МИНИСТЕРСТВО ЗДРАВООХРАНЕНИЯ РЕСПУБЛИКИ БЕЛАРУСЬ

УТВЕРЖДАЮ
Главный государственный санитарный врач
Республики Беларусь
______ М.И. Римжа
«_28_ » __декабря 2005 г.
Регистрационный № 114-1005

ОПРЕДЕЛЕНИЕ ПОЛИХЛОРИРОВАННЫХ ДИБЕНЗО-n-ДИОКСИНОВ, ДИБЕНЗОФУРАНОВ и БИФЕНИЛОВ В ПРОБАХ ПИТЬЕВОЙ ВОДЫ, ПОВЕРХНОСТНЫХ, ПРИРОДНЫХ И ОЧИЩЕННЫХ СТОЧНЫХ ВОД МЕТОДОМ ХРОМАТОМАСС-СПЕКТРОМЕТРИИ

Инструкция по применению

Учреждения-разработчики: Республиканский научно-практический центр гигиены Минздрава РБ, Российский научно-исследовательский центр чрезвычайных ситуаций Минздрава РФ, Научно-производственное объединение «Тайфун» Роскомгидромета, Институт проблем эволюции и экологии им. А.Н. Северцова РАН

Авторы: И.А. Застенская, Н.И. Марусич, Н.П. Левошук, Ю.А. Присмотров, Н.Н. Турко, С.Ю. Семенов, В.Н. Смирнов, Г.В. Зыкова, Ю.Н. Дубров, Г.Г. Финаков, А.Д. Орлянский, Р.И. Первунина, Д.П. Самсонов, В.П. Кирюхин, Н.П. Жирюхина, Т.В. Рахманова, В.Е. Соколов, Н.А. Клюев, Е.С. Бродский, В.Г. Жильников, В.С. Сойфер, Е.И. Соболева

1. Область применения

Настоящая Инструкция устанавливает метод идентификации выполнения измерений массовых концентраций (далее концентраций) высокотоксичных замещенных полихлорированных дибензо-п-диоксинов (ПХДД), дибензофуранов (ПХДФ) бифенилов (ПХБ): 2,3,7,8-ТетраХДД; 1,2,37,8-ПентаХДД; 1,2,3,4,7,8-ГексаХДД; 1,2,36,7,8-1,2,3,4,6,7,8-ГептаХДД; ГексаХДД; 1,2,3,7,8,9-ГексаХДД; ОктаХДД; 2,3,7,8-ТетраХДФ; 1,2,3,7,8-ПентаХДФ; 2,3,4,7,8-ПентаХДФ; 1,2,3,4,7,8-1,2,36,7,8-ГексаХДФ; ГексаХДФ: 2,3,4,6,7,8-ГексаХДФ; 1,2,37,8,9-ГексаХДФ; 1,2,34,6,7,8-ГептаХДФ; 1,2,34,7,8,9-ГептаХДФ; ОктаХДФ; 2,4,4'-ТриХБ; 2,2',5,5'-ТетраХБ; 2,2',4,5,5'-ПентаХБ; 2,3',4,4',5'-ПентаХБ 2,2',3,4,4',5'-ГексаХБ; 2,2',4,4'5,5'-ГексаХБ; 2,2',3,4,4',5,5'-ГептаХБ пробах питьевой воды, поверхностных природных и очищенных сточных вод методом хромато-масс-спектрометрии.

Диапазон определяемых массовых концентраций ПХДД и ПХДФ составляет 0.01-0.2 нг/дм 3 при объеме анализируемой воды 1 дм 3 . Диапазон определяемых массовых концентраций для ПХБ составляет 500-5000 нг/дм 3 при объеме анализируемой воды 1 дм 3 .

Определению не мешает присутствие в образцах воды других органических соединений.

Настоящая Инструкция предназначена для использования органами учреждениями государственного санитарного надзора И при осуществлении государственного контроля за соблюдением требований к качеству воды централизованного хозяйственно-питьевого водоснабжения, водопроводно-канализационными хозяйствами. лабораториями предприятий, производственными контролирующими состояние качества питьевой воды, а также научно-исследовательскими организациями, работающими в области гигиены водных объектов.

2. Краткая характеристика исследуемых веществ

существуют различных ПХДД 135 75 ПХДФ, отличающихся количеством и местом присоединения атомов хлора. Наиболее токсичны 17 изомеров ПХДД и ПХДФ, замещенные атомами 2,3,7,8-положениях. Самым токсичным является тетрахлордибензо-п-диоксин (2,3,7,8-ТетраХДД), который представляет собой кристаллическое вещество с температурой плавления 305-307 °C, растворимостью в воде $2x10^{-8}$ %, химически инертное, термостойкое, не разлагаемое кислотами и щелочами. 2,3,7,8-ТетраХДД высотоксичен даже в малых концентрациях. Токсичность других ПХДД и ПХДФ выражается в эквивалентах токсичности (диоксиновых эквивалентах, ДЭ) - долях от токсичности 2,3,7,8-ТетраХДД, принятой за единицу (см. Приложение 5).

Из известных полихлорированных бифенилов (ПХБ) в объектах окружающей среды доминантно присутствуют 7 изомеров: ПХБ-28 (2,2',5,5'-ТетраХБ), ПХБ-101 (2,4,4'-ТриХБ),ПХБФ-52 (2,2',4,5,5'-(2,3',4,4',5'-ПентаХБ), ПХБ-138 (2,2',3,4,4',5'-ПентаХБ), ПХБ-118 $(2,2',4,4',5,5'-\Gamma \text{excaXB}),$ ГексаХБ), ПХБ-153 ПХБ-180 (2,2',3,4,4'5,5'-ГептаХБ). Определение этих 7 индикаторов-изомеров используется для определения контаминации ПХБ в объекте.

Растворимость ПХБ в воде низка и уменьшается с возрастанием степени хлорзамещения. По физико-химическим свойствам они обладают не горючестью, высокой температурой кипения, химической стабильностью, низкой теплопроводностью, высокими диэлектрическими постоянными.

3. Значения характеристик погрешности метода определения

В России установлен допустимый уровень содержания диоксинов (в пересчете на диоксиновый эквивалент) и, согласно ГН № 142-9/105, составляет в питьевой воде, грунтовых и поверхностных водах, в местах водозабора $20~\rm nr/дm^3$.

Согласно СанПиН 10-124 РБ-99, предельно допустимая концентрация (ПДК) полихлорированных бифенилов — МоноХБ, ДиХБ, ТриХБ, ПентаХБ — в питьевой и поверхностной воде составляет 0.001мг/дм³ (1000 нг/дм³).

При соблюдении всех регламентируемых методикой условий проведения измерений характеристика погрешности (d) результата анализа X с вероятностью P=0,95 не превышает значений, приведенных в приложении 1.

4. Метод измерения

Методика основана на экстракции из проб воды ПХДД, ПХДФ и ПХБ органическим растворителем. Предварительно в пробу вносятся изотопномеченые внутренние стандарты ПХДД, ПХДФ (стандарты-имитаторы). Далее проводится очистка экстракта сопутствующих соединений, мешающих определению ПХДД, ПХДФ и последующим анализом его c помощью высокоэффективной капиллярной газовой хроматографии спектрометрии (ГХ-МС).

Идентификацию ПХДД, ПХДФ и ПХБ осуществляют по временам удерживания и соотношению площадей хроматографических пиков идентифицируемых компонентов и стандартов-имитаторов на регистрируемых ионных масс-хроматограммах.

Концентрации ПХДД, ПХДФ и ПХБ определяют по площадям соответствующих хроматографических пиков с применением метода внутреннего стандарта.

5. Средства измерений

Хромато-масс-спектрометрическая система, включающая:

- -газовый хроматограф, (Varian 3400, Hewlett-Packard 6890A);
- -инжектор split-splitless или on-column;
- -масс-спектрометрический детектор высокого или низкого разрешения, позволяющий вести регистрацию отдельных ионов с заданными массами;
- -компьютерная система обработки данных (Finnigan MAT 8200, MAT-95, HP 5988, HP 5973, ITD 700, Nermag R 10-10);
- капиллярные хроматографические колонки 50 (60) м х 0,25 (0,32) мм с неподвижной неполярной фазой типа SE-54 (DB-5, Ultra-2 и др.) и полярной фазой SP 2331, CP Sil 88, DB-DIOXIN, HP-23;
- микрошприцы типа Hamilton вместимостью 1, 10, 100, 500 мкл с ценой деления 0,01,0,1,1,0,10 мкл, соответственно.

Весы аналитические ВЛР-200М, 2 класса

ΓOCT 24104-2001

точности с погрешностью $\pm 0,0002$ г

Меры массы Г-2-210

ΓOCT 7328-82

Стандартные растворы изотопномеченых ПХДД, ПХДФ и ПХБ (внутренний стандарт, стандарт-имитатор), производства фирмы Cambridge Isotope Laboratory (CIL), например, EDF – 4053*, с концентрацией не менее (50 ± 5) мкг/см³, а также, например, CLM-3235-1.2* с концентрацией ПХБФ ($^{13}C_{12}$,99%) 0,1 нг/см³.

Допускается использование других изотопов 13 C₁₂-хлорзамещенных производных или их композиций, стандартных растворов на основе 37 Cl₄, 13 C₆ фирмы CIL.

Стандартные растворы не меченных отдельных или смеси всех 17 определяемых ПХДД и ПХДФ с содержанием их 40-400 мкг/см³, производства фирмы СІL (например, EDF - 7999)* и 7 ПХБ с концентрацией не менее 10 мкг/см³, (для градуировки прибора).

Рекавер стандарт 1,2,3,4-ТетраХДД/1,2,3,7,8,9-ГексаХДД, производства фирмы СІL.

Допускается использование стандартных растворов индивидуальных компонентов и их смесей других фирм с содержанием основного компонента не менее 98-99% и с погрешностью аттестованного значения концентраций не выше 5%.

Дозаторы пипеточные от 5 до 1000 мкл.

Цилиндры 3-25(50,100)-1ГОСТ 1770-74Колбы 2-25-2, 2-50-2ГОСТ 1770-74Пипетки 1-2-1, 2-2-5ГОСТ 29227-91

^{* -} Номера по каталогу «Environmental Contaminant Standards» (2005/2006).

6. Вспомогательные устройства и лабораторная посуда

Ротационный испаритель типа RY-05 ST Basic 1-B

Сушильный шкаф типа SNOL 67/350 нерж. сталь

Электропечь лабораторная типа SNOL 7,2/1100

Встряхиватель горизонтальный типа HS-260 Basic

Эксикатор 2-250

ΓΟCT 9147-80E

Колонка стеклянная длиной 400 мм и внутренним диаметром 7 мм.

Колонка стеклянная длиной 200 мм и внутренним диаметром 7 мм.

Флаконы для образцов с коническим дном и герметичной пробкой

типа Wheaton Mini-Vials вместимостью 1; 5 см³.

Флаконы для образцов с герметичной пробкой вместимостью 4, 10 см³

Колба Бунзена с воронкой Бюхнера

Трубки полиэтиленовые внешним диаметром 2 мм.

Трубки из силиконовой резины.

Баллон с сжатым воздухом.

Редуктор кислородный.

Посуда лабораторная стеклянная

ΓOCT 25336-82

Воронки лабораторные В-36-50, В- 100-150

Воронки делительные ВД-3-1000(5000) ХС

Дефлегматор 250-14/23-29/32-ТС

Колбы конические вместимостью Kн-1-500-14/23 TC, Kн-1-250-24/29 TC Колбы круглодонные K-1-500-29/32 TC, K-1-25-14/23 TC, K-1-1000-29/32

TC

Стаканы В-1-50 ТС, В-1-100 ТС

Холодильник XПТ-1-300-14/23 XC

Пробирки кварцевые П-6-КШ 14/23

Допускается использование измерительного и вспомогательного оборудования и лабораторной посуды других марок, обеспечивающих проведение анализа с заданной погрешностью.

7. Реактивы и материалы

Ацетон, о.с.ч. 9-5ТУ 263-039-44493179-00Толуол, ос.ч. 22-5ТУ 2631-065-44493179-01

Метанол, х.ч. ГОСТ 6995-77

н-Гексан, о.с.ч.Фирмы «Fluka», « Sigma»Метиленхлорид, о.с.ч.Фирмы «Fluka», « Sigma»Тридекан, о.с.ч.Фирмы «Fluka», « Sigma»

Кислота серная, ос.ч. ГОСТ 4204-77 Натрий сернокислый безводный, х.ч., ГОСТ 4166-76 Калия гидроксид, х.ч. ГОСТ 24363-80

Силикагель 60 для хроматографии Фирмы «MERCK»

Оксид алюминия активированный, щелочной, Brokmann I, «Aldrich

Chemical Company, Inc.»

Натрий фосфат, ч.д.а.ГОСТ 9337-79.Магний сернокислый, ч.д.а.ГОСТ 4523-77Диметилдихлорсилан, ч.ТУ 6-09-3278-78Калия дихромат, ч.ГОСТ 4220-75.Волокнистый кварцевый материалТУ 6-11-15-191-81

Допускается использование реактивов и материалов других марок после их проверки путем проведения всей процедуры анализа для холостого опыта со стандартными растворами изотопномеченных ПХДД и оценки полученных результатов с учетом характеристик погрешности.

8. Требования безопасности

Требования безопасности устанавливают в соответствии со специальными инструкциями по работе с диоксином (например, "Инструкция по технике безопасности по работе с 2,3,7,8-ТетраХДД", утверждена Главным Управлением при Минздраве СССР от 02.12.1986 г.).

Помещения, в которых проводятся подготовка проб, должны быть оборудованы приточно-вытяжной вентиляцией. Исходные стандартные образцы для приготовления градуировочных растворов и внутренних стандартов должны храниться в запираемом металлическом шкафу.

Все операции по приготовлению внутренних стандартов и градуировочных растворов, содержащих ТетраХДД и его меченые аналоги, добавлению стандартов к образцу, подготовке образца к анализу, следует проводить в вытяжном шкафу, в полиэтиленовых перчатках.

Пробы, подготовленные к анализу, и растворы стандартных образцов, градуировочных и контрольных растворов следует держать в ампулах, закрытых завинчивающейся или запрессованной крышкой с тефлонированной резиновой прокладкой, прокалываемой микрошприцем.

Меры по оказанию первой помощи при попадании диоксина или бифенила и их растворов на кожу, в глаза и желудок проводят в соответствии с "Временной инструкцией по лечению отравлений диоксином", утвержденной заместителем Министра здравоохранения СССР от 10 сентября 1986 г.

9. Требования к квалификации оператора

Подготовку проб может производить инженер, техник или лаборант со средним специальным или высшим образованием, прошедший соответствующую подготовку и имеющий навыки работы в химической лаборатории. Измерения может проводить инженер или научный

сотрудник, имеющие навыки работы на газовом хроматографе и масс-спектрометре.

Все работающие должны быть проинструктированы о работе с веществами 1-2 класса опасности, органическими растворителями, правилах работы в химической лаборатории и работы с электроустановками.

10. Отбор, хранение и транспортировка проб

Условия отбора, хранения и транспортировки проб проводят согласно СТБ ГОСТ Р 51593-2001 «Вода питьевая», ГОСТ 17.1.5.05-85 «Охрана природы. Гидросфера. Общие требования к отбору поверхностных и морских вод, льда и атмосферных осадков».

Пробы воды отбирают в объеме от 1 до 20 дм³ в стеклянные бутыли темного стекла (или защищенные от света) с притертой пробкой, просиланизированные по п. 11.2. Если период от отбора пробы до экстракции составляет более 2 часов, пробу необходимо законсервировать добавлением 0,5 см³ толуола на 1 дм³ воды в зависимости от объема пробы. Законсервированные пробы, защищенные от света, могут храниться до семи суток при комнатной температуре.

11. Подготовка к проведению анализа

Перед выполнением измерений должны быть проведены следующие работы: подготовка химической посуды, приготовление растворов адсорбентов и адсорбционных колонок, получение экстрактов из проб воды, очистка экстрактов, подготовка измерительной аппаратуры, установление градуировочной характеристики.

11.1. Подготовка химической посуды

Водопроводной водой со стеклянной химической посуды смывают видимые частицы или налет на стенках. Затем посуду промывают cm^3), раствором тринатрийфосфата (10-30)насыщенным ополаскивают водопроводной водой и помещают в раствор дихромата кислоте на ночь. Посуду обильно промывают серной водопроводной последовательно водой, насыщенным раствором тринатрийфосфата, дистиллированной водой, сушат в сушильной шкафу. Далее, каждый предмет посуды промывают последовательно ацетоном, дихлорметаном, толуолом, ацетоном и сушат при 120-150°C в течение 30 минут. Материал волокнистый кварцевый проходит те же стадии очистки, тринатрийфосфата, кроме обработки раствором прокаливают электропечи при 450°C в течение 4 часов.

11.2. Силанизирование посуды

Подготовленную по п. 11.1. посуду, охлаждают до комнатной температуры, ополаскивают 5% раствором диметилдихлорсилана в толуоле, выдерживают в течение 3 часов в сушильном шкафу при 250^{0} C, а затем охлаждают до комнатной температуры.

11.3. Подготовка растворителей, адсорбентов, реактивов

а) Очистка гексана. 1-ый способ. К 4 дм³ гексана добавляют 150 г силикагеля, импрегнированного серной кислотой (п. 11.3 «в»). Смесь встряхивают в течение 6-8 часов. После оседания силикагеля растворитель декантируют и перегоняют, отбрасывая первый отгон (приблизительно 5%) и остаток (5%).

2-ой способ. К 1 дм³ гексана в делительной воронке добавляют 100 см³ серной концентрированной кислоты, воронку энергично встряхивают. Затем содержимое отстаивается и кислотный (нижний) слой удаляют. Процедура повторяется до слабо желтой окраски кислоты после встряхивания с гексаном. Гексан в делительной воронке промывают дистиллированной водой, 0,1 н раствором щелочи, снова дистиллированной водой до нейтральной реакции лакмусовой бумажки, просушивают пропусканием гексана через слой сульфата натрия.

Хлористый метилен, ацетон, толуол и другие растворители очищают путем перегонки перед употреблением. Хлористый метилен стабилизируют циклогексеном (20 мкл/дм^3).

Растворители с маркой «pesticide grade» (для анализа пестицидов) могут использоваться без дополнительной очистки.

б) Активирование силикагеля и оксида алюминия

Силикагель промывают последовательно двойными объемами метанола и метиленхлорида, затем активируют в сушильном шкафу 24 часа при 180° С.

Оксид алюминия активируют при 600° С в электропечи в течение 12 ч в стеклянных ампулах по 4 г в каждой, после чего ампулы запаивают и хранят в эксикаторе.

в) Силикагель, импрегнированный серной кислотой

Смесь активированного силикагеля (п.10.5.«б») и концентрированной серной кислоты перемешивают на встряхивателе или качалке до отсутствия комков (не менее 7 час). Навески силикагеля и серной кислоты рассчитывают в зависимости от необходимой концентрации последней.

г) Силикагель, импрегнированный гидроксидом калия

Готовят метанольный раствор гидроокиси калия, для чего 224 г гидроокиси калия растворяют в $300~{\rm cm}^3$ метанола.

К 120 г активированного силикагеля приливают 300 см 3 метанольного раствора гидроокиси калия порциями по 50-70 см 3 и интенсивно

перемешивают до отсутствия комков. Смесь выдерживают ночь в закрытой колбе, отфильтровывают, промывают порциями метанола по $100~{\rm cm}^3$ до рH-7. Импрегнированный гидроксидом калия силикагель активируют при $180^{0}{\rm C}$ в течение 17 часов в сушильном шкафу.

- д) Натрий сернокислый прокаливают при температуре 400°C в течение 4 часов.
- е) Магний сернокислый прокаливают при температуре 450°C в течение 4 часов.

При подготовке и использовании каждой новой партии реактивов и материалов или замене одного из них проводят проверку путем выполнения всей процедуры анализа для холостого опыта и контрольной аттестованной смеси, оценивая результаты с учетом характеристик погрешности. Допускается использование растворителей и сорбентов других марок, обеспечивающих проведение анализа с заданной погрешностью.

11.4. Подготовка колонок

а) Подготовка «многослойной» колонки

Для «многослойной» колонки используют стеклянную трубку длиной 400 мм и внутренним диаметром 7 мм (п. 6). «Многослойная» колонка состоит из следующих слоев (сверху вниз) — 3-4 см 3 30% H_2SO_4 /SiO $_2$, 2,0 см 3 MgSO $_4$, 3-4 см 3 40% H_2SO_4 /SiO $_2$, 1,5 см 3 MgSO $_4$, 3-4 см 3 44% H_2SO_4 /SiO $_2$, 1,5 см 3 MgSO $_4$, 3-4 см 3 K $_2SiO_3$, 2,0 см 3 MgSO $_4$ стеклянный фильтр.

б) Подготовка колонки с окисью алюминия

Для колонки этого типа используют стеклянную трубку длиной 200 мм и внутренним диаметром 7 мм (п. 6). Колонку набивают 4 г щелочным оксидом алюминия, предварительно активированный (п. 11.3. б.).

11.5. Приготовление растворов ПХДД, ПХДФ и ПХБ

а) Приготовление исходных стандартных растворов меченных $^{13}C_{12}$ - ПХДД, ПХДФ и ПХБ с концентрацией 1,0 мкг/см 3 (стандарт-имитатор, внутренний стандарт), для чего проводят соответствующее разведение стандартных растворов изотопномеченных $^{13}C_{12}$ - ПХДД, ПХДФ и ПХБ (п. 5).

Сосуды, в которых хранят растворы, маркируют и взвешивают для того, чтобы учесть потери растворителя в процессе испарения. Растворы хранят в мерных колбах с притертыми стеклянными пробками в холодильнике при температуре 4°C. Перед использованием растворы доводят до температуры окружающей среды и в случае необходимости корректируют уровень растворителя.

Растворы стабильны в течение 1 года.

б) Приготовление рабочего раствора меченого стандарта 13 С₁₂-ПХДД, ПХДФ и ПХБ с концентрацией 10 нг/см³ проводят в мерных колбах с использованием дозаторов, путем соответствующего разведения исходных стандартных растворов 13 С₁₂- ПХДД, ПХДФ и ПХБ (п. 11.5.«а»). При этом используют растворитель того же названия, который применялся в исходном растворе.

Условия хранения растворов идентичны п. 11.5.«а»

Растворы стабильны в течение 1 года.

в) Приготовление градуировочных растворов соединений $^{12}\mathrm{C}_{12}$ - ПХДД, ПХДФ и ПХБ.

Приготовление градуировочных растворов смеси или отдельных наименований каждого имеющегося вещества $^{12}C_{12}$ - ПХДД, ПХДФ и ПХБ проводят в мерных колбах с использованием дозаторов, путем соответствующего разведения стандартных растворов $^{12}C_{12}$ - ПХДД, ПХДФ и ПХБ. При этом используют растворитель того же названия, который применялся в исходном растворе.

Готовят следующие концентрации: Тетра- и ПентаХДД(Φ) от 10 до100 нг/см³; ГексаХДД(Φ) от 20 до 200 нг/см³; ГептаХДД(Φ) от 40 до 400 нг/см³; ОктаХДД(Φ) от 100 до 1000 нг/см³. Для ПХБ готовят концентрации в интервале 0,5-10 мкг/см³. Для каждого вещества готовят не менее четырех концентраций. Для ПХБ готовят концентрацию в интервале 0,5-10 мкг/см³.

Условия хранения растворов идентичны п. 11.5. «а». Растворы стабильны в течение 6 месяцев.

11.6. Подготовка аппаратуры.

Хромато-масс-спектрометрическую работе систему ГОТОВЯТ инструкцией Проверяют соответствии ПО эксплуатации. \mathbf{c} функционирование ГХ-МС системы, вводя в инжектор хроматографа контрольный образец, оценивают общую растворитель ИЛИ И чувствительность прибора, фон, наличие эффектов "памяти" артефактов.

11.7. Получение градуировочной зависимости для определяемых компонентов.

Во флаконы, плотно закрывающиеся пробками, вместимостью 1 см³ вводят дозатором по 0,995 см³ градуировочных растворов ПХДД(Φ) и ПХБ п.11.5.в) и добавляют с помощью микрошприца по 0,005 см³ стандартного раствора $^{13}\mathrm{C}_{12}$ -2,3,7,8-ТетраХДД (или набора изотопномеченых внутренних стандартов) с концентрацией 1 мкг/см³ (п. 11.5.а).

По 0,001 см³ каждого раствора вводят микрошприцем в инжектор газового хроматографа в режиме splitless (или on-column). Регистрируют масс-хроматограммы для ионов с массами, указанными приложении 2.

С помощью системы обработки данных находят градуировочную зависимость отношения площади хроматографического пика каждого определяемого компонента на масс-хроматограммах для одного или обоих регистрируемых изотопных ионов к площади пика на масс-хроматограмме соответствующего иона внутреннего стандарта от концентрации. Например, для 2,3,7,8-ТетраХДД и внутреннего стандарта ${}^{13}C_{12}$ -2,3,7,8-ТетраХДД определяют зависимость от концентрации 2,3,7,8-ТетраХДД отношения площадей хроматографических пиков для ионов 320/332, 322/334.

Градуировочная зависимость считается приемлемой, если все точки находятся в доверительном интервале, соответствующем 95%-й доверительной вероятности.

11.8. Подготовка и экстракция проб

В делительную воронку вливают 1 дм³ анализируемой пробы.

В пробу воды дозатором вносят 0,01 см 3 рабочего раствора смеси меченных стандартов 13 С $_{12}$ -ПХДД, ПХДФ,ПХБ с концентрацией 10 нг/см 3 и встряхивают в течении часа, после чего экстрагируют два раза порциями по 100 см 3 метиленхлорида. Органические экстракты объединяют, упаривают \sim до 5 см 3 .

11.9. Очистка экстракта на «многослойной» колонке с модифицированным силикагелем

Экстракт пробы в хлористом метилене (гексане) вносят в колонку с модифицированным силикагелем. Смывают остатки с колбы двумя порциями по 5 см³ хлористого метилена (гексана) и также переносят в колонку. После прохождения раствора колонку промывают 75 см³ смеси гексана и хлористого метилена в соотношении 3:1. Затем растворитель из колонки вытесняют током воздуха. Объединенный элюат упаривают до 1-1,5 см³ и очищают на колонке с оксидом алюминия.

11.10. Очистка на колонке с оксидом алюминия

Экстракт (п.11.9.) пропускают через колонку с оксидом алюминия. Колбу смывают дважды 5 см³ гексана, который также пропускают через колонку. Колонку промывают 20 см³ смеси гексана и хлористого метилена (95:5 объем.). Полученную смесь используют для определения ПХБ. Смесь растворителей упаривают до 1 см³, вносят 10 мкл тридекана и в токе азота удаляют остатки растворителя, кроме декана. Пробу вносят в прибор.

Подготовленные для анализа пробы могут храниться до 40 суток при температуре не выше 4°C.

12. Проведение измерений

12.1. Условия проведения измерений

Измерения проводят по температурной программе, подобранной в процессе предварительных опытов, таким образом, чтобы обеспечить высокое разделение определяемых ПХДД, ПХДФ и ПХБ от их изомеров. Эффективность разделения хроматографической системы перед каждой серией, но не реже одного раза в неделю, должна экспериментально подтверждаться вводом в ГХ-МС стандартной смеси изомеров ПХДД(Ф) (п.5). Эффективность разделения достаточна при соблюдении следующего условия для любой пары изомеров:

$$2h/(H_1+H_2)<0,7,$$

где H_1 , H_2 - высоты неразрешенных пиков, h - высота долины между ними.

Для колонки с неподвижной фазой DB-5, например, температурную рекомендовать следующую программу: начальная температура термостата 120° C, скорость подъема температуры 20° С/мин до 240° C, с 240° C до 270° C -2° C/мин и выдержка при этой температуре до выхода всех компонентов. Температура инжектора и интерфейса 250°C. Температура источника ионов масс-спектрометра -250° C, энергия ионизирующих электронов - 50-70 эВ. Условия получения масс-спектров могут быть и другими в зависимости от типа масс-спектрометра и условий юстировки. Необходимым его условием является величина чувствительности системы ΓX -MC, которая должна обеспечивать регистрацию 10 пг 2,3,7,8 ТетраХДД при отношении сигнал/шум равным 3:1.

Определяют времена удерживания 2,3,7,8-замещенных ПХДД, ПХДФ, ПХБ и внутренних стандартов (п. 5.), вводя несколько раз контрольную смесь диоксинов, содержащую определяемые соединения, измеряя в каждом опыте времена удерживания и рассчитывая их средние значение и доверительные интервалы. Времена удерживания зависят от типа колонки и условий работы.

Относительные времена удерживания некоторых ПХДД(Ф) и некоторых ПХБ на двух разных неподвижных фазах (полярной и неполярной) приведены в приложении 3.

12.2 Получение масс-хроматограмм.

Отбирают микрошприцем 0,001 см³ анализируемого раствора и вводят в инжектор газового хроматографа в режиме splitless или опcolumn. Регистрируют ионные масс-хроматограммы для ионов, соответствующих определяемым ПХДД, ПХДФ, ПХБ и используемым внутренним стандартам (приложение 2).

ПРИМЕЧАНИЯ

- 1. При использовании масс-спектрометра низкого разрешения регистрируются ионы с соответствующими номинальными массами, например, вместо 319,897 320 и т.д.
- 2. Для обеспечения большей достоверности результатов желательно регистрировать большее число ионов для каждого соединения, а при использовании масс-спектрометрии низкого разрешения это необходимо; в качестве дополнительных ионов для регистрации желательно выбирать как изотопы молекулярных ионов, так и осколочные ионы (M-COC1)⁺.

13. Вычисление результатов измерений

По окончании анализа с помощью системы обработки данных фиксируют на масс-хроматограммах пики в области времен удерживания, соответствующих выходу замещенных ПХДД, ПХДФ, ПХБ и внутренних стандартов.

Вычисляют отношение площадей хроматографических пиков на масс-хроматограммах ионов M1 и M2, регистрируемых для каждого определяемого соединения и внутреннего стандарта, и сравнивают его с теоретическим значением, приведенным в Приложении 2. Это отношение должно быть в пределах ±15% от теоретического значения, например, для ТетраХДД - от 0,65 до 0,89 (теоретическое отношение равно 0,77). Если хроматографические пики в указанной области времен удерживания имеются, но отношение площадей пиков выходит за эти пределы, то говорить о положительной идентификации по этим пикам ПХДД, ПХДФ и ПХБФ в данной пробе нельзя, и требуется дополнительный анализ (на хроматографической колонке с другой неподвижной фазой, с ионизацией ионами отрицательными ИЛИ применением тандемной cспектрометрии) или же повторный анализ с дополнительной очисткой на колонке с окисью алюминия. Если время удерживания данного компонента совпадает с временем удерживания соответствующего изотопномеченого внутреннего стандарта (отличается от него не более чем на 1 скан) или

отличается от времени удерживания, измеренного для стандартного образца, не более, чем на 0,01% и отношение площадей пиков находится в указанных пределах, то этот компонент в данной пробе считается идентифицированным.

Измеряют площади пиков на масс-хроматограммах в указанной области. Оценивают эффективность извлечения ПХДД, ПХДФ и ПХБ по площадям пиков, соответствующих введенным меченым стандартам.

Например, для 13 C₁₂-2,3,7,8-ТетраХДД эффективность извлечения Е рассчитывается по формуле:

$$E= \frac{AsC_k}{E= ----- x 100\%,}$$

$$A_kCs'$$

где As - площадь пика на масс-хроматограмме иона m/z 332 или 334 для внутреннего стандарта-имитатора $^{13}C_{12}$ -2,3,7,8-ТХДД (в единицах счета интегратора); A_k - площадь пика для внутреннего стандарта $^{13}C_{12}$ -1,2,3,4-ТетраХДД (в единицах счета интегратора), C_k - количество введенного стандарта-имитатора $^{13}C_{12}$ -2,3,7,8-ТетраХДД (пг), Сs-количество введенного внутреннего стандарта $^{13}C_{12}$ -1,2,3,4-ТетраХДД (пг).

Концентрацию обнаруженных компонентов X_{j} определяют по формуле:

$$\begin{split} & A_{i}P_{S},\\ X_{i}=-----Ki,\\ & A_{S}P \end{split}$$

где X_i - концентрация i-го определяемого компонента, пг/г, A_i площадь хроматографического пика (в единицах счета интегратора) на масс-хроматограмме иона, регистрируемого для определения данного соединения (табл.3), A_s - площадь хроматографического пика на массхроматограмме стандарта-имитатора (в единицах счета интегратора), P_s количество добавленного к пробе стандарта-имитатора в пг, Р - масса пробы, градуировочный K_{i} коэффициент, анализируемой Γ, соответствующий данному отношению A_i/A_s на градуировочной зависимости.

Расчет проводят по масс-хроматограммам либо для одного из двух ионов М1 или М2, указанных в прилож.2, либо для двух ионов с усреднением результатов, либо по сумме площадей соответствующих пиков на обеих масс-хроматограммах.

Конечный результат анализа представляют следующим образом:

$X_{i} \pm D$, $\pi \Gamma / \Gamma$, P = 0.95

где D - значение характеристики погрешности, рассчитанное по формуле

 $D = 0.01 * d * X_i$ (X_i - содержание определяемого компонента в пробе), значения d приведены в Приложение 1.

Результат представляют также в диоксиновых эквивалентах (ДЭ) путем умножения значений концентраций определяемых компонентов на соответствующие коэффициенты, приведенные в Приложении 5.

14. Контроль погрешности результатов измерений

14.1. Контроль правильности детектирования

Для доказательства правильности детектирования при каждом определении необходимо:

- для каждого из определяемых ПХДД, ПХДФ и ПХБ и для внутренних стандартов регистрировать не менее двух масс-хроматограмм по двум ионам М1 и М2 с массами, соответствующими изотопам молекулярного иона. Хроматографические пики на двух масс-хроматограммах для ионов М1 и М2, соответствующие каждому определяемому ПХДД, ПХДФ и внутреннему стандарту, должны быть синхронными;
- относительные времена удерживания хроматографических пиков ПХДД и ПХДФ (по отношению к внутреннему стандарту) не должны отличаться от измеренных для стандартных образцов ПХДД, ПХДФ и ПХБ более, чем на 0,01%, а в случае использования соответствующего изотопномеченого внутреннего стандарта не более чем на 1 с или на 1 скан от времени удерживания внутреннего стандарта;
- отношение площадей хроматографических пиков на парных масс-хроматограммах ионов Ml и M2, регистрируемых для каждого определяемого компонента и внутреннего стандарта должно быть в пределах $\pm 15\%$ от теоретического, приведенного в прилож.2;
- отношение сигнала к шуму для каждого измеряемого хроматографического пика должно быть не менее 3;
- интервал эффективности извлечения ПХДД, ПХДФ и ПХБ, определяемый по отношению: $^{13}C_{12}$ -2,3,7,8-ТетраХДД / $^{13}C_{12}$ -1,2,3,4-ТетраХДД, должен быть в пределах 75% 100%.

14.2. Оперативный контроль воспроизводимости

Оперативнный контроль воспроизводимости проводится периодически, через каждые 10-20 проб. Образцами контроля являются реальные пробы. Для анализа отбирают две параллельные пробы и анализируют в точном соответствии с прописью методики, максимально варьируя условия проведения анализа, т.е. получают два результата

анализа, используя разные наборы мерной посуды, разные партии реактивов. В работе должны участвовать два аналитика. Оперативный контроль воспроизводимости проводят путем сравнения результата контрольной процедуры D_k , равного расхождению двух результатов измерений (первичного – X_1 и повторного - X_2) содержания компонентов в одной и той же пробе, с нормативом оперативного контроля воспроизводимости - D.

Воспроизводимость контрольных измерений, а также воспроизводимость результатов измерений рабочих проб, получаемых за период, в течение которого условия проведения анализа принимают стабильными и соответствующими условиям проведения контрольных измерений, признают удовлетворительной, если

$$D_k = |X_1 - X_2| < D$$
,

где $D=0.01*D_{OTH}*X$ (X - среднее арифметическое значение первичного и повторного результатов измерений). Значения D_{OTH} приведены в приложении 4.

При превышении норматива оперативного контроля воспроизводимости эксперимент повторяют. При повторном превышении указанного норматива выясняют причины, приводящие к неудовлетворительным результатам контроля, и устраняют их.

14.3. Оперативный контроль погрешности

Оперативный контроль погрешности проводят периодически раз в три месяца, а также при изменении условий анализа (применении новой партии реактивов или новых стандартных образцов, изменении характеристик прибора и т.п.).

Оперативный контроль погрешности выполняют в одной серии с проведением анализа рабочих проб.

Оперативный контроль погрешности проводят с использованием метода добавок, который состоит в сравнении результата контрольной процедуры K_{κ} , равного разности между результатом контрольного измерения содержания ПХДД и ПХДФ, замещенных в положениях 2,3,7,8, в пробе с известной добавкой X, в пробе без добавки X и величиной добавки X, с нормативом оперативного контроля погрешности X_{κ} .

Анализируют две одинаковые пробы воды. Первую анализируют в соответствии с прописью методики и получают результат анализа X. Ко второй части добавляют известное количество C определяемого компонента и анализируют в тех же условиях, получая результат анализа пробы с добавкой X.

Погрешность считается удовлетворительной, если выполняется условие:

$$K_{\kappa} = /X^ - X - C/ < K_{\pi}$$

Норматив оперативного контроля погрешности (допускаемое значение разности между результатом контрольного измерения пробы с добавкой X, пробы X и величины добавки - C) во всем диапазоне измеряемых массовых концентраций определяемых ПХДД, ПХДФ и ПХБ при проведении внутрилабораторного контроля (P=0,90)

$$K_{\text{д}} = 0.84 \sqrt{(\Delta x')^2 + (\Delta x)^2}, \text{ HГ/дм}^3;$$

- при проведении внешнего контроля (Р=0,95)

$$K_{\rm A} = \sqrt{(\Delta x')^2 + (\Delta x)^2}$$
, нг/дм³;

где Δx , Δx (нг/дм³) — характеристика погрешности, соответствующая массовой концентрации определяемого компонента в исходной рабочей пробе и рабочей пробе с добавкой, соответственно;

 $\Delta x = 0.01 \ x \ d \ x \ X \ (X-$ массовая концентрация определяемого компонента в исходной рабочей пробе);

 $\Delta x = 0.01 \ x \ d \ x \ X \ (X - массовая концентрация определяемого компонента в исходной рабочей пробе с добавкой). Значения <math>d$ приведены в таблице 1.

При превышении норматива оперативного контроля погрешности эксперимент повторяют. При повторном превышении указанного норматива выясняют причины, приводящие к неудовлетворительным результатам контроля и устраняют их.

Приложение 1 к Инструкции по применению Определение полихлорированных дибензо-п-диоксинов, дибензофуранов и бифенилов в пробах питьевой воды, поверхностных, природных И очищенных сточных вод методом хроматомасс-спектрометрии

Диапазон измерений, значения характеристики относительной погрешности и ее составляющих при доверительной вероятности Р=0,95

Диапазон	Характеристик	Характеристика	Характеристи
измеряемых	а погрешности	случайной	ка
массовых	(границы	составляющей	систематическ
концентраций,	интервала, в	погрешности	ой
нг/дм ³	котором	(среднеквадрати	составляющей
	погрешность	ческое	погрешности
	находится с	отклонение	(границы
	заданной	случайной	интервала, в
	вероятностью),	составляющей	котором
	± d, %	погрешности),	систематическ
		s(d), %	ая
			составляющая
			погрешности
			находятся с
			заданной
Для $\Pi X \mathcal{I} \mathcal{I} (\Phi)$			вероятностью)
			$, \pm d_{c} > \%$
от 0,01 до 0,02	70	34	22
вкл.			
св. 0,02 до 0,1	54	26	18
вкл.			
св. 0,1 до 0,2 вкл.	37	18	11
Для ПХБ			
500 - 1000	50	34	22
1000 - 2000	35	20	10

Приложение 2 к Инструкции по применению Определение полихлорированных дибензо-п-диоксинов, дибензофуранов и бифенилов пробах питьевой воды, поверхностных, природных И очищенных сточных вод методом хроматомасс-спектрометрии

Массы регистрируемых ионов и соотношение площадей их пиков на масс-хроматограммах

Соединение	Ml	M2	Соотношение
			площадей
ТетраХДД	319,897	321,894	0,77
ТетраХДФ	303,902	305,899	0,77
ПентаХДД	355,855	357,852	1,32
ПентаХДФ	339,860	341,857	1,32
ГексаХДД	389,816	391,813	1,24
ГексаХДФ	373,821	375,818	1,24
ГептаХДД	423,777	425,774	1,05
ГептаХДФ	407,782	409,779	1,05
ОктаХДД	557,738	559,735	0,89
ОктаХДФ	441,743	443,740	0,89
(¹³ C ₁₂) ТетраХДД	331,931	333,934	0,77
(внутренний			
стандарт)			
ТриХБ	256	258	
ТетраХБ	290	292	
ПентаХБ	324	326	
ГексаХБ	360	362	
ГептаХБ	394	396	
ОктаХБ	498	500	

Приложение 3 к Инструкции по применению Определение полихлорированных дибензо-п-диоксинов, дибензофуранов и бифенилов пробах питьевой воды, ПОверхностных, природных И очищенных сточных ВОД методом хроматомасс-спектрометрии

Относительные времена удерживания хлорзамещенных основных ПХДД, ПХДФ и ПХБ

Время удерживания, мин / Неподвижная фаза			
No	Соединение	неполярн	полярная
п/п		Ultra-2	SP-2331
1	1,2,3,4-ТетраХДД	0,99	1,02
2	1,2,7,8-ТетраХДД	1,00	1,00
3	1,2,3,7,8-ПентаХДД	1,23	1,40
4	1,2,3,4,7,8-ГексаХДД	1,46	2,08
5	1,2,3,6,7,8-ГексаХДД	1,47	1,94
6	1,2,3, 7,8,9-ГексаХДД	1,50	2,15
7	1,2,3,4,6,7,8-ГептаХДД	1,76	2,98
8	ОктаХДД	2,17	4,50
9	ПХБ-28 (2,4,4'-ТриХБ)	-	0,75
10	ПХБФ-52 (2,2′,5,5′-ТетраХБ)	-	0.82
11	1,2,7,8-ТетраХДФ	0,96	0,96
12	1,2,3,7,8-ПентаХДФ	1,18	0,31
13	ПХБ-101 (2,2',4,5,5'-ПентаХБ)	-	1,22
14	2,3,4,7,8-ПентаХДФ	1,22	1,35
15	1,2,3,4,7,8-ГексаХДФ	1,39	1,50
16	ПХБ-138(2,2',3,4,4',5'-ГексаХБ)	-	2,01
17	1,2,3, 6,7,8-ГексаХДФ	1,39	2,03
18	2,3,4,6,7,8-ГексаХДФ	1,43	2,07
19	ПХБ-153(2,2',4,4',5,5'-ГексаХБ)	-	2,09
20	1,2,3, 7,8,9-ГексаХДФ	1,48	2,55
21	1,2,3,4,6,7,8-ГептаХДФ	1,61	2,83
22	1,2,3,4,7,8,9-ГептаХДФ	1,74	2,96
23	ОктаХДФ	2,12	4,45

Приложение 4 к Инструкции по применению Определение полихлорированных дибензо-п-диоксинов, дибензофуранов и бифенилов в пробах питьевой воды, поверхностных, природных И очищенных сточных вод методом хроматомасс-спектрометрии

Значения норматива оперативного контроля случайной составляющей относительной погрешности (воспроизводимости) при доверительной вероятности P=0,95

Диапазон измеряемых	Норматив оперативного контроля	
содержаний 2,3,7,8-замещенных	воспроизводимости, D _{ОТН} , % (для	
полихлорированных дибензо-п-	двух результатов измерений m=2)	
диоксинов и дибензофуранов,		
нг/кг		
от 0,5 до 10 вкл.	94	
св.10 до 200 вкл.	61	
св.200 до 1000 вкл.	36	

Приложение 5 к Инструкции по применению Определение полихлорированных дибензо-п-диоксинов, дибензофуранов и бифенилов пробах питьевой воды, поверхностных, природных И очищенных сточных вод методом хроматомасс-спектрометрии

Обязательное

Форма представления результатов анализа

Наименование организации, проведший анализ. Номер аттестата		
аккредитации.		
ПРОТОКОЛ № от «»		
количественного химического анализа полихлорированных		
дибензо-п-диоксинов		

Краткое описание пробы (шифр; наименование и характеристики пробы и условий пробоотбора).

Метолика КХА

Методика КЛА	1		
Определяемый	Диоксиновый	РЕЗУЛЬТАТ	АНАЛИЗА
компонент,	эквивалент,	T.C	TC.
2,3,7,8-ПХДД и ПХДФ	ДЭ	Концентрация,	Концентрация
		пг/г	в ДЭ, пг/г
1	2	3	4
2,3,7,8-ТетраХДД	1		
1,2,3,7,8-ПентаХДД	0,5		
1,2,3,4,7,8-ГексаХДД	0,1		
1,2,3,6,7,8-ГексаХДД	0,1		
1,2,3,7,8,9-ГексаХДД	0,1		
1,2,3,4,6,7,8-ГептаХДД	0,01		
ОктаХДД	0,001		
2,3,7,8-ТетраХДФ	0,1		
1,2,3,7,8-ПентаХДФ	0,05		
2,3,4,7,8-ПентаХДФ	0,5		
1,2,3,4,7,8-ГексаХДФ	0,1		
1,2,3,6,7,8-ГексаХДФ	0,1		

1	2	3	4
2,3,4,6,7,8-ГексаХДФ	0,1		
1,2,3,7,8,9-ГексаХДФ	0,1		
1,2,3,4,6,7,8-ГептаХДФ	0,01		
1,2,3,4,7,8,9-ГептаХДФ	0,01		
ОктаХДФ	0,001		
Другие ТетраХДД			
Другие ТетраХДФ			
Другие ПентаХДД			
Другие ПентаХДФ			
Другие ГексаХДД			
Другие ГексаХДФ			
Другой ГептаХДД			
Другие ГептаХДФ			
Предел обнаружения по		Суммарная концентрация в	
Предел обнаружения по $^{13}\mathrm{C}_{12}$ - 2,3,7,8-ТетраХДД, пг/г		ДЭ, пг/г	
Относительная погрешность определения, %			

Подпись ответственного исполнителя

Примечание: допустимо представление другой, дополнительной информации по характеристикам проб, пробоотбору и результатам анализов.