САНИТАРНО-ВИРУСОЛОГИЧЕСКИЙ КОНТРОЛЬ ЭФФЕКТИВНОСТИ ОБЕЗЗАРАЖИВАНИЯ ПИТЬЕВЫХ И СТОЧНЫХ ВОД УФ-ОБЛУЧЕНИЕМ. МЕТОДИЧЕСКИЕ УКАЗАНИЯ. МУК 4.3.2030-05 (УТВ. ГЛАВНЫМ ГОСУДАРСТВЕННЫМ САНИТАРНЫМ ВРАЧОМ РФ 18.11.2005)

Утверждаю Руководитель Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, Главный государственный санитарный врач Российской Федерации Г.Г.ОНИЩЕНКО 18 ноября 2005 года

Дата введения с момента утверждения

4.3. МЕТОДЫ КОНТРОЛЯ. ФИЗИЧЕСКИЕ ФАКТОРЫ

САНИТАРНО-ВИРУСОЛОГИЧЕСКИЙ КОНТРОЛЬ ЭФФЕКТИВНОСТИ ОБЕЗЗАРАЖИВАНИЯ ПИТЬЕВЫХ И СТОЧНЫХ ВОД УФ-ОБЛУЧЕНИЕМ

МЕТОДИЧЕСКИЕ УКАЗАНИЯ МУК 4.3.2030-05

1. Разработаны: ГУ НИИ экологии человека и гигиены окружающей среды им. А.Н. Сысина РАМН (А.Е. Недачин, Р.А. Дмитриева, Т.В. Доскина, Д.В. Лаврова, А.Г. Санамян); ГУ Центральный НИИ эпидемиологии Роспотребнадзора (Г.А. Шипулин); Московской медицинской академией им. И.М. Сеченова (М.В. Богданов).

Методические указания подготовлены с учетом замечаний и предложений Главного эксперта Комиссии по государственному санитарно-эпидемиологическому нормированию при Федеральной службе по надзору в сфере защиты прав потребителей и благополучия человека член-корр. РАМН Л.В. Урываева.

- 2. Рекомендованы к утверждению Комиссией по государственному санитарно-гигиеническому нормированию при Федеральной службе по надзору в сфере защиты прав потребителей и благополучия человека 6 октября 2005 года (протокол N 3).
- 3. Утверждены и введены в действие Руководителем Федеральной службы по надзору в сфере защиты прав потребителей и благополучия

человека, Главным государственным санитарным врачом Российской Федерации Г.Г. Онищенко 18 ноября 2005 года.

4. Введены впервые.

1. Область применения

- 1.1. Методические указания устанавливают требования к организации и осуществлению санитарно-эпидемиологического надзора обеззараживания питьевых и сточных вод УФ-облучением в отношении вирусного загрязнения.
- 1.2. Методические указания предназначены для органов и учреждений Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека, осуществляющих государственный санитарно-эпидемиологический надзор (контроль) за обеззараживанием питьевых и сточных вод, а также могут использоваться организациями, деятельность которых связана с проектированием и эксплуатацией $У\Phi$ -установок.

2. Основные положения

- 2.1. Вода является важнейшим фактором риска в распространении вирусных инфекций. Более ста различных вирусов, которые с выделениями больных попадают в водные объекты, могут вызывать у человека заболевания разной тяжести полиомиелит, гепатиты А и Е, серозные менингиты, миокардиты, гастроэнтериты и др. (Прилож. 5).
- 2.2. Значительное количество вспышек кишечных вирусных инфекций, в т.ч. ротавирусных, гепатитов А и Е, обусловлено употреблением недостаточно очищенной или загрязненной воды.
- 2.3. Концентрация кишечных вирусов в воде колеблется в зависимости от эпидемической обстановки, эффективности очистки и обеззараживания сточных вод и может варьировать от тысяч до десятков тысяч вирионов в литре неочищенной сточной воды и от сотен до тысяч в литре воды поверхностных водоемов в сезон подъема заболеваемости кишечными вирусными инфекциями. В воде водных объектов вирусы могут длительно сохранять свою инфекционную активность (Прилож. 5).
- 2.4. Сроки выживания вирусов в воде зависят от таких факторов, как температура, рН воды, присутствие органических веществ и др. В сильно загрязненных и очень чистых водах длительность сохранения инфекционной активности кишечных вирусов увеличивается. В силу высокой устойчивости в водных объектах, кишечные вирусы могут распространяться на значительные расстояния от источников загрязнения.
- 2.5. Присутствие вирусов в питьевой воде является чрезвычайно высоким фактором риска, поскольку попадание одной или нескольких вирусных частиц в кишечник человека способно вызвать заболевание.
- 2.6. При наличии неорганизованных сбросов бытовых сточных вод вирусы обнаруживаются в подземных водоисточниках, в воде которых выживаемость и инфекционная активность энтеровирусов выше по сравнению с поверхностными водоемами.
- 2.7. Эпидемические вспышки кишечных вирусных инфекций могут наблюдаться в любое время года, однако для большинства инфекций характерна определенная сезонность. Для вирусного гепатита А рост заболеваемости начинается в июле августе и достигает максимума в октябре ноябре с последующим снижением в первой половине очередного года. Сезонность вирусного гепатита Е выражена нечетко, вспышки и спорадические случаи могут возникать постоянно в течение года.

- 2.8. Широкое распространение на всех территориях имеет ротавирусная инфекция. Эпидемический процесс при ротавирусной инфекции характеризуется выраженной зимне-весенней сезонностью, высокой контагиозностью и очаговостью, локальностью домашних очагов, наличием бессимптомного выделения вируса.
- 2.9. Циркуляция энтеровирусов среди населения имеет выраженную летне-осеннюю сезонность, что коррелирует с их содержанием в сточных водах. Так, максимальное количество штаммов энтеровирусов (32 60%) определяется в августе, сентябре и октябре, минимальное (до 10%) в весенние месяцы (апрель май).
- 2.10. Этапы осветления и обесцвечивания воды на водопроводных сооружениях централизованных систем питьевого водоснабжения не обеспечивают полного удаления вирусов. Эффект задержки ДНК-содержащих колифагов составляет 97 99%, а полиовируса 83 93% в сравнении с концентрацией в исходной воде. В этой связи необходимо обеззараживание питьевой воды, обеспечивающее 100%-ю инактивацию вирусов.
- 2.11. Частота выделения вирусов из неочищенных сточных вод может составлять 90-100% от количества исследованных проб при концентрации колифагов до 10000 БОЕ/100 мл исследуемой воды. После механической очистки частота выделения вирусов может незначительно возрастать за счет дезагрегирования крупных конгломератов и реадсорбции вирусов.
- 2.12. После этапа биологической очистки на станциях аэрации частота выделения энтеровирусов обычно снижается до 40%, при этом вирусы удаляются на 75% и ДНК-содержащие колифаги на 90%.
- 2.13. Этап доочистки на песчаных фильтрах позволяет снизить количество вирусов и колифагов на 98%, что определяет необходимость обеззараживания сточных вод даже после глубокой очистки до нормативных показателей, регламентируемых СанПиН 2.1.5.980-00 "Гигиенические требования к охране поверхностных вод" (количество колифагов в очищенной и обеззараженной сточной воде при отведении в поверхностные водоемы не должно превышать $100\,$ БОЕ/ $100\,$ мл).
 - 3. Технологические и гигиенические критерии использования $У\Phi$ -облучения для обеззараживания питьевых и сточных вод
- 3.1. Для обеззараживания природных и сточных вод используют биологически активную область спектра УФ-облучения с длиной волны от 205 до 315 нм, называемую бактерицидным излучением.
- 3.2. Максимум вирулицидного действия приходится на область спектра 250-270 нм. Наибольший коэффициент полезного действия в области коротковолнового излучения имеют лампы низкого давления. В лампах этого типа до 95% электрической энергии преобразуется в излучение с длиной волны 254 нм.
- 3.3. Механизм обеззараживания УФ-облучения основан на повреждении молекул ДНК и РНК вирусов. Фотохимическое воздействие предполагает разрыв или изменение химических связей органической молекулы в результате поглощения энергии фотона. Имеют место также вторичные процессы, в основе которых лежит образование в воде под действием УФ-облучения свободных радикалов, которые усиливают вирулицидный эффект.
- 3.4. Степень инактивации микроорганизмов под действием УФоблучения пропорциональна интенсивности излучения (мВт/кв. см) и времени облучения (с). Произведение интенсивности излучения и времени называется дозой облучения (мДж/кв. см) и является мерой вирулицидной энергии.

- 3.5. Основными факторами, влияющими на эффективность обеззараживания природных и сточных вод УФ-облучением, являются:
 - чувствительность различных вирусов к действию УФ-облучения;
 - мощность лампы;
 - степень поглощения УФ-облучения водной средой;
 - уровень взвешенных веществ в обеззараживаемой воде.
- 3.6. Различные виды вирусов при одинаковых условиях облучения различают по степени чувствительности к УФ-облучению. Дозы облучения, необходимые для инактивации отдельных видов вирусов на 99.0 99.9%, приведены в Прилож. 6.
- 3.7. Лампы низкого давления имеют электрическую мощность $2-200~{\rm Bt}$ и рабочую температуру $40-150~{\rm C.}$ В лампах этого типа 30-95% электрической энергии преобразуется в биоцидное излучение с длиной волны $254~{\rm hm.}$ Срок службы ламп низкого давления составляет до $15~{\rm Tuc.}$ ч.
- 3.8. Лампы высокого давления обладают широким спектром излучения, имеют мощность 50-10000 Вт при рабочей температуре 600-800 -C. Они характеризуются относительно низким коэффициентом полезного действия в биоцидном диапазоне (5 10% от потребляемой электрической энергии).
- 3.9. Проникновение ультрафиолетовых лучей в воду сопровождается их поглощением как самой водой, так и веществами, находящимися в растворенном и взвешенном состоянии. Степень поглощения определяется физико-химическими свойствами обрабатываемой воды, а также толщиной ее слоя. Коэффициенты поглощения УФ природными и сточными водами колеблются в пределах от 0,2 до 0,7. Коэффициенты поглощения УФ питьевой водой, полученной из подземных источников водоснабжения, имеют значения 0,05 0,20, а из поверхностных 0,15 0,30. Наибольшее влияние на интенсивность поглощения биоцидной энергии оказывают цветность, мутность воды и содержание в ней железа.
- 3.10. С целью достижения гигиенической надежности, наименьших эксплуатационных и экономических затрат, обеззараживание питьевых, природных и сточных вод необходимо проводить при соответствии их качества параметрам, представленным в табл. 1. В случае превышения допустимых характеристик воды, представленных в табл. 1, хотя бы по одному из показателей, требуется проведение дополнительных санитарно-вирусологических исследований с целью обеспечения эффективного обеззараживания воды в отношении вирусов и выявления величины рабочей дозы облучения для конкретных условий. Необходимую дозу облучения рекомендуется определять по степени инактивации колифагов как индикаторов вирусного загрязнения.

Таблица 1

ДОЗЫ УФ-ОБЛУЧЕНИЯ В ЗАВИСИМОСТИ ОТ КАЧЕСТВА ОБРАБАТЫВАЕМОЙ ВОДЫ

	-T	-T'	Т¬
N	Показатели 	¦Допустимые	<u>.</u>
	Вода из подземных источников I (по ГОСТ 2161-84), питьевая	вода	16 мДж/кв. см
	, , ,	1,5 +	+ !
; 2	¦Цветность, градусы	120,0	'

+	+	+	+
¦3 +	¦Железо, мг/куб. дм	¦0 , 3	 -
¦ 4	¦Марганец, мг/куб. дм	¦0,1	·
¦5	¦Колифаги, БОЕ/100 мл <*>	10,0	
	ода из подземных источников II, I по ГОСТ 2161-84) и поверхностных г		25 мДж/кв. см
¦1	Мутность, мг/куб. дм	¦30 , 0	
†2 †2	¦Цветность, градусы	¦50 , 0	i
¦3	¦Железо, мг/куб. дм	¦5 , 0	
+ ¦ 4	¦Марганец, мг/куб. дм	¦1 , 5	i
+ ¦5	¦Колифаги, БОЕ/100 мл <*>	¦100 , 0	
+	Бытовые и городские сточные :	+ ВОДЫ Т	30 мДж/кв. см
+ ¦1	¦Взвешенные вещества, мг/куб. дм	¦10,0	
2 1	¦БПК , мг О /куб. дм 5 2	¦10,0 	
3 	¦ХПК, мг О /куб. дм 2	50 , 0	
+ 4	 Колифаги, БОЕ/100 мл <*>	4 10	;
 		 рирования. 	

- 3.11. Выбор дозы УФ-облучения определяют характером и качеством воды, поступающей для обеззараживания: не менее 16 мДж/кв. см для воды из подземных источников I класса и питьевых вод; не менее 25 мДж/кв. см для воды из подземных источников II, III класса и поверхностных источников; не менее 30 мДж/кв. см для бытовых и городских сточных вод; не менее 40 мДж/кв. см для любого типа вод при неблагоприятной эпидемической ситуации. Под неблагоприятной эпидемической ситуации. Под неблагоприятной эпидемической ситуации подразумевают систематическое обнаружение колифагов в питьевой воде и энтеровирусов в источнике и питьевой воде и (или) наличие водных вспышек энтеровирусных заболеваний.
- 3.12. При УФ-облучении воды не существует проблемы передозировки. Повышение дозы не приводит к гигиенически значимым неблагоприятным изменениям свойств воды и образованию побочных продуктов.
- 3.13. В случае ухудшения эпидемической ситуации, возникновения угрозы появления в источнике водоснабжения высокой концентрации энтеровирусов либо другой чрезвычайной ситуации, доза УФ-облучения может быть увеличена за счет снижения объема обрабатываемой воды, проходящей через единицу времени через УФ-оборудование путем включения в работу резервного оборудования или снижения общего расхода воды. Доза УФ-облучения должна находиться в прямой зависимости от расхода обрабатываемой воды.

- 3.14. Совместное применение УФ-облучения и хлора при подготовке питьевой воды повышает надежность обеззараживания в отношении вирусов.
- 3.15. Технические и технологические требования к оборудованию, применяемому для обеззараживания природных и питьевых вод, должны соответствовать МУ 2.1.4.719-98 "Санитарный надзор за применением УФ-излучения в технологии подготовки питьевой воды" и применяемым для обеззараживания сточных вод МУ 2.1.5.732-99 "Санитарно-эпидемиологический надзор за обеззараживанием сточных вод УФ-излучением".
 - 4. Контроль эффективности обеззараживания воды УФ-облучением в отношении вирусного загрязнения
- 4.1. Контроль эффективности УФ-облучения для обеззараживания воды осуществляют при ее использовании населением в питьевых, хозяйственно-бытовых и рекреационных целях, сбросе очищенной сточной воды в поверхностные водоемы. При этом необходимо учитывать, что содержание и частота выделения кишечных вирусов из водных объектов и питьевой воды может значительно различаться, что определяется:
- сезонностью распространения различных групп вирусов в течение года;
- санитарно-гигиенической и эпидемической ситуацией (наличие "факторов предшественников") в верхних участках водотока;
- изменением или нарушением технологии очистки и обеззараживания питьевых и сточных вод;
- авариями на водопроводных или канализационных очистных станциях;
- возникновением вспышки или эпидемии вирусных инфекций водного происхождения на данной территории.
- 4.2. Индикатором вирусного загрязнения воды являются колифаги. Несоответствие характеристик обеззараженной воды допустимым уровням колифагов свидетельствует о возможном присутствии энтеровирусов в данной пробе. В этом случае организуют повторный отбор и анализ проб до и после обеззараживания УФ-облучением. При наличии колифагов в трехкратно последовательно отобранных пробах после УФ-облучения воду анализируют на наличие энтеровирусов.
- 4.3. Объемы воды для определения эффективности обеззараживания должны соответствовать критериям эпидемиологической безопасности по вирусологическим показателям (Прилож. 2).
- 4.4. В системе государственного санитарно-эпидемиологического надзора используют следующие виды санитарно-вирусологического контроля: производственный, плановый и внеплановый.
- 4.4.1. Производственный санитарно-вирусологический контроль выполняют организации, в ведении которых находятся очистные и водопроводные сооружения. При отсутствии в организации производственной лаборатории, исследования осуществляют на договорной основе лабораториями, аккредитованными в установленном законодательством Российской Федерации порядке.

Программа производственного лабораторного контроля за эффективностью обеззараживания воды УФ-облучением должна быть согласована с территориальным управлением Роспотребнадзора. При разработке программы следует использовать рекомендации, представленные в Прилож. 4.

Производственный санитарно-вирусологический контроль эффективности УФ-установок проводят:

- на этапе пуско-наладочных работ при внедрении на станциях

очистки питьевых и сточных вод обеззараживания с использованием УФустановок - на наличие и уровень колифагов в воде до и после установки;

- в процессе эксплуатации УФ-установок в соответствии с рабочей программой (рекомендуемая частота отбора проб в соответствии с Прилож. 4) на наличие колифагов;
- при превышении норматива мутности для питьевой воды на наличие колифагов;
- при превышении норматива колифагов в трех последовательно отобранных пробах воды на наличие энтеровирусов.
- 4.4.2. Плановый санитарно-вирусологический контроль осуществляют органы и учреждения Роспотребнадзора в соответствии с разработанной рабочей программой. Периодичность контроля определяют задачами региональных планов и корректируют в зависимости от эпидемической ситуации на территории.
- 4.4.3. Внеплановый санитарно-вирусологический контроль проводят органы и учреждения Роспотребнадзора в случае внезапных или непредвиденных изменений санитарно-эпидемической ситуации на контролируемой территории: аварий или нарушений в системах водоснабжения и канализации, в результате которых может произойти массивное микробное загрязнение поверхностных и подземных водоисточников, а также питьевой воды; по санитарно-эпидемиологическим показаниям при вспышках и подъеме заболеваемости кишечными вирусными инфекциями, уровень которых превышает средние сезонные показатели; в период эпидемического риска. Кратность и точки отбора проб, объемы исследуемой воды определяют эпидемиолог и врач по коммунальной гигиене.
 - 5. Комплексная схема санитарно-вирусологического контроля воды при использовании для обеззараживания $У\Phi$ -облучения
- 5.1. Санитарно-вирусологическую оценку воды водных объектов проводят по косвенным показателям вирусного загрязнения ДНК- и РНК-содержащим колифагам, РНК или ДНК вирусов, определяемых методом ОТ-ПЦР, а также прямому обнаружению возбудителей кишечных вирусных инфекций культуральным методом.
- 5.2. Современные стандартные методы индикации колифагов позволяют выделять их:
- из сточных вод при посеве 1 мл из исследуемой пробы или последовательных десятикратных разведений;
- из поверхностных и питьевых вод при посеве от 10 до 100 мл в соответствии с нормативно-методическими документами.
- 5.3. Для прямого обнаружения энтеровирусов в воде, в которой они могут содержаться в незначительных количествах, требуется применение методов концентрирования вирусов из больших объемов воды в связи с тем, что нижний предел чувствительности используемых культур тканей составляет не менее 1 инфекционной вирусной частицы в 1 мл воды.
- 5.4. Отбор проб воды производят в специально предназначенную для этих целей одноразовую посуду или стерильные емкости многократного применения, изготовленные из материалов, не влияющих на жизнедеятельность вирусов, с плотно закрывающимися пробками (силиконовыми, резиновыми или из других материалов) и защитным колпачком (из алюминиевой фольги или плотной бумаги). Емкость открывают непосредственно перед отбором, удаляя пробку вместе со стерильным колпачком. Во время отбора пробка и края емкости не должны чего-либо касаться.
 - 5.5. При исследовании воды из распределительных сетей отбор

проб из крана производят после его предварительной стерилизации обжиганием и последующего спуска воды не менее 10 мин. при полностью открытом кране. При отборе пробы напор воды может быть уменьшен. Пробу отбирают непосредственно из крана без резиновых шлангов, водораспределительных сеток и других насадок. Если через кран вода течет постоянно, отбор проб производят без предварительного обжига, не изменяя напора воды и существующей конструкции (при наличии силиконовых или резиновых шлангов). После наполнения емкость закрывают стерильной пробкой и колпачком.

5.6. Отобранную пробу маркируют и сопровождают актом отбора проб воды с указанием места, даты, времени забора и другой необходимой информации.

 ${\tt K}$ исследованию проб воды необходимо приступить сразу же после доставки их в лабораторию.

При исследовании воды на наличие вирусов проводят их концентрирование из соответствующих объемов, а на наличие колифагов - прямое определение сразу после доставки проб в лабораторию.

- 5.7. Для концентрирования вирусов используют методы, изложенные в МУК 4.2.2029-05 "Санитарно-вирусологический контроль водных объектов". Полученные после концентрирования элюаты до заражения культуры ткани или для исследования методами ОТ-ПЦР и ПЦР можно хранить при 4 -C не более 3 суток или при -20 -C в течение года. При многократных исследованиях элюаты делят на несколько порций, чтобы избежать повторного замораживания.
- 5.8. Исследование проб воды поверхностных и подземных водоисточников и сточных вод до обеззараживания УФ-облучением проводят по схеме, указанной в Прилож. З путем анализа воды методом ОТ-ПЦР для обнаружения РНК энтеровирусов, ротавирусов и вируса гепатита А (ВГА) и методом ПЦР для обнаружения ДНК аденовирусов. Полученный результат оценивают как предварительный, требующий подтверждения путем биологического исследования пробы (определение "жизнеспособности" вируса) в культуре ткани, после чего лизаты двух типов зараженных клеток (через двое суток после заражения) вновь подвергают анализу методами ОТ-ПЦР или ПЦР. При отрицательном результате проводят три последовательных "слепых" пассажа на культуре ткани.
- 5.9. Пробы воды до УФ-обеззараживания считают положительными при наличии:
- РНК энтеровирусов, обнаруженной методами ОТ-ПЦР и ДНК аденовирусов методом ПЦР в лизатах культур тканей через двое суток после заражения;
- ЦПД на культурах тканей в одном из трех последовательных пассажей.
- 5.10. Анализ проб воды после УФ-облучения проводят по схеме, указанной в Прилож. 6. Пробы воды исследуют на наличие колифагов, методом ОТ-ПЦР на наличие РНК энтеровирусов, ротавирусов и ВГА и методом ПЦР на наличие ДНК аденовирусов. Полученный на этом этапе результат считают положительным, если в пробе содержатся колифаги и РНК энтеровирусов или ротавирусов или ВГА или ДНК аденовирусов. При отсутствии в пробе колифагов и наличии РНК или ДНК вирусов или при наличии колифагов и отсутствии РНК и ДНК вирусов проводят заражение не менее двух видов культур тканей и через двое суток после заражения проводят исследование методом ОТ-ПЦР лизата зараженных культур с целью обнаружения "жизнеспособных" энтеровирусов. При отрицательных результатах анализа проводят три последовательных "слепых" пассажа с целью выделения энтеро- или аденовирусов.

6. Библиографические данные

- 1. Федеральный закон от 30 марта 1999 г. N 52-ФЗ "О санитарноэпидемиологическом благополучии населения".
- 2. Федеральный закон от 19 декабря 1991 г. N 96-ФЗ "Об охране окружающей среды".
- 3. Федеральный закон от 25 сентября 1998 г. N 158-ФЗ "О лицензировании отдельных видов деятельности".
- 4. Водный кодекс Российской Федерации от 16 ноября 1995 г. N $167-\Phi3$.
- 5. "Положение о Федеральной службе по надзору в сфере защиты прав потребителей и благополучия человека", утвержденное Постановлением Правительства Российской Федерации от 30 июня 2004 г. N 322.
- 6. Сан Π иH 2.1.4.1074-01 "Вода питьевая. Гигиенические требования к качеству воды централизованных систем питьевого водоснабжения. Контроль качества".
- 7. Сан Π иН 2.1.5.980-00 "Гигиенические требования к охране поверхностных вод".
- 8. СанПиН 2.1.4.1175-02 "Гигиенические требования к качеству воды нецентрализованного водоснабжения. Санитарная охрана источников".
- 9. СанПиН 2.1.2.1188-03 "Плавательные бассейны. Гигиенические требования к устройству, эксплуатации и качеству воды. Контроль качества".
 - 10. ГОСТ 2761-84 "Вода питьевая".
- 11. МУ 2.1.4.719-98 "Санитарный надзор за применением ультрафиолетового излучения в технологии подготовки питьевой воды".
- 12. МУ 2.1.5.732-99 "Санитарно-эпидемиологический надзор за обеззараживанием сточных вод УФ-излучением".
- 13. МУ 4.2.1018-01 "Методы санитарно-микробиологического анализа питьевой воды".
- 14. МУ 2.1.5.800-99 "Организация госсанэпиднадзора за обеззараживанием сточных вод".
- 15. МУ 1.3.1888-04 "Организация работы при исследовании методом ПЦР материала, инфицированного патогенными биологическими агентами III IV групп патогенности".
- 16. МУК 4.2.1884-04 "Санитарно-микробиологический и санитарно-паразитологический анализ воды поверхностных водных объектов".
- 17. МУК 4.2.2029-05 "Санитарно-вирусологический контроль водных объектов".
- 18. МР "Метод сбора и концентрирования кишечных вирусов из воды с помощью водопроницаемых пакетов с адсорбентом", 2000.
- 19. "Методические рекомендации по проведению работ в диагностических лабораториях, использующих метод полимеразной цепной реакции", утв. Государственным комитетом санитарно-эпидемиологического надзора Российской Федерации 22 июня 1995 года.
- 20. Инструкция по использованию полимеразной цепной реакции для выявления энтеровирусного загрязнения воды. Минск, 2001.
- 21. Методики по санитарно-вирусологическому контролю питьевой воды и оценке ее эпидемической безопасности от 18 мая 1999 г. N 136-9811, Минск.
- 22. Инструкция по осуществлению санитарно-вирусологического мониторинга питьевых вод в Республике Беларусь от 11 ноября 2000 г. N 138-0010, Минск.

Список сокращений

УФ-облучение - ультрафиолетовое облучение;

ДНК - дезоксирибонуклеиновая кислота;

РНК - рибонуклеиновая кислота;

мДж/кв. см - миллиджоуль на кв. см;

ПЦР - полимеразная цепная реакция;

ОТ-ПЦР - полимеразная цепная реакция с этапом обратной транскрипции;

ФМНЦ - фильтрующая мембрана из нитроцеллюлозы;

ММК - мембрана микропористая капроновая;

ВГА - вирус гепатита А;

БОЕ - бляшкообразующая единица;

БПК - биохимическое потребление кислорода;

ХПК - химическое потребление кислорода;

ЦПД - цитопатическое действие.

Приложение 1 (обязательное)

ВИРУСОЛОГИЧЕСКИЕ КРИТЕРИИ ЭПИДЕМИОЛОГИЧЕСКОЙ БЕЗОПАСНОСТИ ВОДЫ РАЗЛИЧНЫХ ВОДНЫХ ОБЪЕКТОВ

	Γ	Γ	T			
N 	¦ Водные ¦ объекты	Нормативные и методические документы	Нормативные уровни вирусологических показател +T			
			колифаги в БОЕ <*>	отсутст. вирусов в объемах вод <**>		
	¦проводная	СанПиН 2.1.4.1175-02	¦100 мл	 10 л 10 л		
•	¦Вода ¦бассейнов	¦СанПиН 2.1.2.1188-03	¦ отсутствие в ¦100 мл	10 л		
	Вода подземных водоисточ- ников		отсутствие в 100 мл (1, 2 классы), не более 10 БОЕ/100 мл (3 класс)			
	¦Вода по- ¦верхност-		¦не более ¦10 БОЕ/100 мл	¦10 л ¦		

	 	ных водо-	•	¦(1, 2 классы), не ¦более 50 БОЕ/100 мл ¦(3 класс)	
+		 Сточные		+	++
		воды: - неочи- шенные	 СанПиН 2.1.5.980-00 	¦ ¦не более ¦100 БОЕ/1000 мл	; ¦1 л ; !
		- очищен- ные	МУ 2.1.5.800-99	•	1 л
	 		По предписанию долж- ностных лиц, осущес-	•	1 л
	 	женные	твляющих государст-		
			эпидемиологический надзор		i
1 !!	r ! ! пре	• •	ние колифагов из ука: ого концентрирования.	занных объемов про	++ водят без !
	<u></u> P\ 		итрования энтеровиру	сов используют элю	аты после¦

| <**> Для титрования энтеровирусов используют элюаты после | концентрирования исследуемого объема воды одним из методов в | соответствии с методическими указаниями МУК 4.2.1884-04 | "Санитарно-микробиологический и санитарно-паразитологический | анализ воды поверхностных водных объектов".

Приложение 2 (обязательное)

СХЕМА ВИРУСОЛОГИЧЕСКОГО КОНТРОЛЯ ВОДЫ ПОВЕРХНОСТНЫХ И ПОДЗЕМНЫХ ВОДОИСТОЧНИКОВ И СТОЧНЫХ ВОД ДО ОБЕЗЗАРАЖИВАНИЯ УФ-ОБЛУЧЕНИЕМ

¦Концентрирование вирусов из проб воды ¦
¦в соответствии с методами, изложенными ¦
¦в нормативных и методических документах¦
L
\/
¦Исследование элюата¦
LT
\/
¦ Выделение энтеровирусов и
¦ аденовирусов в культурах ткани ¦
(не менее 2-х)
LT
\/
7
¦Через 2 сут. исследование лизата культуры ткани методом¦
ОТ-ПЦР на РНК энтеровирусов и методом ПЦР $ $
на ДНК аденовирусов
LT

	ный результа		Отрицательный результат¦
L	\/	Ь	T\ \/
и пробу со положите: положите: в отношении подагрязна	итают пьной вирусного эния	L положительн: 	¦отрицательный
L		результат	L результат \/
		 	Исследование закончено, и пробу считают отрицательной в отношении вирусного загрязнения
			Приложение (обязательно
		ПОГИЧЕСКОГО К ФИ RNHABNЖАЧА	ОНТРОЛЯ ВОДЫ -ОБРАБОТКОЙ
¬	ПОСЛЕ ОБЕЗЗА	ФУ RNНАВИЖАЧА	
¬ годами, ¦	ПОСЛЕ ОБЕЗЗА Концеі	АРАЖИВАНИЯ УФ нтрирование в енными в норм	-ОБРАБОТКОЙ ирусов в соответствии с ативных и методических
	ПОСЛЕ ОБЕЗЗА Концеі	АРАЖИВАНИЯ УФ нтрирование в енными в норм	-ОБРАБОТКОЙ ирусов в соответствии с
¬ годами, ¦	ПОСЛЕ ОБЕЗЗА Концеі	АРАЖИВАНИЯ УФ нтрирование в енными в норм ¦ Ис	-ОБРАБОТКОЙ ирусов в соответствии с ативных и методических
годами, ¦ гументах ¦	ПОСЛЕ ОБЕЗЗА Концен изложе L	АРАЖИВАНИЯ УФ нтрирование в енными в норм Ис L	-ОБРАБОТКОЙ ирусов в соответствии с ативных и методических Т
годами, сументах	ПОСЛЕ ОБЕЗЗА Концен изложе L Обнару	АРАЖИВАНИЯ УФ нтрирование в: енными в норм	-ОБРАБОТКОЙ ирусов в соответствии с ативных и методических Т
¬ годами, ¦	ПОСЛЕ ОБЕЗЗА 	АРАЖИВАНИЯ УФ ————— нтрирование в енными в норм ———— ——— ——— ———— ужение РНК эн	-ОБРАБОТКОЙ

результат и наличие в отношении РНК энтеро в пробе колифагов	o-				
\mid \mid и ДНК аденовирусов и \mid	¦ ¦ колифаг	_		_	
¦ ¦ отсутствие колифагов L	LT		L	T	
- L	\/			\/	
\/					
	-¬ ¦Заражені	ие не мен	iee 2-x	культур ты	сани¦
Исследование Исследование закончено,	1		-T		
закончено и пробу пробу считают отрицатель считают	ьной¦			-¬	
в отношении вирусного положительной в загрязнения	¦ный	¦ Через	2 сут.	!	!
- отношении вирусного	<	-+ исслеј	цование	1	L-
; загрязнения // отрицательный результа		¦методам	ии ОТ-ПЦ	Р¦отрицатє	эль-
L		¦ и ПЦР	лизата	¦ный	
. /\ пассажа на культурах ткан		¦культур	ы ткани	+	> 3
-T		L		результа	ìт L
L					
	попожит	ельный ре	TSTATVE		

положительный результат

Приложение 4 (рекомендуемое)

ПЕРИОДИЧНОСТЬ ПРОИЗВОДСТВЕННОГО САНИТАРНО-ВИРУСОЛОГИЧЕСКОГО КОНТРОЛЯ ПРИ ОБЕЗЗАРАЖИВАНИИ УФ-ОБЛУЧЕНИЕМ ПИТЬЕВОЙ И СТОЧНОЙ ВОДЫ

	T	_
Вид водного объекта 	±	гь исследований на
	¦ колифагов	энтеровирусов
Вода: - питьевая; - из подземных источников	¦ ¦1 раз в сутки, ¦1 раз в сутки,	; ¦1 раз в квартал; ¦ ; ¦1 раз в квартал; ¦

- плавательных бассейнов	12	раза в м	иесяц ¦	1	раз	В	квартал	-
Вода поверхностных источников водоснабжения; рекреационные воды	 1 	раз в не	еделю ¦ ¦	1	pas	В	квартал	
+	+		+					+
¦Сточные воды:								-
- после очистки и обеззаражи-								-
¦вания при сбросе в водоем:			1					1
¦а) > 100 т. куб. м/сут.	1	раз в не	еделю; ¦	1	раз	В	квартал;	-
¦б) < 100 т. куб. м/сут.	¦ 1	раз в не	еделю ¦	1	раз	В	квартал	-
T,	+		+					

Приложение 5 (справочное)

ЗАБОЛЕВАНИЯ, ВЫЗЫВАЕМЫЕ ВИРУСАМИ, ВЫДЕЛЯЕМЫМИ ИЗ ВОДНЫХ ОБЪЕКТОВ

		r	Г <u>-</u> -	Γ
Групі	па вирусов	-	симптомы, вызываемые вирусами	Максимальные сроки сохранения инфекци- онной активности ви- русов в воде (питье- вой, поверхностных водоисточников, в сточных водах)
¦Энте- ¦рови- ¦русы	¦русы		Полиомиелит, менин- гит, лихорадки	¦Более 3-х месяцев ¦
0		 	Менингит, плевроди- ния, герпетическая ангина, заболевания органов дыхания	До года
	Вирусы Коксаки В	 	Менингит, миокардит, врожденные пороки сердца, заболевания органов дыхания	До 3-х месяцев
	Вирусы ЕСНО 	 	Менингит, диарея, полиомиелитные забо- левания, заболевания органов дыхания	
	¦Энтеро- ¦вирусы 68-71	 	Менингит, энцефалит, геморрагический конъюнктивит, забо- левания органов дыхания	¦Более 3-х месяцев
¦Вирус	гепатита А	¦ 1 ¦ 1	 Гепатит +	¦До 10 месяцев ¦

¦Вирус гепатита Е	¦1	¦Гепатит +	¦Нет данных ¦
¦Ротавирусы	¦1 	¦Гастроэнтериты	¦Более месяца ¦
¦Реовирусы	3 	¦Гастроэнтериты, ме- ¦нингиты, энцефалиты	6 - 12 месяцев
Аденовирусы 	> 32 	Гастроэнтериты, конъюнктивит, заболевания органов дыхания	Более 2-х месяцев
Коронавирусы 	3 	 Гастроэнтериты, заболевания органов дыхания	Нет данных
¦Калицивирусы	¦2	¦Гастроэнтериты	¦Нет данных ¦
Вирусы группы Норволк	1 1 	Гастроэнтериты 	Нет данных
¦Астровирусы L	¦1 +	- Гастроэнтериты +	¦Нет данных ;

Приложение 6 (справочное)

доза уф-облучения, необходимая для инактивации на 99,0 - 99,9% различных видов вирусов (данные литературы)

		r	[
	•	 Вид вирусов	Доза облучения, мДж/кв. см ¦
	¦ 1		4,5
	¦ 2	¦Колифаги	6,6 - 8,1 - 25
	¦ 3		6,3
	¦ 4	Вирус гепатита А	8,0 - 11,0
	•		16 - 25
-			