ЕВРОПЕЙСКИЙ СТАНДАРТ EN 593

Затворы поворотные дисковые металлические

Этот европейский Стандарт был одобрен CEN 24 декабря 2003 г. Члены CEN обязаны выполнить внутренние инструкции CEN/CENELEC, которые предусматривают условия придания этому европейскому Стандарту статус национального стандарта без любых изменений. Современные списки и библиографические ссылки относительно таких национальных стандартов могут быть получены при обращении к Центральному Секретариату или любому члену CEN.

Этот европейский Стандарт существует в трех официальных версиях (на английском, французском, немецком языках). Версия на любом другом языке, перевод которой сделан под ответственностью члена СЕN на его собственный язык и зарегистрированный Секретариатом СЕN, имеет тот же статус, что и официальные версии.

Члены CEN - национальные органы стандартов следующих стран: Австрия, Бельгия, Кипр, Чешская Республика, Дания, Эстония, Финляндия, Франция, Германия, Греция, Венгрия, Исландия, Ирландия, Италия, Латвия, Литва, Люксембург, Мальта, Нидерланды, Норвегия, Польша, Португалия, Словакия, Словения, Испания, Швеция, Швейцария и Великобритания.

Содержание

	Предисловие	Страница
1	Область применения	
2	Нормативные ссылки	
3	Термины и определения	
4	Требования	
4.1	Устройство	
4.1.1	Конструкция	
4.1.2	Материалы	
4.1.3	Параметры давлений/температур	
4.1.4	Размеры и допуски	
4.1.5	Управление	
4.1.6	Постоянное соединение	
4.2	Функциональные характеристики	
4.2.1	Применение	
4.2.2	Прочность конструкции.	
4.2.3	Характеристики потока	
4.2.4	Герметичность	
5	Процедуры испытаний	
5.1	Испытания давлением	
5.2	Испытание на герметичность	
5.3	Прочие испытания	
6	Декларация соответствия	
7	Обозначения	
8	Маркировка и подготовка к хранению и транспортировке	

- 8.1 Маркировка
- 8.2 Подготовка к хранению и транспортировке

Приложение A (информативное) Информация для покупателя

Приложение В (информативное) Спецификация основных материалов

Приложение С (информативное) Защита окружающей среды Приложение ZA (информативное) Соотношения между настоящим европейским стандартом и основными требованиями Директивы 97/23/EC (PED).

Библиография

Предисловие

Этот документ (EN 593:2004) разработан Техническим Комитетом CEN/TC 69 "Промышленные клапаны", секретариат которого ведет AFNOR.

Этому европейскому Стандарту придается статус национального стандарта публикацией идентичного текста или одобрением не позднее августа 2004г., и противоречащие национальные стандарты должны быть аннулированы не позднее августа 2004 г.

Этот документ, разработанный согласно мандату, данному CEN Европейской Комиссией и Европейской Ассоциацией свободной торговли, поддерживает основные требования Директив EC.

Соотношение с Директивами ЕС приведено в информативном приложении ZA, которое является неотъемлемой частью этого документа.

Этот документ заменяет EN 593:1998.

Информативные приложения A, B и C могут использоваться для практического применения этого стандарта.

Этот документ включает Библиографию.

Согласно внутренним инструкциям CEN/CENELEC, национальные организации стандартов следующих стран обязаны осуществить этот европейский стандарт: Австрия, Бельгия, Кипр, Чешская республика, Дания, Эстония, Финляндия, Франция, Германия, Греция, Венгрия, Исландия, Ирландия, Италия, Латвия, Литва, Люксембург, Мальта, Нидерланды, Норвегия, Польша, Португалия, Словакия, Словения, Испания, Швеция, Швейцария и Великобритания.

1 Область применения

Этот стандарт определяет требования для затворов поворотных дисковых, имеющих металлические корпуса, используемых в фланцевых или сварных трубопроводных системах и применяемых для функций запирания, регулирования или контроля.

Диапазоны номинальных давлений PN и Классы:

- PN 2,5; PN 6; PN 10; PN 16; PN 25; PN 40; Класс 150; Класс 300. Диапазоны номинальных диаметров DN:
- DN 20; DN 25; DN 32; DN 40; DN 50; DN 65; DN 80; DN 100; DN 125; DN 150; DN 200; DN 250;

DN 300; DN 350; DN 400; DN 450; DN 500; DN 600; DN 700; DN 750; DN 800; DN 900; DN 1000;

DN 1200; DN 1400; DN 1600; DN 1800; DN 2000; DN 2200; DN 2400.

DN 750 используется только для Класса 150 и Класса 300.

Для специального применения в качестве затворов для контроля производственных процессов, см. EN 1349 и EN 60534-2-1.

2 Нормативные ссылки

Этот национальный стандарт имеет ссылки на другие стандарты, датированные или недатированные. Эти нормативные ссылки процитированы в соответствующих местах в тексте, а стандарты указаны в нижеприведенном перечне. Для датированных стандартов последующие поправки или изменения

любой из этих публикаций применимы к этому европейскому стандарту только тогда, когда они включены в него в соответствии с поправкой или изменением. Для недатированных стандартов применяется последняя редакция издания, переданного в обращение (включая поправки).

EN 19:2002, Арматура трубопроводная промышленная - Маркировка металлической арматуры.

EN 287-1, Сертификация сварщиков - Сварка плавлением - Часть 1: Стали. EN ISO 15607, Спецификация и квалификация сварочных процедур для

металлических материалов - Часть 1: Общие правила (ISO 15607:2003)

EN 558-1, Арматура трубопроводная промышленная — Строительные размеры металлической арматуры для фланцевых трубопроводных систем. Часть 1. Определение арматуры по PN.

EN 558-2, Арматура трубопроводная промышленная - Строительные размеры металлической арматуры для фланцевых трубопроводных систем. - Часть 2: Определение арматуры по классу.

EN 736-1, Арматура трубопроводная - Терминология - Часть 1: Определение видов арматуры.

EN 736-2, Арматура трубопроводная - Терминология - Часть 2: Определение элементов арматуры.

EN 736-3:1999, Арматура трубопроводная - Терминология - Часть 3: Определение рабочих параметров.

EN 1092-1, Фланцы и их соединения - Круглые фланцы для труб, арматуры, фитингов и вспомогательных устройств. Фланцы с маркировкой давления - Часть 1: Стальные фланцы.

EN 1092-2, Фланцы и их соединения - Круглые фланцы для труб, арматуры, фитингов и вспомогательных устройств. Фланцы с маркировкой давления ~ Часть 2: Фланцы чугуна.

EN 1092-3, Фланцы и их соединения - Круглые фланцы для труб, арматуры, фитингов и вспомогательных устройств. Фланцы с маркировкой давления - Часть 3: Медные фланцы сплава.

EN 1092-4, Фланцы и их соединения - Круглые фланцы для труб, арматуры, фитингов и вспомогательных устройств. Фланцы с маркировкой давления - Часть 4: Алюминиевые фланцы сплава.

EN 1267, Арматура трубопроводная — Определение гидродинамического сопротивления.

EN 1418, Сварочный персонал — Квалификационные испытания операторов для сварки плавлением и сварки сопротивлением установок для полуавтоматической и автоматической сварки металлических материалов. prEN 1759-1, Фланцы и их соединения — Круглые фланцы для труб, арматуры, фитингов и вспомогательных устройств. Определение фланцев по классу - Часть 1: Стальные фланцы, NPS 1/2 к 24.

EN 1759-3, Фланцы и их соединения - Круглые фланцы для труб, арматуры, фитингов и вспомогательных устройств Определение фланцев по классу - Часть 3: Медные фланцы сплава.

EN 1759-4, Фланцы и их соединения - Круглые фланцы для труб, арматуры, фитингов и вспомогательных устройств. Определение фланцев по классу - Часть 4: Алюминиевые фланцы сплава.

EN 10269, Стали и сплавы никеля для скоб с указанными высокими и/или низкими температурными свойствами.

EN 12266-1:2003, Арматура трубопроводная промышленная - Испытание арматуры - Часть 1: - Испытание давлением, методы испытаний и критерии приемки. Обязательные требования

EN 12266-2, Арматура трубопроводная промышленная - Испытание арматуры - Часть2: Испытания, процедуры испытаний и критерии приемки. Дополнительные требования.

prEN 12516~1, Арматура трубопроводная промышленная — Расчетная прочность корпуса - Часть 1: Табличный метод расчетов.

prEN 12516-2, Арматура трубопроводная промышленная — Расчетная прочность корпуса - Часть 2: Расчетный метод для стальной арматуры.

EN 12516~3, Арматура трубопроводная промышленная – Расчетная прочность корпуса - Часть 3: Экспериментальный метод.

EN 12570, Арматура трубопроводная промышленная — Метод, измеряющий операционный элемент.

EN 12627, Арматура трубопроводная промышленная — Соединения под сварку встык для стальной арматуры.

EN 12982, Арматура трубопроводная промышленная — Строительные размеры для арматуры с патрубками под сварку встык

EN 60534-2-3, Клапаны управления производственным процессом - Часть 2-3: Емкость потока - Испытательные процедуры (IEC 60534-2 - 3:1997).

EN ISO 1043-1, Пластмассы - Символы и сокращенные сроки - Часть 1: Основные полимеры и их специальные особенности (ISO1043-1:2001).

EN ISO 5211, Арматура трубопроводная промышленная — Частичное прикрепление приводов клапанов (ISO 5211:2001).

ISO 1629, Каучук и решетки - Спецификация.

ISO 10497, Испытание арматуры – Испытания на огнестойкость.

ASME B1.1, Унифицированные трубные резьбы, формы UN и UNC.

3 Термины и определения

В этом Стандарте, применяются термины и определения, предоставленные в EN 736-1, EN 736-2 и EN 736-3 и др.

3.1 максимальное допустимое давление, РЅ

максимальное давление, для которого оборудование разработано, как определено изготовителем

3.2 максимальная допустимая температура, TS

максимальная температура, для которой оборудование разработано, как определено изготовителем

3.3 конец обслуживания трубопровода

условие, когда выходная сторона арматуры сообщается с атмосферой

3.4 приводной вал

вал, присоединенный к запорному элементу, для управления клапаном с передаточным механизмом

3.5 затвор поворотный дисковый двойной фланцевый

затвор поворотный дисковый, имеющий двойной фланцевый корпус для болтового соединения с фланцами смежных частей трубопровода (см. рис 1),

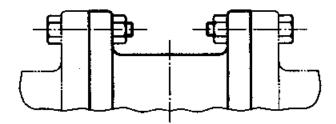


Рисунок 1 - Двойной фланцевый корпус

3.6 затвор поворотный дисковый стяжной

затвор поворотный дисковый, предназначенный для зажима между фланцами трубопровода.

Примечание. Возможны различные формы корпусов (см. Рис. 2, 3 и 4).

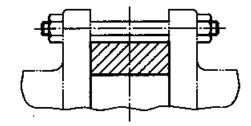


Рисунок 2 - Бесфланцевый стяжной корпус

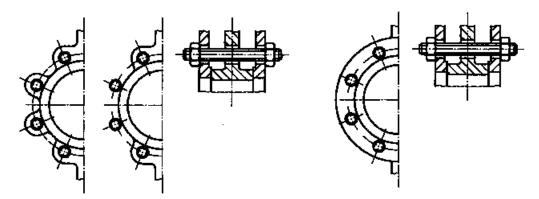


Рисунок 3а - Клапан с центральным расположением проушин

Рисунок 3б - Клапан с центральным фланцем

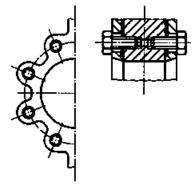


Рисунок 3в - Клапан с проушинами с внутренними резьбовыми отверстиями

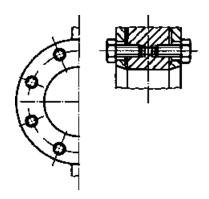


Рисунок 3г - Однофланцевый клапан с корпусом, имеющим внутренние резьбовые отверстия

Рисунок 3 – Клапан с одиночным сплошным фланцем или в виде проушин

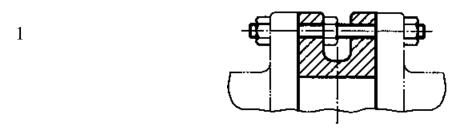


Рисунок 4 - "U" – образный стяжной корпус

3.7 затвор поворотный дисковый под приварку встык

затвор поворотный дисковый соединяемый приваркой встык с трубопроводом (см. Рис. 5),

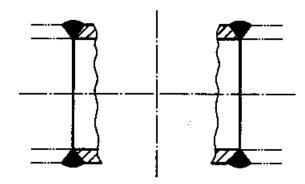


Рисунок 5 – Соединение под приварку встык

3.8 основные детали

детали в контакте со средой, как определено в EN 736-2

- 4 Требования
- 4.1 Устройство
- 4.1.1 Конструкция

4.1.1.1 Общие положения

Клапан должен иметь или концентричный диск (см. Рис. 6), или эксцентричный диск (см. Рис. 7). Отвод может быть одинарным, двойным или тройным.

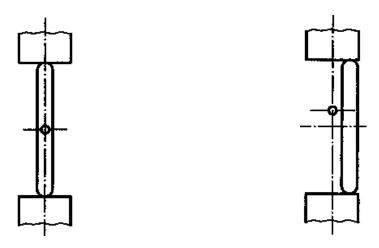


Рисунок 6 - Концентричный диск

Рисунок 7 - Эксцентричный диск (пример конструкции с двумя отводами)

Детали конструкции - под ответственность изготовителя.

4.1.1.2 Корпус

Фланцы двойных фланцевых клапанов и одинарных фланцевых стяжных клапанов должны иметь болтовые отверстия в соответствии с этим стандартом, в соответствии с 4.1.4.2. Резьбовые отверстия выполняются там, где конструкция клапана не позволяет выполнить фланцевое соединение.

Бесфланцевый стяжной клапан (см. Рис. 2) предназначен для зажима между фланцами труб с применением болтового соединения. Форма корпусов стяжных клапанов должна быть такой, чтобы центровка клапана была обеспечена в пределах соответствующего фланцевого болтового соединения. В случае, когда сквозное болтовое соединение невозможно из-за конструкции клапана, например близко к валу, могут быть выполнены индивидуально резьбовые отверстия.

Клапаны стяжные с фланцами сплошными или с проушинами(см. Рис. 3) выполняются с резьбовыми или сквозными отверстиями для установки между двумя фланцами или в конце трубопровода (то есть конец обслуживания трубопровода или разрыв при демонтаже).

Резьбовые отверстия должны иметь глубину не менее номинального диаметра болта или 0,67 диаметра болта, когда болтовое отверстие расположено близко к валу клапана.

Для клапанов, сконструированных по классам, резьбовые отверстия в теле фланца для болтов диаметром 1 дюйм или менее, должны быть просверлены и нарезаны в соответствии с ASME B1.1 UNC coarse thread series, Class 2B. Для болтов в диаметре 1 1/8 дюйма или больше, такие отверстия должны быть просверлены и нарезаны метчиком в соответствии с ASME B1.1, UN 8 eight thread series, Class 2B. Другие резьбы должны быть определены согласно другим стандартам.

В документации производителя должна быть определена возможность установки клапана в конце линии трубопровода и/или в болтовом соединении между

фланцами. Любое ограничение относительно конца условия обслуживания линии должно быть указано.

Вкладыши и футеровки из эластичных или пластичных материалов могут выходить за торцы фланца корпуса, чтобы формировать прокладку фланцев.

4.1.1.3 Запорный элемент (диск)

Техническая документация изготовителя клапана должна определять все необходимые размеры, показывающие выступ запорного элемента в открытом положении за торцами клапана.

4.1.1.4 Уплотнение седла или вкладыша корпуса

Техническая документация изготовителя клапана должна указывать возможность замены уплотнения седла или вкладыша корпуса.

4.1.1.5 Приводной вал.

Наружный конец приводного вала должен показать ориентацию запорного элемента.

Вал должен показать в соответствии с конструкцией или маркировкой положение запорного элемента. Где требуется в соответствии с конструкцией клапана, операционные инструкции изготовителя должны определить метод, чтобы сохранить признак положения запорного элемента, в течение и после повторной сборки запорного элемента к валу, например для обычного обслуживания.

Уплотнение вала должно оставаться герметично по отношению к атмосфере при снятии управляющего устройства.

Вал должен удерживаться в клапане таким образом, чтобы он не мог быть извлечен из корпуса, если удалены внешние части.

Когда требуется противоударная конструкция, то она должна соответствовать EN 736-3.

Внешние части, как заявлено в 3.3.7 из EN 736-3:1999, - части, которые не входят в обнаженный клапан штока, например скобка, рычаг, привод

4.1.1.6 Прочие требования

а) Огнестойкость конструкции: клапаны, определяемые как огнестойкая конструкция, должны соответствовать ISO 10497.

Если требуется огнестойкая конструкция клапана, то это должно быть указано в спецификации (см. приложение А).

б) Антистатичность конструкции: клапаны с антистатической конструкцией должны иметь электрическую связь между валом, запорным элементом и корпусом в соответствии с EN 12266-2.

Если требуется антистатическая конструкция клапана, то это должно быть указано в спецификации (см. приложение А).

4.1.2 Материалы

4.1.2.1 Корпус

а) Корпус и крышка: материалы из стальных сплавов только для корпуса и крышки должны быть выбраны из марок, указанных в prEN 12516-1.

Примечание. Металлические материалы только для корпуса и крышки, кроме стали, должны быть выбраны из марок, указанных в prEN 12516-4.

б) Болты: материал для болтов необходимо выбирать в соответствии с EN 10269.

4.1.2.2 Основные детали

Основные детали включают следующее:

запорный элемент;

вал(ы);

седло или вкладыш.

Техническая документация изготовителя клапана должна определить подходящие материалы для основных деталей (см. приложение В).

Седло и вкладыш могут быть из эластичных, пластичных, композитных, металлических материалов или их комбинаций.

Техническая документация изготовителя клапана должна определить марку материала седла и вкладыша.

4.1.2.3 Защита от коррозии

а) Внешняя защита от коррозии: корпуса клапана должны быть защищены против коррозии надлежащим материалом или поверхностной обработкой.

Техническая документация изготовителя клапана должна определить выбор материалов и/или вида поверхностной обработки.

Поверхностная система обработки может быть выбрана согласно категории классификации, данной приложением С.

Процедуры испытаний и их оценку определяет изготовитель под свою ответственность.

б) Внутренняя защита от коррозии: поверхности, находящиеся в в контакте со средой должны быть защищены от коррозии подходящим материалом или поверхностной обработкой. (см. приложение В).

Техническая документация изготовителя клапана должна определить материалы и / или вид поверхностной обработки.

4.1.3 Значения давления/температуры

Значения давления/температуры должны быть определены в: стальные материалы: prEN 12516-1 для специфической группы материала корпус/крышка;

чугун: EN 1092-2;

медные сплавы: EN 1092-3 для клапанов, определяемых PN; EN 1759-3 для фланцевых клапанов, определяемых классом;

алюминиевые сплавы: EN 1092-4 для клапанов, определяемых PN; EN 1759-4 для фланцевых клапанов, определяемых классом;

другие материалы: как определено в данном стандарте.

Если ограничения на давление и/или температуру затвора вызваны типом затвора, материалами или другими факторами, максимально допустимое давление и/или температура должны быть указаны на клапане (в соответствии с 8.1 и EN 19:2002).

Примечание. Рекомендуется, чтобы условия обслуживания, при которых должен использоваться затвор поворотный дисковый, были определены покупателем (см. приложение A).

4.1.4 Размеры и допуски

4.1.4.1 Строительные размеры

Строительные размеры и отклонения для фланцевых и стяжных затворов должны определяться в соответствии с:

EN 558-1 для затворов поворотных дисковых, определяемых PN;

EN 558-2 для затворов поворотных дисковых, определяемых классом.

Строительные размеры и отклонения для соединений под приварку встык должны определяться в соответствии с EN 12982.

Строительные размеры для DN ниже или больше, чем определенные в EN 558-1, EN 558-2 или EN 12982 должны определятся изготовителем.

4.1.4.2 Корпус с фланцевым соединением

Фланцевые соединения должны быть в соответствии с:

EN1092-1, EN 1092-2, EN 1092-3 и EN 1092-4 для затворов поворотных дисковых, определяемых PN;

prEN 1759-1, EN 1759-3 и EN 1759-4 для затворов поворотных дисковых, определяемых классом.

4.1.4.3 Стяжные корпуса

Бесфланцевые, фланцевые со сплошным фланцем или с проушинами должны быть такими, чтобы они могли быть установлены между фланцами в соответствии с:

EN 1092-1, EN 1092-2, EN 1092-3 и EN 1092-4 для затворов поворотных дисковых, определяемых PN;

prEN 1759-1, EN 1759-3 и EN 1759-4 для затворов поворотных дисковых, определяемых классом.

4.1.4.4 Соединение под приварку встык

Соединение под приварку встык должно быть в соответствии с EN 12627.

4.1.4.5 Присоединение привода клапана

Если клапан приводится в действие не рычагом, маховиком или ключом, то конструкция клапана должна быть такой, чтобы было возможным присоединение приводной части, с промежуточными частями или без них, в соответствии с EN ISO 5211.

4.1.5 Управление

4.1.5.1 Эксплуатационная способность

Все затворы должны быть управляемыми при перепаде давления поперек затворного элемента, равному максимальному допустимому давлению, PS при 20 °C или как маркировано на клапане, учитывая предел скорости потока (см. 4.2.3.1).

4.1.5.2 Рычажное управление

Конструкция рычага должна быть такой, чтобы при установке на затвор рычаг был направлен параллельно направлению потока, когда клапан полностью открыт.

Прочное крепление должно обеспечиваться и в полностью открытых, и в полностью закрытых положениях. Рычаги должны быть надежно установлены, но все же позволять удаление и замену.

4.1.5.3 Управление редуктором

Редукторы должны иметь самоблокирующуюся конструкцию.

Остановки должны обеспечиваться в полностью открытых и полностью закрытых положениях. Если необходимо, остановка (s) должна быть выполнена и обеспечена надежным способом.

Редукторы должны быть оснащены индикатором положения (за исключением скрытой установки).

По заказу изготовитель должен обеспечить число оборотов, которые являются необходимыми для полного открытия или закрытия.

4.1.5.4 Калибровка элемента управления

Поскольку маховик и рычаг управляют затворами, минимальный размер элемента управления должен быть определен в соответствии с EN 12570. Размер элемента управления должен быть выбран таким, чтобы клапан мог быть закрыт, когда допустимое отличительное давление равно максимальному допустимому давлению.

Если необходимо, возможно использовать более низкое допустимое отличительное давление в течение закрытия или открытия клапана.

4.1.5.5 Направление управления

Клапаны, управляемые вручную, и клапаны со свободным концом вала должны обычно закрываться поворотом маховика или рычага вала в направлении по часовой стрелке, стоя перед маховиком или рычагом или концом вала.

Если требуется закрытие против часовой стрелки, то это должно быть определено и обозначено на элементе управления.

4.1.5.6 Клапаны со свободным концом вала.

Когда, по заказу, затвор поворотный дисковый поставляется без устройства управления, изготовитель должен обеспечить необходимые значения вращающего момента, основанные на максимальных скоростях потока, как определено в Таблице 1 и максимальном допустимом давлении, PS при 20 °C, или максимальном отличительном давлении, отмеченном на клапане.

4.1.6 Неразъемное соединение

4.1.6.1 Приварка

Приварка корпуса, как части клапана, должна быть выполнена согласно аттестованным сварочным процедурам по EN ISO 15607 или другому соответствующему стандарту. Сварщики должны быть аттестованы по EN 287-1 и сварочные операторы должны быть аттестованы по EN 1418 или другим соответствующим стандартам.

4.1.6.2 Неразрушающий контроль

Требования неразрушающего контроля сварных швов, которые являются частью корпуса клапана, должны быть детализированы в аттестованной сварочной процедуре.

4.1.6.3 Термообработка

Требования термообработки сварного соединения, которое является частью корпуса клапана, должны быть детализированы в аттестованной сварочной процедуре.

4.2 Функциональные характеристики

4.2.1 Применение

Затворы поворотные дисковые, предназначенные для изолирующего применения, требующего, чтобы в закрытом положении запорного элемента было плотно перекрыто седло.

Примечание. Нормы герметичности см. 4.2.4.2.

Затворы поворотные дисковые, предназначенные для регулирования или контроля могут иметь зазор между запорным элементом и седлом корпуса в закрытом положении.

4.2.2 Прочность конструкции

Определение размеров частей, составляющих корпус должно быть в соответствии с требованиями prEN 12516-1 и/или prEN 12516-2,

Примечание 1. Определение размеров также может соответствовать требованиям prEN 12516-4, который находится в процессе подготовки.

Будет одинаково приемлемо для проверки прочности конструкции корпуса клапана, выполнять поднятый тест давления в соответствии с требованиями EN 12516-3, если затвор находится в границах пределов, определенных в стандарте. Процедуры определения размеров частей при использовании материалов, кроме определенных в prEN 12516-1; prEN 12516-2 или EN 12516-3 - ответственность изготовителя.

Примечание 2. Это касается также материалов, определенных в prEN 12516-4, который находится в процессе подготовки.

Конструкция других частей определяется для перепада давления, определенного значениями давления/температуры или для перепада давления, которое должно быть указано на клапане.

4.2.3 Характеристики потока

4.2.3.1 Скорость потока

Затворы поворотные дисковые должны быть разработаны таким способом, чтобы они подходили, по крайней мере, для всех скоростей потока согласно Таблице 1. Примечание 1. Высокая скорость потока является критической в поворотных затворах.

Примечание 2. Скорость потока — это частное от деления значения объемного потока (выраженного в ${\rm m}^3/{\rm c}$) и площади, вычисленной через диаметр (выраженный в м), имеющий значение, равное числу DN, разделенному на 1000.

Таблица 1 - Скорость потока

PS	Максимальная скорость потока	
бар	м/с	
	Жидкие среды	Газообразные среды
		[at ≡ 1 бар]
До 6	2,5	25
10	3	30
16	4	35
≥ 25	5	40

4.2.3.2 Коэффициент потока K_{ν} .

Изготовитель должен обеспечить коэффициент потока (K_{ν}) в полностью открытом положении, и кривая характеристики поворотного затвора должна определить изменение коэффициента потока в зависимости от открытия затвора.

Измерение сопротивления потока ζ поворотных затворов, предназначенных для перекрытия потока, должно быть в соответствии с процедурой, определенной в EN 1267.

Для затворов, предназначенных только для регулирования, измерение сопротивления потока должно быть в соответствии с EN 60534-2-3.

4.2.4 Герметичность

4.2.4.1 Плотность корпуса

Никакая внешняя утечка корпуса не разрешается в течение производства или приемных испытаний плотности утечки в соответствии с Тестом Р11 EN 12266-1.

4.2.4.2 Плотность седла

Для всех клапанов, у которых седло закрыто при закрытом положении запорного элемента, изготовитель должен отметить в документации на клапан соответствующую максимальную допустимую норму утечки седла, выбранную из A.4.3 стандарта EN 12266-1:2003.

Примечание. См. EN 1349 Нормы утечки седла клапанов контроля.

Для клапанов с предпочтительным направлением утечки, изготовитель должен дать руководство для установки в документации.

5 Процедуры испытания

5.1 Испытания давлением

- а) Испытание прочности корпуса, P10, плотности корпуса Тест P11, и Тест P12 плотности затвора, в соответствии с EN 12266-1, должно быть выполнено на каждом клапане;
- б) Только для клапанов, используемых в конце срока службы, должен быть выполнен Тест Р20 прочности запорного элемента, в соответствии с EN 12266-2.

5.2 Испытание на герметичность

Открытие и закрытие Теста F20, в соответствии с EN 12266-2, должны осуществляться на каждом клапане.

5.3 Прочие испытания

Дополнительные испытания испытанных клапанов могут также быть выполнены согласно требованиям EN 12266-2. Покупатель должен определить, какие дополнительные испытания требуются.

6 Декларация соответствия

Изготовитель должен объявить соответствие этому стандарту в своей документации.

7 Обозначения

Затворы поворотные дисковые в соответствии с этим стандартом должны иметь следующие элементы обозначения в таком же порядке, как указано ниже: затвор поворотный дисковый;

EN 593;

тип клапана: концентричный или эксцентричный/двойной эксцентричный или тройной эксцентричный (см. 4.1.1);

тип присоединения (см. пункт 3);

символ DN и номер;

PN или обозначение класса;

материал корпуса;

материалы основных деталей или седла;

если необходимо: ограничение максимального допустимого давления или максимальной допустимой температуры (или максимальное отличительное давление);

— для клапанов фланцевых или стяжных или приварных соединений, номер основных серий строительных размеров в соответствии с EN 558-1 или EN 558-2 или EN 12982;

— если привод не ручной, то тип и спецификация привода.

_

8 Маркировка и подготовка для хранения безводное транспортирование

8.1 Маркировка

Все клапаны (включая DN 20, DN 25, DN 32 и DN 40) должны быть отмечены в соответствии с EN 19:2002.

Соответствующий проекту или другим факторам, клапан должен быть отмечен в соответствии с пунктами 6, 7 и 9 из EN 19:2002.

Маркировка допустимого отличительного давления Ар обязательна, когда оно - менее чем максимально допустимый PS давления клапана (пункт 20 из EN 19:2002).

Примечание. Ар - допустимое отличительное давление. Это давление могут ограничить внутренние узлы или операционное устройство.

Материал седла должна указать маркировка. Для резины и пластмассовых седел, маркировка должна быть в соответствии с EN ISO 1043-1 и ISO 1629. Клапаны, проектирующиеся с предпочтительным направлением потока, должны быть маркированы в соответствии с пунктом 5 из EN 19:2002.

Если необходимо, рычаги или маховики клапанов с закрытием против часовой стрелки, должны быть маркированы, чтобы показать направление управления. Если задано приложением, пункты 10, 12, 18 из EN 19:2002 должны быть маркированы.

8.2 Подготовка к хранению и транспортировке

Каждый клапан должен быть просушен от любой жидкости.

Диск клапана с мягким седлом может быть приоткрыт, чтобы материал седла не был сжат.

Область покрытий — если предусмотрено - должна расширяться по всему лицу прокладки. Поверхности концов корпуса, которые сварены, должны быть соответственно защищены, чтобы предотвратить механическое повреждение в течение нормальных условий транспортировки и хранения.

Упаковка клапана или защита конца корпуса должны предотвратить проникновение посторонних материалов.

(Информативное) Приложение А

Информация, которая поставляется покупателем

Рекомендуется, чтобы покупатель обеспечил информацию как обозначено в Таблице 1.