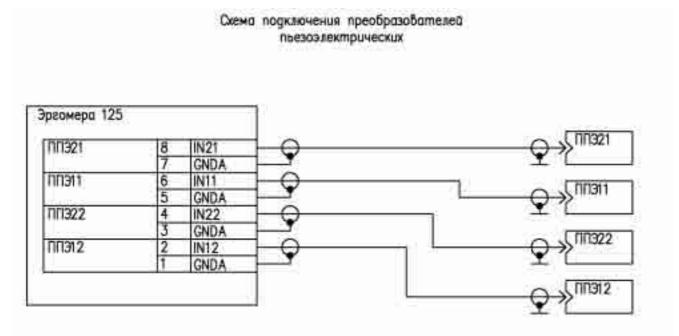
X5, X6, X7 - разъеми PLT-16

33 Тепловодосчетчик Эргомера – 125. Установочные размеры

Минимально необходимые размеры установочного места при установке счетчика в шкафу.

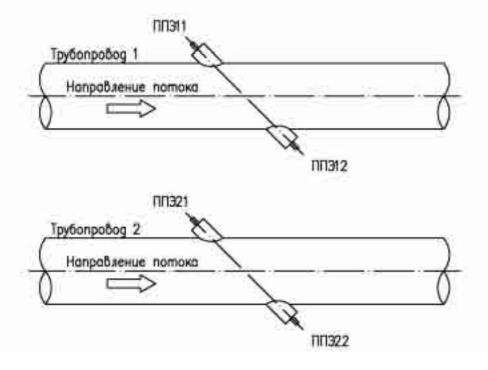
Приложение Ж.

Коммутационный отсек счетчика Эргомера – 125. Наименование электрических цепей и обозначение контактов.

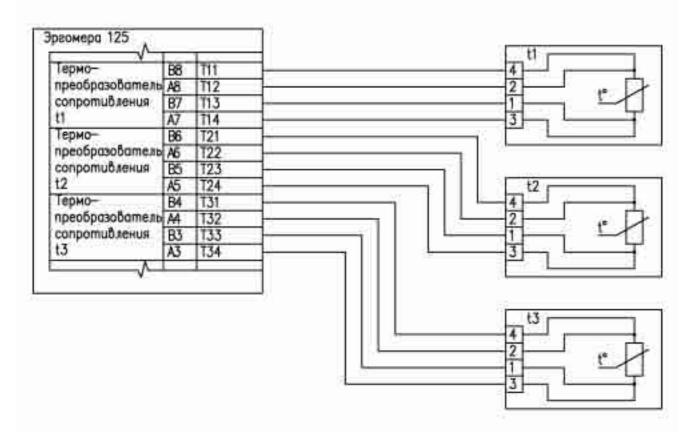

Коммутационные клеммы Эргомера 125 Коммутационный отсек на измерительной плате Общио **GNDK** Пьезозлектрический 8 IN21 7 преобразователь ППЭ21 GNDA Пьезоэлектрический 6 IN11 преобразователь ППЭ11 GNDA Пьезоэлектрический IN22 преобразователь ППЭ22 3 **GNDA** Пьезоэлектрический IN12 преобразователь ППЗ12 1 GNDA KHI X 2 Внешняя кнопка 2 KH2 Коммутационные клеммы на плате контроллера Модуль интерфейса RS-485 Интерфейс RS-485 3 COM A Питоние внешних +36B преобразователей +36B давления 36В +36B

Коммутационные клеммы

Коммутто	щион	ный отсек на измерите.	пьной	плате
1 4		Токовый выход 1	B21	Gndlout1
1 1			A21	lout1
1 1		Токовый выход 2	B20	and the second second second second
1 1			A20	lout2
1 1		Импульсный выход 1	B19	-BIST
1 1			A19	+BIS1
1 1		Импульсный быход 2	B18	-BIS2
1 1			A18	+BIS2
1 1		Импульсный бход 1	B17	-TO
1 1			A17	+T0
1 1		Импульсный бход 2	B16	-11
1 1			A16	+T1
1 1		Не используются	815	В
		The delitoring volume	A15	Ä
		Интерфейс RS-232	B14	CTS
		rimiteppeduc Na-232	A14	RTS
			B13	Gnd RS
			AI3	
			B12	Gnd RS
1 1			A12	RxD
1 1		Преобразователь	BII	GndP3
1 1	Ø	давления РЗ	A11	P3
1 1		Преобразобатель	B10	GndP2
		давления Р2	A10	P2
		Преобразобатель	B9	GndP1
		давления Р1	A10	PI
		Термопреобразобатель сопротивления 11	88	TII
			AS	T12
			87	T13
			A7	T14
		Термопреобразователь сопротивления 12	B6	T21
			A6	122
		and the manufacture of	B5	T23
			A5	T24
		Термопреобразобатель	B4	T31
		сопротивления t3	M	T32
			B3	T33
			A3	T34
		Питание	B2	-U
		10,8-15 B	A2	+0.
		Общий	Bi	Gndk
		Проливка	AI	DZI
,		Ti desirector	1/4	100
1		Сеть 220В 50Гц	12	К
	乊	Willia Econ Dolla	2	
	2		1	К


Приложение И.

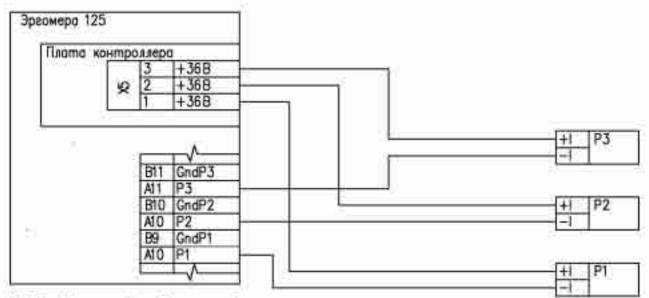
Подключение внешних преобразователей к измерительным цепям счетчика.



ППЭ11, ППЭ12, ППЭ21, ППЭ22 — преобразователи пьезоэлектрические
Для подключения используется кабель марки РК75—3—32 или анологичный

Схема размещения преобразователей пьезоэлектрических относительно направления потоков в трубопроводах

Схема падключения термопреобразователей сопративления



t1, t2, t3 — термопреобразователи сопротивления типа ТСПР Для подключения используется кабель марки ПВС 4 х 0,75 или анологичный с сечением жил не менее 0,75 мм. кв.

Схема подключения перемычки при отсутсвии термопреобразователя сопротивления t3

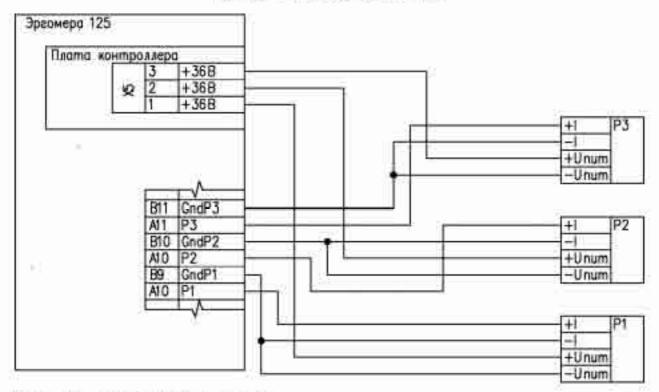


Схема подключения преобразователей давления с выходным сигналом 4—20 мА 2—х проводная линия связи питание от прибора Эргомера 125

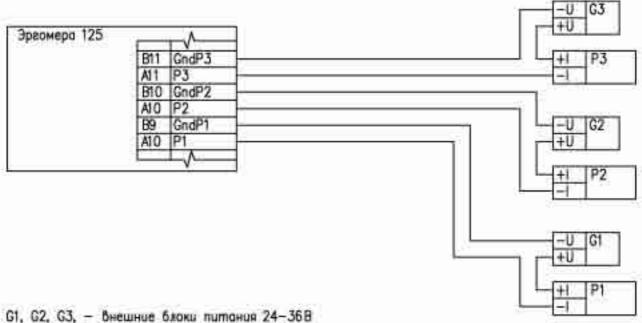
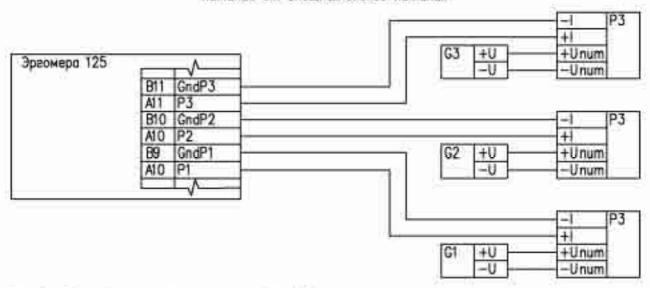

Р1, Р2, Р3— преобразователи давления
Для подключения используется кабель марки ШВВП 2 x 0,75 или анологичный

Схема подключения преобразователей давления с выходным сигналом 0-5, 0-20 мА 4-х проводная линия связи питание от приборо Эргомера 125

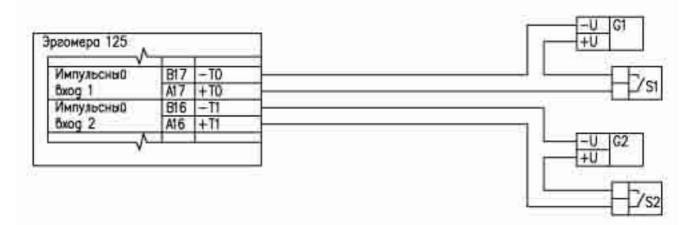
Р1, Р2, Р3— преобразователи дабления Для подключения рекомендуется использовать кабель марки ПВС 4 x 0,75 или анологичный


Схема подключения преобразователей давления с выходным сигналом 4-20 мА 2-х прободная линия сбязи питание от внешних блоков питания

Р1, Р2, Р3 — преобразователи давления

Для подключения рекомендуется использобать кабель марки ШВВП 2х0,75 или анологичный

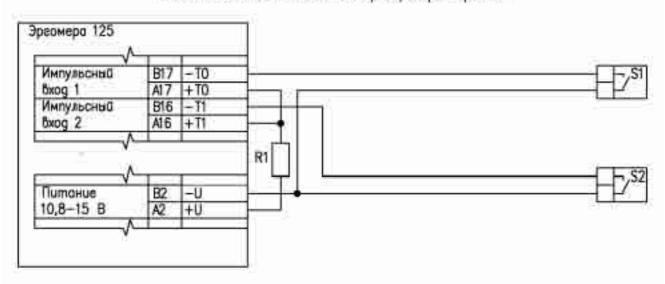
Схема подключения преобразобатела давления с выходным сигналом 0-5, 0-20 мА 4-х проводная линия связи питание от внешних блоков питания



G1, G2, G3, - внешние блоки питания 24-36В

Р1, Р2, Р3 — првобразователи давления

Для подключения рекомендуется использовать кабель марки ПВС 4х0,75 или анологичный


Схема подключения внешних приборов с "сухими" контактами к импульсным входам с использованием внешних блоков питания

G1, G2 - внешние блоки питания 5-12В

S1, S2 — внешние приборы с "сухими" контактами в цепи импульсного выхода. Для подключения рекомендуется использовать кабель марки ПВС 4х0,75 или анологичный Примечание. Схема обеспечивает гальваническую развязку электрических цепей приборов.

> Схема подключения внешних приборов с "сухими" контактами к импульсным входам с использованием питания от прибора Эргомера 125

R1 - сопротивление 360-470 Ом 0,25-0,5 Вт

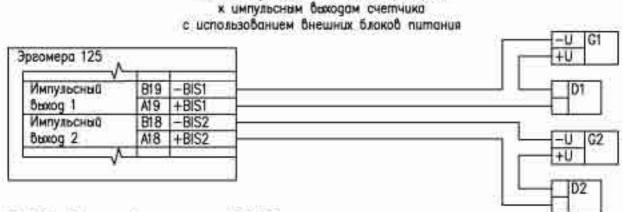
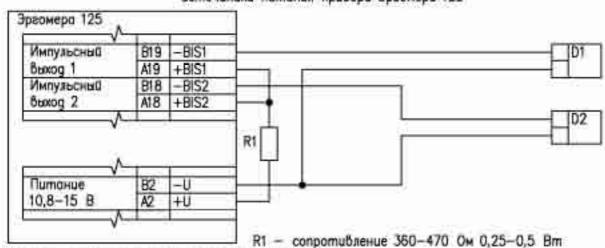

S1, S2 — внешние приборы с "сухими" контактами в цепи импульсного выхода. Для подключения рекомендуется использовать кабель марки ШВВП 2 х 0,75 или анологичный Примечание. Охема не обеспечивает гальваническую развязку электрических цепей приборов.

Схема подключения внешних приборов к токовым выходам 4—20 мА

IR1, IR2 — внешние приборы с токовым входом 4—20 мА.
Для подключения рекомендуется использовать кабель марки ШВВП 2 х 0,75 или анологичный

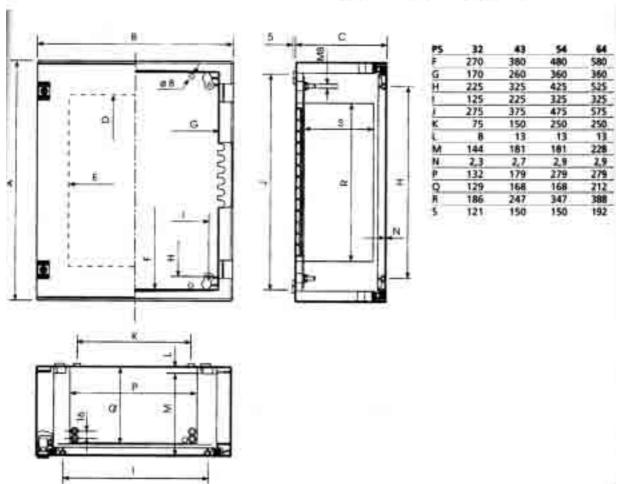
Схема подключения внешних приборов

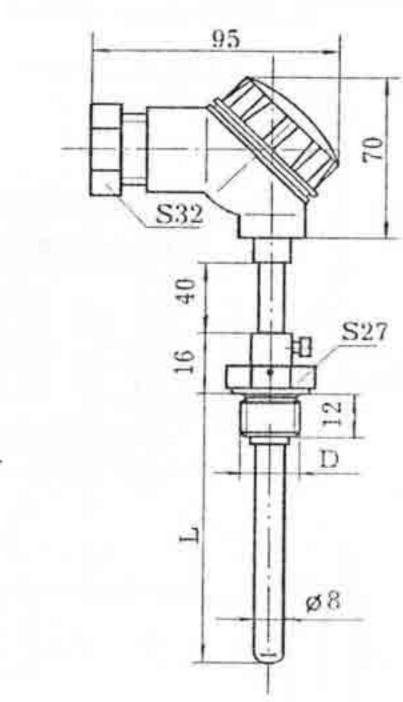


G1, G2 - бнешние блоки питания 5-12В

D1, D2 — внешние приборы с импульсными входами

Примечание. Схема обеспечивает гальбаническую развязку электрических цепей приборов.


Схема подключения внешних приборов к импульсным выходам счетчика с использованием внутреннего источиника питания прибора Эргомера 125


D1, D2 — внешние приборы с импульсными входами
Примечание. Схема не обеспечивает гальваническую развязку электрических цепей приборов.

43 ПРИЛОЖЕНИЕ К УСТАНОВОЧНЫЕ И ПРИСОЕДИНИТЕЛЬНЫЕ РАЗМЕРЫ ШКАФА МОНТАЖНОГО

(A)	(8	(0)
310	215	160
430	330	200
530	430	200
647	436	250

ПРИЛОЖЕНИЕ Л ВНЕШНИЙ ВИД ПТ ТИПА ТСПР-0196

	ТСПР-0196
Типоряд L, мм	80,100,120,160,200,2000,4000,6000
Диаметр D , мм	G1/2

ПРИЛОЖЕНИЕ М

РАЗМЕЩЕНИЕ ИНФОРМАЦИИ НА ИНДИКАТОРЕ

	Параметр	Значение	Описание					
			Описание					
	версия по « <i>э</i> -т	25 vDec 22 2003»	D					
	Envers "Torn		Расходы, температуры и давления индицируются, если они					
		щие данные» ЧЧ:ММ:СС	установлены в группе «Системы учета»					
		дд.мм.гг						
			объемный (массовый) расход 1-го УЗ расходомера					
*			объемный (массовый) расход 1-го УЗ расходомера					
*			объемный (массовый) расход 2-го уз расходомера (имп. вход1)					
*			объемный (массовый) расход 3-то расходомера (имп. входт)					
*			ровемный (массовый) расход 4-то расходомера (имп. вход <i>2)</i> температура					
*		XXX.XX °C						
*		XXX.XX °C						
*			парпошио					
*		XX.XXX MПA	давление					
*		XX.XXX MПA						
			1 2 2 μημ 4)					
	X	с - номер системы (ו _י ב, ו אומא פ _י ב, ו (ב, 1 אומא פ _י ב, 1 אומא פיב, 1					
	Группа «Суми	марные данные»	обнуляются при вводе в эксплуатацию					
		XXXXXXXXX м3 (т)	суммарный объем (масса) 1-го УЗ расходомера					
*		XXXXXXXXX.X м3 (т)	суммарный объем (масса) 2-го УЗ расходомера					
*		XXXXXXXXX.X м3 (т)	суммарный объем (масса) 3-го расходомера (имп. вход1)					
*		XXXXXXXXX.X м3 (т)	суммарный объем (масса) 4-го расходомера (имп. вход2)					
		CCCC-44:MM	время наработки 1-й системы (в сутках, часах и минутух)					
*	Тн2=	CCCC-44:MM	время наработки 2-й системы					
*	Тн3=	CCCC-44:MM	время наработки 3-й системы					
*	Тн4=	CCCC-44:MM	время наработки 4-й системы					
	Тп1=	CCCC-44:MM	время простоя 1-й системы					
*	Тп2=	CCCC-44:MM	время простоя 2-й системы					
*	Тп3=	CCCC-44:MM	время простоя 3-й системы					
*	Тп4=	CCCC-44:MM	время простоя 4-й системы					
	Тот1=	CCCC-44:MM	время отсечки (расход <qmin) 1-й="" th="" системы<=""></qmin)>					
*	Тот2=	CCCC-44:MM	время отсечки (расход <qmin) 2-й="" th="" системы<=""></qmin)>					
	Тпр1=	CCCC-44:MM	время превышения (расход >Опред) 1-й системы					
*	Тпр2=	CCCC-44:MM	время превышения (расход >Опред) 2-й системы					
*	Трв1=	CCCC-44:MM	время реверса (расход отрицательный) 1-й системы					
*	Трв2=	CCCC-44:MM	время реверса (расход отрицательный) 2-й системы					
	Tc=	CCCC-44:MM	время отсутствия сетевого питания					
		асходомер 1»						
		XXXXXX,M3/4	максимальный расход (вычисляется счетчиком по D, L и углу)					
		XXXXXX ,м3/ч	предельный расход (вводится вручную)					
		XXXX.X ,MM	диаметр трубопровода					
		XX.XX ,град	угол между осями ППЭ и РУ (или трубопровода)					
	L1=	XXXXX.X, MM	база (расстояние между излучающими поверхностями врезных					
45	K_IZZ1=	XX MKC	ППЭ) длительность импульса запуска зондирования					
40		XXXX.XXXX, MKC	длительность импульса запуска зондирования задержка сигнала в направлении 1-2 ППЭ					
		XXXX.XXXX, MKC	задержка сигнала в направлении 1-2 ГПЭ задержка сигнала в направлении 2-1 ППЭ					
		XX.XXXX, MKC	т12-т11					
	191-	, , , , , , , , , , , , , , , , , , ,						

*	Группа «УЗ расходомер 2»		может не отображаться					
	q2max=	XXXXXX, м3/ч	максимальный расход (вычисляется счетчиком по D, L и углу)					
	q2п рд =	XXXXXX, м3/ч	предельный расход (вводится вручную)					
	D2=	XXXX.X, MM	диаметр трубопровода					
	угол2=	XX.XX, град	угол между осями ППЭ и РУ (или трубопровода)					
	L2=)		база (расстояние между излучающими поверхностями врезных ППЭ)					
	K_IZZ2=	ХХ, мкс	длительность импульса запуска зондирования					
	T21=	XXXX.XXXX, MKC	Задержка сигнала в направлении 1-2					
	T22=	XXXX.XXXX, MKC	задержка сигнала в направлении 2-1					
	Tp2=	XX.XXXX, MKC	T22-T21					

Группа « Служебные»

і руп	па « Служеоныю 	
Ввод	ДД.ММ.ГГ:ЧЧ	дата и время ввода в эксплуатацию
HOMEP	XXXX	заводской номер счетчика
код	XXXX	код доступа (для изменения параметров)
Расход =	м3	единицы измерения отображаемых величин
	тонны	, ,
RS232:	38400, 19200, 9600,	скорость обмена по RS232-порту, бит/сек
	4800, 2400, 1200	1 /
CTSRTS=		разрешение или запрет аппаратного управления потоком
	Нет	данных по порту RS-232
RS485=		скорость обмена по интерфейсу RS-485, бит/сек;
110100	4800, 9600,19200,	нет – RS-485 отсутствует
	38400, нет	net ite tee eteytetbyet
	30400, HC1	
Группа «Схе		
	I: <mark>А1-Б11 (а</mark>), Нет	схема учета для Системы 1
Система 2	2:А1-Б11 (а), Нет	схема учета для Системы 2
Система 3	3: А1-Б11 (а), Нет	схема учета для Системы 3
Система 4	I:A1-Б11 (a), Нет	схема учета для Системы 4
q1:	=q3x,	указывает, в какой системе 'х' используется реальный
_	q не исп	расходомер 1 (или он не используется)
q2:	=q3x,	" peaльный расходомер 2 "
-	q не исп	
q3:	=q3x,	["] реальный расходомер 3 ["]
-	q не исп	
q4:	=q3x,	" peaльный расходомер 4 "
	q не исп	
t1:	=txy,	указывает, в какой системе ' y ' на датчике с номером ' x '
	t не исп	используется реальная т-ра1 (или она не используется)
t2:	=txy,	" peaльная т-pa2 "
	t не исп	
t3:	=txy,	<i>"</i> реальная т-ра3 <i>"</i>
	t не исп	
P1:	=Pxy,	указывает, в какой системе 'у' на датчике с номером 'х'
	Р не исп	используется реальное давление1 (или оно не используется)
P2:	=Pxy,	" peaльное давление2 "
	Р не исп	
P3:	=Pxy,	" peaльное давление3 "
	Р не исп	
	х - номер системы (1,2,3 или 4)

* Группа «==Печать==»	(изменение параметров и печать производится удержанием кнопки)						
По системе: =ХХ	номер системы для печати архива						
Дата:XX.XX.XX	выбор даты, за которую будут распечатаны суточные данные						
Печать суток	печать суточного архива учетных данных						
Печать ош. за сутки	печать суточного архива ненормальных событий						
Печать месяца	печать месячного архива учетных данных						
Печать ош. за месяц	печать месячного архива ненормальных событий						
* Группа «-=Суточ. архив=-	оперативный просмотр суточного архива на экране ЖКИ						
<-Выбор записи->	просмотр архива						
3a: XX. XX. XX	за выбранную дату						
* Группа «-=Часов. архив=-	оперативный просмотр часового архива на экране ЖКИ						
<-Выбор записи->	просмотр архива						
За: XX. XX. XX XXч.	за выбранный час выбранной даты						
* - параметры, видимые в зависимо	ости от схемы учета и конфигурации счетчика						

ПРИЛОЖЕНИЕ Н ВИД ПРОТОКОЛА АРХИВА

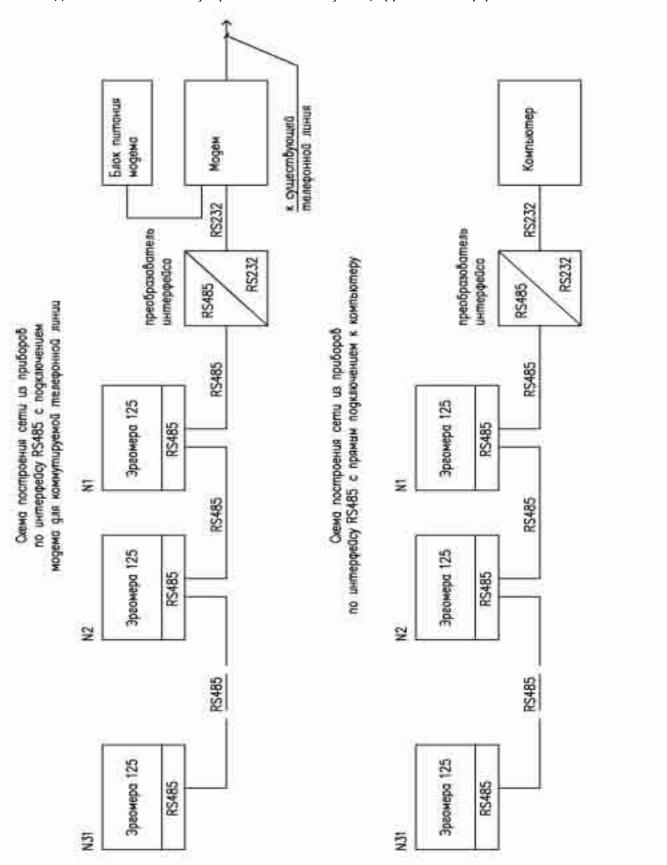
МК «Юбилейный»

Отчет составлен 04.12.2003 12:29:29

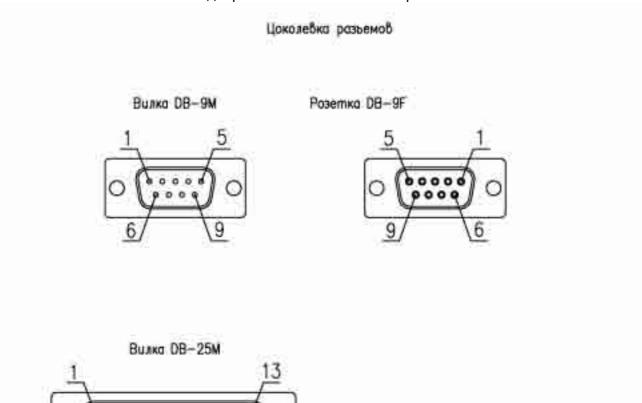
Отчет о потреблении воды за ноябрь 2003г.

Вычислитель № 301

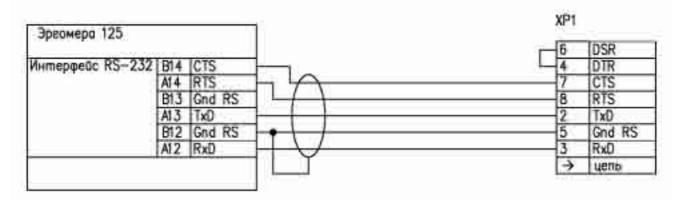
Группа Питьевая вода


Система 1: схема учета В11(Трубопровод1)

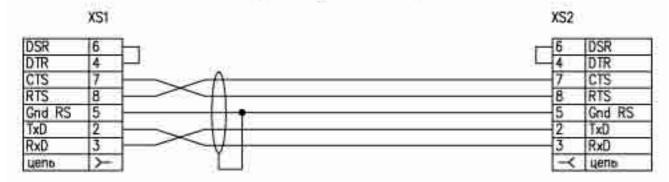
Дата	Время	Показания вычислител	Расход	Вре	Время простоя					
		Я		Время	Работа	Расход	Расход	Прост	Ревер	Отс.
				суммарное		<qmin< td=""><td><qmin< td=""><td>ой</td><td>c</td><td>сети</td></qmin<></td></qmin<>	<qmin< td=""><td>ой</td><td>c</td><td>сети</td></qmin<>	ой	c	сети
		м3	м3	мин.	мин.	мин.	мин.	мин.	мин.	мин.
				сек.	сек.	сек	сек.	сек.	сек.	сек.
01.11.2003	24:00	1629.63	278.07	135249:22	1439:49	00:11	00:00	00:00	00:00	00:00
02.11.2003	24:00	1885.62	255.99	136665:36	1416:14	23:46	00:00	00:00	00:00	00:00
03.11.2003	24:00	2256.21	370,59	138105:36	1440:00	00:00	00:00	00:00	00:00	00:00
04.11.2003	24:00	2649.70	393,48	139545:36	1440:00	00:00	00:00	00:00	00:00	00:00
05.11.2003	24:00	3052.36	402,66	140985:36	1440:00	00:00	00:00	00:00	00:00	00:00
06.11.2003	24:00	3460.16	407,80	142425:36	1440:00	00:00	00:00	00:00	00:00	00:00
07.11.2003	24:00	3862.41	402,25	143791:27	1365:51	74:09	00:00	00:00	00:00	00:00
08.11.2003	24:00	4078.48	216,07	145223:19	1431:52	08:08	00:00	00:00	00:00	00:00
09.11.2003	24:00	4347.20	268,72	146640:28	1417:09	22:51	00:00	00:00	00:00	00:00
10.11.2003	24:00	4831.75	484,55	148080:28	1440:00	00:00	00:00	00:00	00:00	00:00
11.11.2003	24:00	5277.25	445,49	149520:28	1440:00	00:00	00:00	00:00	00:00	00:00
12.11.2003	24:00	5733.84	456,59	150960:28	1440:00	00:00	00:00	00:00	00:00	00:00
13.11.2003	24:00	6187.27	453,43	153840:28	1440:00	00:00	00:00	00:00	00:00	00:00
14.11.2003	24:00	6688.37	501,11	153840:28	1440:00	00:00	00:00	00:00	00:00	00:00
15.11.2003	24:00	6948.40	260,03	155279:27	1438:59	01:01	00:00	00:00	00:00	00:00
16.11.2003	24:00	7233.08	284,68	156718:41	1439:14	00:46	00:00	00:00	00:00	00:00
17.11.2003	24:00	7697.83	464,75	158158:41	1440:00	00:00	00:00	00:00	00:00	00:00
18.11.2003	24:00	8163.76	465,94	159598:41	1440:00	00:00	00:00	00:00	00:00	00:00
19.11.2003	24:00	8608.38	444,62	161038:41	1440:00	00:00	00:00	00:00	00:00	00:00
20.11.2003	24:00	9081.36	472,98	162472:50	1434:09	00:00	00:00	00:00	00:00	05:52
21.11.2003	24:00	9542.79	461,43	163912:50	1440:00	00:00	00:00	00:00	00:00	00:00
22.11.2003	24:00	9816.73	273,94	165352:07	1439:17	00:43	00:00	00:00	00:00	00:00
23.11.2003	24:00	10095.05	278,32	166691:48	1339:41	100:19	00:00	00:00	00:00	00:00
24.11.2003	24:00	10534.07	439,02	168131:48	1440:00	00:00	00:00	00:00	00:00	00:00
25.11.2003	24:00	10991.20	457,13	169571:48	1440:00	00:00	00:00	00:00	00:00	00:00
26.11.2003	24:00	11760.11	473,94	172091:48	1440:00	00:00	00:00	00:00	00:00	00:00
27.11.2003	24:00	12198.72	438,61	173531:48	1440:00	00:00	00:00	00:00	00:00	00:00
28.11.2003	24:00	12673.91	475,19	174971:48	1440:00	00:00	00:00	00:00	00:00	00:00
29.11.2003	24:00	12904.83	230,92	176332:22	1360:34	79:26	00:00	00:00	00:00	05:52
30.11.2003	24:00	13166.51	261,68	177632:14	1299:52	140:08	00:00	00:00	00:00	00:00

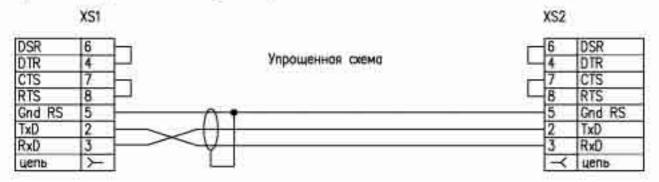

Всего:			11519,99		42742:41	451:28	00:00	00:00	00:00	05:52
Представите.	ль «ПОСТА	АВШИКА»		Тк	саченко М.В.					
продотавите.	, 110C11			110	a lenko M.B.					

Представитель «ПОТРЕБИТЕЛЯ» _____ Таран В.Н.

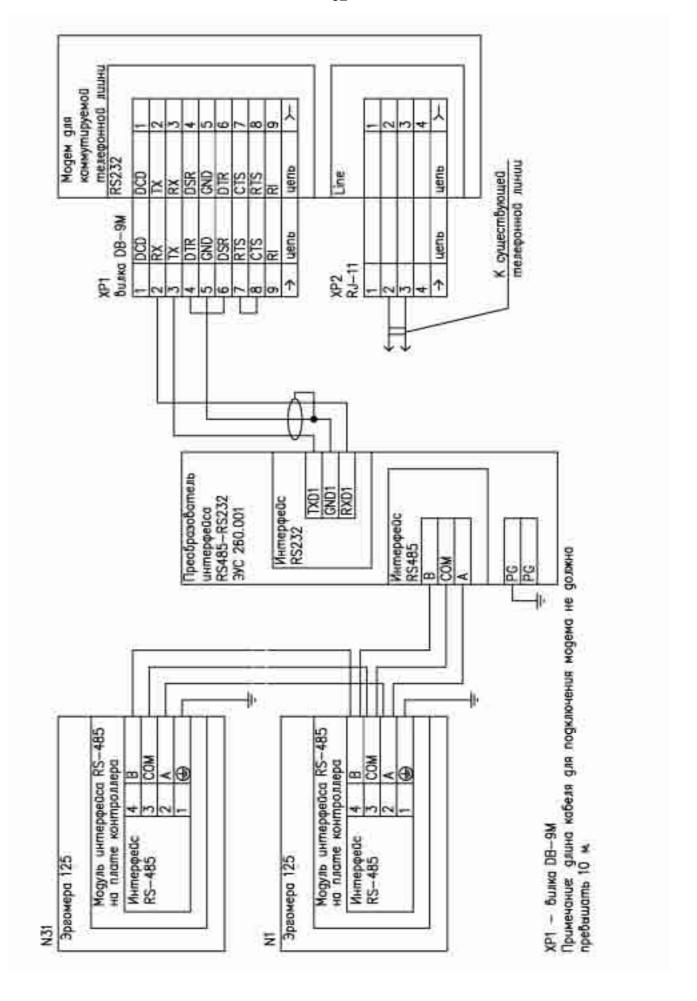

Приложение П. Подключение внешних устройств к счетчику по цифровым интерфейсам RS-232 / RS- 485.

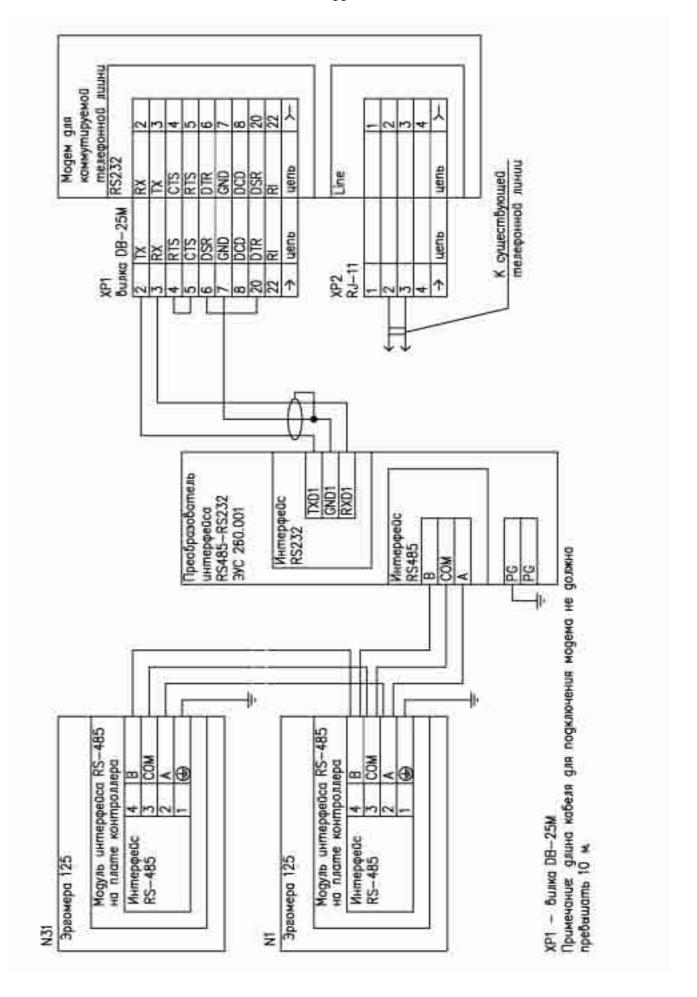
Внешний вид и расположение контактов разъемов DB-9 и DB-25.


Схема подключения кобеля интерфейса RS-232


XP1 - Вилка DB-9M

Примечание. Кабель интерфейса поставляется смонтированным в базовой комплектации прибора Эргомера 125. Допускается замена кабеля на аналогичный длинной не более 10 м.


Охемы соединительного каблеля интерфейса RS-232 для подключения прибора Эргомера-125 к СОМ-порту компьютера (ноль-модемный кабель)



XS1, XS2 — розетка DB—9F Примечание. Джина кабеля не должна превышать 10 м.

XS1, XS2 — розетка DB-9F Примечание. Джина кабеля не должна превышать 10 м.

Приложение Р. Зависимость коэффициента кинематической вязкости воды от температуры

54

	v *·10 ⁻⁶ ,			v *·10 ⁻⁶ ,			v *·10 ⁻⁶ ,			v *10 ⁻⁶ ,	
t, ⁰ C	m^2/c	lQ v	t,ºC	m^2/c	lQ v	t, ⁰ C	m^2/c	lQ v	t, ⁰ C	m^2/c	lQ v
0	1.7905	0.253	40	0.6591	-0.181	80	0.3651	-0.438	120	0.2465	-0.608
1	1.7307	0.238	41	0.6472	-0.189	81	0.3608	-0.443	121	0.2445	-0.612
2	1.6738	0.224	42	0.6356	-0.197	82	0.3566	-0.448	122	0.2425	-0.615
3	1.6198	0.209	43	0.6244	-0.205	83	0.3525	-0.453	123	0.2406	-0.619
4	1.5684	0.195	44	0.6135	-0.212	84	0.3485	-0.458	124	0.2387	-0.622
5	1.5196	0.182	45	0.6030	-0.220	85	0.3446	-0.463	125	0.2369	-0.625
6	1.4731	0.168	46	0.5927	-0.227	86	0.3407	-0.468	126	0.2351	-0.629
7	1.4289	0.155	47	0.5827	-0.235	87	0.3370	-0.472	127	0.2333	-0.632
8	1.3867	0.142	48	0.5730	-0.242	88	0.3333	-0.477	128	0.2315	-0.635
9	1.3464	0.129	49	0.5636	-0.249	89	0.3297	-0.482	129	0.2298	-0.639
10	1.3080	0.117	50	0.5544	-0.256	90	0.3261	-0.487	130	0.2281	-0.642
11	1.2713	0.104	51	0.5455	-0.263	91	0.3227	-0.491	131	0.2264	-0.645
12	1.2363	0.092	52	0.5368	-0.270	92	0.3193	-0.496	132	0.2248	-0.648
13	1.2028	0.080	53	0.5284	-0.277	93	0.3159	-0.500	133	0.2232	-0.651
14	1.1708	0.068	54	0.5201	-0.284	94	0.3127	-0.505	134	0.2216	-0.654
15	1.1401	0.057	55	0.5121	-0.291	95	0.3095	-0.509	135	0.2200	-0.658
16	1.1107	0.046	56	0.5043	-0.297	96	0.3064	-0.514	136	0.2185	-0.661
17	1.0825	0.034	57	0.4967	-0.304	97	0.3033	-0.518	137	0.2169	-0.664
18	1.0555	0.023	58	0.4893	-0.310	98	0.3003	-0.522	138	0.2155	-0.667
19	1.0295	0.013	59	0.4821	-0.317	99	0.2973	-0.527	139	0.2140	-0.670
20	1.0040	0.02	60	0.4751	-0.323	100	0.2944	-0.531	140	0.2125	-0.673
21	0.9807	-0.08	61	0.4683	-0.329	101	0.2916	-0.535	141	0.2111	-0.676
22	0.9577	-0.019	62	0.4616	-0.336	102	0.2888	-0.539	142	0.2097	-0.678
23	0.9356	-0.029	63	0.4551	-0.342	103	0.2861	-0.543	143	0.2083	-0.681
24	0.9143	-0.039	64	0.4487	-0.348	104	0.2834	-0.548	144	0.2070	-0.684
25	0.8938	-0.049	65	0.4425	-0.354	105	0.2807	-0.552	145	0.2056	-0.687
26	0.8741	-0.058	66	0.4365	-0.360	106	0.2781	-0.556	146	0.2043	-0.690
27	0.8551	-0.068	67	0.4305	-0.366	107	0.2756	-0.560	147	0.2030	-0.693
28	0.8367	-0.077	68	0.4248	-0.372	108	0.2731	-0.564	148	0.2017	-0.695
29	0.8190	-0.087	69	0.4191	-0.378	109	0.2707	-0.568	149	0.2005	-0.698
30	0.8019	-0.096	70	0.4137	-0.383	110	0.2683	-0.571	150	0.1992	-0.701
31	0.7854	-0.105	71	0.4083	-0.389	111	0.2659	-0.575	151	0.1980	-0.703
32	0.7694	-0.114	72	0.4030	-0.395	112	0.2636	-0.579	152	0.1968	-0.706
33	0.7540	-0.123	73	0.3979	-0.400	113	0.2613	-0.583	153	0.1956	-0.709
34	0.7391	-0.131	74	0.3929	-0.406	114	0.2591	-0.587	154	0.1945	-0.711
35	0.7247	-0.140	75	0.3880	-0.411	115	0.2569	-0.590	155	0.1933	-0.714
36	0.7107	-0.148	76	0.3832	-0.417	116	0.2547	-0.594	156	0.1922	-0.716
37	0.6972	-0.157	77	0.3785	-0.422	117	0.2526	-0.598	157	0.1911	-0.719
38	0.6841	-0.165	78	0.3740	-0.427	118	0.2505	-0.601	158	0.1900	-0.721
39	0.6714	-0.173	79	0.3695	-0.432	119	0.2485	-0.605	159	0.1889	-0.724

55

Приложение С

Зависимость скорости звука в воде от температуры.

T° C	С, м/с	K ₁ *10 ⁻⁶	T° C	С, м/с	K ₁ *10 ⁻⁶	T° C	С, м/с	K ₁ *10 ⁻⁶
0	1402.0	0.3245	50	1543.0	0.3001	100	1543.0	0.3001
2	1411.0	0.3227	52	1544.6	0.2998	102	1540.8	0.3004
4	1420.0	0.3210	54	1546.2	0.2996	104	1538.6	0.3008
6	1429.0	0.3194	56	1547.8	0.2993	106	1536.4	0.3011
8	1438.0	0.3177	58	1549.4	0.2991	108	1534.2	0.3015
10	1447.0	0.3161	60	1551.0	0.2989	110	1532.0	0.3018
12	1454.0	0.3148	62	1551.8	0.2987	112	1529.4	0.3022
14	1461.0	0.3136	64	1552.6	0.2986	114	1526.8	0.3026
16	1468.0	0.3124	66	1553.4	0.2985	116	1524.2	0.3030
18	1475.0	0.3112	68	1554.2	0.2984	118	1521.6	0.3034
20	1482.0	0.3100	70	1555.0	0.2982	120	1519.0	0.3039
22	1487.4	0.3090	72	1554.8	0.2983	122	1516.2	0.3043
23	1490.1	0.3086	73	1554.7	0.2983	123	1514.8	0.3045
24	1492.8	0.3081	74	1554.6	0.2983	124	1513.4	0.3048
26	1498.2	0.3072	76	1554.4	0.2983	126	1510.6	0.3052
28	1503.6	0.3064	78	1554.2	0.2984	128	1507.8	0.3057
30	1509.0	0.3055	80	1554.0	0.2984	130	1505.0	0.3061
32	1513.0	0.3048	82	1553.2	0.2985	132	1501.0	0.3068
34	1517.0	0.3042	84	1552.4	0.2986	134	1497.0	0.3074
36	1521.0	0.3035	86	1551.6	0.2988	136	1493.0	0.3081
38	1525.0	0.3029	88	1550.8	0.2989	138	1489.0	0.3088
40	1529.0	0.3023	90	1550.0	0.2990	140	1485.0	0.3095
42	1531.8	0.3018	92	1548.6	0.2992	142	1481.2	0.3101
44	1534.6	0.3014	94	1547.2	0.2994	144	1477.4	0.3107
46	1537.4	0.3010	96	1545.8	0.2997	146	1473.6	0.3114
48	1540.2	0.3005	98	1544.4	0.2999	148	1469.8	0.3121
50	1543.0	0.3001	100	1543.0	0.3001	150	1466.0	0.3127