ГОСУДАРСТВЕННЫЙ КОМИТЕТ РОССИЙСКОЙ ФЕДЕРАЦИИ ПО СТРОИТЕЛЬСТВУ И ЖИЛИЩНО-КОММУНАЛЬНОМУ КОМПЛЕКСУ (ГОССТРОЙ РОССИИ)

Система нормативных документов в строительстве

СТРОИТЕЛЬНЫЕ НОРМЫ И ПРАВИЛА РОССИЙСКОЙ ФЕДЕРАЦИИ

TEIIЛОВАЯ ИЗОЛЯЦИЯ ОБОРУДОВАНИЯ И ТРУБОПРОВОДОВ DESIGNING OF THERMAL INSULATION OF EQUIPMENT AND PIPE LINES

СНиП 41-03-2003

УДК [69+699.8] (083.74)

Дата введения 2003—11—01

ПРЕДИСЛОВИЕ

- 1 РАЗРАБОТАНЫ ОАО «Инжиниринговая компания по теплотехническому строительству ОАО «Теплопроект» и группой специалистов
- 2 ВНЕСЕНЫ Управлением технического нормирования, стандартизации и сертификации в строительстве и ЖКХ Госстроя России
- 3 ПРИНЯТЫ И ВВЕДЕНЫ В ДЕЙСТВИЕ с 1 ноября 2003 г постановлением Госстроя России от 26 июня 2003 г. № 114 (не прошел государственную регистрацию Письмо Минюста РФ от 18.03.2004 № 07/2956-ЮД)
 - 4 ВЗАМЕН СНиП 2.04.14-88

ВВЕДЕНИЕ

Настоящие строительные нормы и правила разработаны с учетом современных тенденций в проектировании промышленной тепловой изоляции и рекомендаций международных организаций по стандартизации и нормированию.

Нормативный документ содержит требования к теплоизоляционным конструкциям, изделиям и материалам, входящим в состав конструкций, нормы плотности теплового потока с изолируемых поверхностей оборудования и трубопроводов с положительными и отрицательными температурами при их расположении на открытом воздухе, в помещении, непроходных каналах и при бесканальной прокладке. В документе приведены правила определения объема и толщины уплотняющихся волокнистых теплоизоляционных материалов в зависимости от коэффициента уплотнения.

Настоящие нормы разработаны: канд. техн. наук Б.М. Шойхет (руководитель работы), Л.В. Ставрицкая, канд. техн. наук В.Г. Петров-Денисов (ОАО «Инжиниринговая компания по теплотехническому строительству ОАО «Теплопроект»), В.А. Глухарев (Госстрой России); Л.С Васильева (ФГУП ЦНС).

В работе принимали участие: канд. техн. наук Е.Г. Овчаренко, В.С. Жолудов (Союз «Концерн СТЕПС»); А.С. Мелех (ЗАО «Холдинговая Компания "Ростеплоизоляция"»); канд. техн. наук Я.А. Ковылянский, А.И. Коротков, канд. техн. наук Г.Х. Умеркин (ОАО ВНИПИЭнергопром); В.Н. Якуничев (СПКБ филиал АО «Фирма "Энергозащита"»); канд. техн. наук А.В. Сладков (ГУП «НИИ Мосстрой»).

1 ОБЛАСТЬ ПРИМЕНЕНИЯ

Настоящие нормы и правила следует соблюдать при проектировании тепловой изоляции наружной поверхности оборудования, трубопроводов, газоходов и воздуховодов, расположенных в зданиях, сооружениях и на открытом воздухе с температурой содержащихся в них веществ от минус 180 до 600 °C, в том числе трубопроводов тепловых сетей при всех способах прокладки, и предназначенной для обеспечения их эксплуатационной надежности, безопасной эксплуатации и необходимого уровня энергосбережения. При проектировании необходимо соблюдать требования к тепловой изоляции, содержащиеся в нормах технологического проектирования и других нормативных документах, утвержденных или согласованных Госстроем России.

Настоящие нормы не распространяются на проектирование тепловой изоляции оборудования и трубопроводов, содержащих и транспортирующих взрывчатые вещества, изотермических хранилищ сжиженных газов, зданий и помещений для производства и хранения взрывчатых веществ, атомных станций и установок.

2 НОРМАТИВНЫЕ ССЫЛКИ

Перечень нормативных документов, на которые приведены ссылки, дан в приложении А.

3 ТЕРМИНЫ И ОПРЕДЕЛЕНИЯ

Плотность теплоизоляционного материала ρ , $\kappa \Gamma/M^3$, — величина, определяемая отношением массы материала ко всему занимаемому им объему, включая поры и пустоты.

Коэффициент теплопроводности λ , $Bt/(M\cdot K)$, — количество теплоты, передаваемое за единицу времени через единицу площади изотермической поверхности при температурном градиенте, равном единице.

Расчетная теплопроводность — коэффициент теплопроводности теплоизоляционного материала в эксплуатационных условиях с учетом его температуры, влажности, монтажного уплотнения и наличия швов в теплоизоляционной конструкции.

Паропроницаемость μ , мг/(м·ч·Па), — способность материала пропускать водяные пары, содержащиеся в воздухе, под действием разности их парциальных давлений на противоположных поверхностях слоя материала.

Температуростойкость — способность материала сохранять механические свойства при повышении или понижении температуры. Характеризуется предельными температурами применения, при которых в материале обнаруживаются неупругие деформации (при повышении температуры) или разрушение структуры (при понижении температуры) под сжимающей нагрузкой.

Уплотнение теплоизоляционных материалов — монтажная характеристика, определяющая плотность теплоизоляционного материала после его установки в проектное положение в конструкции. Уплотнение материалов характеризуется коэффициентом уплотнения, значение которого определяется отношением объема материала или изделия к его объему в конструкции.

Теплоизоляционная конструкция — это конструкция, состоящая из одного или нескольких слоев теплоизоляционного материала (изделия), защитно-покровного слоя и элементов крепления. В состав теплоизоляционной конструкции могут входить пароизоляционный, предохранительный и выравнивающий слои.

Многослойная теплоизоляционная конструкция — это конструкция, состоящая из двух и более слоев различных теплоизоляционных материалов.

Покровный слой — элемент конструкции, устанавливаемый по наружной поверхности тепловой изоляции для защиты от механических повреждений и воздействия окружающей срелы.

Пароизоляционный слой — элемент теплоизоляционной конструкции оборудования и трубопроводов с температурой ниже температуры окружающей среды, предохраняющий теплоизоляционный слой от проникновения в него паров воды вследствие разности парциальных давлений пара у холодной поверхности и в окружающей среде.

Предохранительный слой — элемент теплоизоляционной конструкции, входящий, как правило, в состав теплоизоляционной конструкции для оборудования и трубопроводов с температурой поверхности ниже температуры окружающей среды с целью защиты пароизоляционного слоя от механических повреждений.

Температурные деформации — тепловое расширение или сжатие изолируемой поверхности и элементов конструкции под воздействием изменения температурных условий при монтаже и эксплуатации изолируемого объекта.

Выравнивающий слой — элемент теплоизоляционной конструкции, выполняемый из упругих рулонных или листовых материалов, устанавливается под мягкий покровный слой (например, из лакостеклоткани) для выравнивания формы поверхности.

4 ОБЩИЕ ПОЛОЖЕНИЯ

- **4.1** Теплоизоляционная конструкция должна обеспечивать нормативный уровень тепловых потерь оборудованием и трубопроводами, безопасную для человека температуру их наружных поверхностей, требуемые параметры теплохолодоносителя при эксплуатации.
- **4.2** Конструкции тепловой изоляции трубопроводов и оборудования должны отвечать требованиям:
- энергоэффективности иметь оптимальное соотношение между стоимостью теплоизоляционной конструкции и стоимостью тепловых потерь через изоляцию в течение расчетного срока эксплуатации;
- эксплуатационной надежности и долговечности выдерживать без снижения теплозащитных свойств и разрушения эксплуатационные, температурные, механические, химические и другие воздействия в течение расчетного срока эксплуатации;
 - безопасности для окружающей среды и обслуживающего персонала при эксплуатации.

Материалы, используемые в теплоизоляционных конструкциях, не должны выделять в процессе эксплуатации вредные, пожароопасные и взрывоопасные, неприятно пахнущие вещества в количествах, превышающих предельно допустимые концентрации, а также болезнетворные бактерии, вирусы и грибки.

- **4.3** При выборе материалов и изделий, входящих в состав теплоизоляционных конструкций для поверхностей с положительными температурами теплоносителя (20 °C и выше), следует учитывать следующие факторы:
 - месторасположение изолируемого объекта;
 - температуру изолируемой поверхности,
 - температуру окружающей среды;
 - требования пожарной безопасности;
 - агрессивность окружающей среды или веществ, содержащихся в изолируемых объектах;
 - коррозионное воздействие;
 - материал поверхности изолируемого объекта;
 - допустимые нагрузки на изолируемую поверхность;
 - наличие вибрации и ударных воздействий;
 - требуемую долговечность теплоизоляционной конструкции;
 - санитарно-гигиенические требования;
 - температуру применения теплоизоляционного материала;
 - теплопроводность теплоизоляционного материала;
 - температурные деформации изолируемых поверхностей;
 - конфигурацию и размеры изолируемой поверхности;
 - условия монтажа (стесненность, высотность, сезонность и др.).

Теплоизоляционная конструкция трубопроводов тепловых сетей подземной бесканальной прокладки должна выдерживать без разрушения:

- воздействие грунтовых вод;
- нагрузки от массы вышележащего грунта и проходящего транспорта.

При выборе теплоизоляционных материалов и конструкций для поверхностей с температурой теплоносителя 19 °C и ниже и отрицательной дополнительно следует учитывать относительную влажность окружающего воздуха, а также влажность и паропроницаемость теплоизоляционного материала.

- **4.4** В состав конструкции тепловой изоляции для поверхностей с положительной температурой в качестве обязательных элементов должны входить:
 - теплоизоляционный слой:
 - покровный слой;
 - элементы крепления.
- **4.5** В состав конструкции тепловой изоляции для поверхностей с отрицательной температурой в качестве обязательных элементов должны входить:
 - теплоизоляционный слой;

- пароизоляционный слой;
- покровный слой;
- элементы крепления.

Пароизоляционный слой следует предусматривать при температуре изолируемой поверхности ниже 12 °C. Необходимость устройства пароизоляционного слоя при температуре выше 12 °C следует предусматривать для оборудования и трубопроводов с температурой ниже температуры окружающей среды, если расчетная температура изолируемой поверхности ниже температуры «точки росы» при расчетном давлении и влажности окружающего воздуха.

Необходимость установки пароизоляционного слоя в конструкции тепловой изоляции для поверхностей с переменным температурным режимом (от положительной к отрицательной температуре и наоборот) определяется расчетом для исключения накопления влаги в теплоизоляционной конструкции.

Антикоррозионные покрытия изолируемой поверхности не входят в состав теплоизоляционных конструкций.

- **4.6** В зависимости от применяемых конструктивных решений в состав конструкции дополнительно могут входить:
 - выравнивающий слой;
 - предохранительный слой.

Предохранительный слой следует предусматривать при применении металлического покровного слоя для предотвращения повреждения пароизоляционных материалов.

5 ТРЕБОВАНИЯ К МАТЕРИАЛАМ И КОНСТРУКЦИЯМ ТЕПЛОВОЙ ИЗОЛЯЦИИ

5.1 В конструкциях теплоизоляции оборудования и трубопроводов с температурой содержащихся в них веществ в диапазоне от 20 °C до 300 °C для всех способов прокладки, кроме бесканальной, следует применять теплоизоляционные материалы и изделия с плотностью не более 200 кг/м^3 и коэффициентом теплопроводности в сухом состоянии не более 0.06 Br/(m·K) при средней температуре 25 °C.

Допускается применение асбестовых шнуров для изоляции трубопроводов условным проходом до 50 мм включительно.

- **5.2** В качестве первого теплоизоляционного слоя многослойных конструкций теплоизоляции оборудования и трубопроводов с температурами содержащихся в них веществ в диапазоне от 300 °C и более допускается применять теплоизоляционные материалы и изделия с плотностью не более 350 кг/м³ и коэффициентом теплопроводности при средней температуре 300 °C не более 0.12 Вт/(м·К).
- **5.3** В качестве второго и последующих теплоизоляционных слоев конструкций теплоизоляции оборудования и трубопроводов с температурой содержащихся в них веществ 300 °C и более для всех способов прокладки, кроме бесканальной, следует применять теплоизоляционные материалы и изделия с плотностью не более 200 кг/м³ и коэффициентом теплопроводности при средней температуре 125 °C не более 0,08 Вт/(м·К).
- **5.4** Для теплоизоляционного слоя трубопроводов с положительной температурой при бесканальной прокладке следует применять материалы с плотностью не более $400~{\rm kr/m}^3$ и коэффициентом теплопроводности не более $0.07~{\rm Br/(m\cdot K)}$ при температуре материала $25~{\rm ^{\circ}C}$ и влажности, указанной в соответствующих государственных стандартах или технических условиях.
- **5.5** Для теплоизоляционного слоя оборудования и трубопроводов с отрицательными температурами следует применять теплоизоляционные материалы и изделия с плотностью не более $200~{\rm kr/m^3}$ и расчетной теплопроводностью в конструкции не более $0.05~{\rm Br/(m\cdot K)}$ при температуре веществ минус $40~{\rm ^{\circ}C}$ и выше и не более $0.04~{\rm Br/(m\cdot K)}$ при минус $40~{\rm ^{\circ}C}$.

При выборе материала теплоизоляционного слоя поверхности с температурой от 19 до 0 °C следует относить к поверхностям с отрицательными температурами.

- **5.6** Материалы, применяемые в качестве теплоизоляционного и покровного слоев в составе теплоизоляционной конструкции оборудования и трубопроводов, должны быть сертифицированы (иметь гигиеническое заключение, пожарный сертификат, сертификат соответствия качества продукции).
- **5.7** Конструкция тепловой изоляции трубопроводов при бесканальной прокладке должна обладать прочностью на сжатие не менее $0.4 \, \mathrm{MH}$.

При бесканальной прокладке тепловых сетей следует преимущественно применять предварительно изолированные в заводских условиях трубы с изоляцией из пенополиуретана в полиэтиленовой оболочке (ГОСТ 30732) или армопенобетона с учетом допустимой температуры

применения материалов и температурного графика работы тепловых сетей.

Применение засыпной изоляции трубопроводов при подземной прокладке в каналах и бесканально не допускается.

- **5.8** При бесканальной прокладке предварительно изолированные трубопроводы с изоляцией из пенополиуретана в полиэтиленовой оболочке должны быть снабжены системой дистанционного контроля влажности изоляции.
- **5.9** Не допускается применять асбестосодержащие теплоизоляционные материалы для конструкций тепловой изоляции оборудования и трубопроводов с отрицательными температурами содержащихся в них веществ и для изоляции трубопроводов подземной прокладки в непроходных каналах.
- **5.10** При выборе теплоизоляционных материалов и покровных слоев следует учитывать стойкость элементов теплоизоляционной конструкции к химически агрессивным факторам окружающей среды, включая возможное воздействие веществ, содержащихся в изолируемом объекте.

Не допускается применение теплоизоляционных материалов, содержащих органические вещества, для изоляции конструкций оборудования и трубопроводов, содержащих сильные окислители (жидкий кислород).

Для металлических покрытий должна предусматриваться антикоррозионная защита или выбираться материал, не подверженный воздействию агрессивной среды.

5.11 Для оборудования и трубопроводов, подвергающихся ударным воздействиям и вибрации, рекомендуется применять теплоизоляционные изделия на основе базальтового супертонкого или асбестового волокна.

Для объектов, подвергающихся вибрации, при применении штукатурных защитных покрытий следует предусматривать оклейку штукатурного защитного покрытия с последующей окраской.

5.12 При проектировании объектов с повышенными санитарно-гигиеническими требованиями к содержанию пыли в воздухе помещений в конструкциях теплоизоляции не допускается применение материалов, загрязняющих воздух в помещениях.

Допускается применение теплоизоляционных изделий на основе минеральной ваты вида ВМСТ и ВМТ по ГОСТ 4640 с диаметром волокна не более 5 мкм или изделий из супертонкого стекловолокна в обкладках со всех сторон из стеклянной или кремнеземной ткани и под герметичным защитным покрытием.

- **5.13** В конструкциях тепловой изоляции, предназначенных для обеспечения заданной температуры на поверхности изоляции, в качестве покровного слоя рекомендуется применять материалы со степенью черноты не ниже 0.9 (с коэффициентом излучения не ниже 5.0 Вт/($\mathrm{M}^2\cdot\mathrm{K}^4$).
- **5.14** Не допускается применение металлического покровного слоя при подземной бесканальной прокладке и прокладке трубопроводов в непроходных каналах.

Покровный слой из тонколистового металла с наружным полимерным покрытием не допускается применять в местах, подверженных прямому воздействию солнечных лучей.

- 5.15 Покровный слой допускается не предусматривать в теплоизоляционных конструкциях на основе изделий из волокнистых материалов с покрытием (кэшированных) из алюминиевой фольги или стеклоткани (стеклохолста, стеклорогожи) и вспененного синтетического каучука для изолируемых объектов, расположенных в помещениях, тоннелях, подвалах и чердаках зданий, и при канальной прокладке трубопроводов.
- **5.16** Число слоев пароизоляционного материала в теплоизоляционных конструкциях для оборудования и трубопроводов с отрицательными температурами содержащихся в них веществ рекомендуется принимать по таблице 1.
- **5.17** При применении теплоизоляционных материалов из вспененных полимеров с закрытыми порами необходимость применения пароизоляционного слоя должна быть обоснована расчетом. При исключении пароизоляционного слоя следует предусматривать герметизацию стыков изделий материалами, не пропускающими водяные пары.

Гидроизоляционный материал	Толщина,	теплоиз	оляционі	ной конс золируем	иционног грукции п ой повер атации	в зависим	мости от
	MM	От ми	-	От ми	-	НИ	-
		до 1			c 100 °C		100 °C
		8 лет	12 лет	8 лет	12 лет	8 лет	12 лет
Полиэтиленовая пленка (ГОСТ	0,15-0,2	2	2	2	2	3	-
10354); пленка поливинилбути-		1	2	2	2	2	3
ральная клеящая (ГОСТ 9438);	0,31-0,5	1	1	1	1	2	2
пленка полиэтиленовая термоусадочная (ГОСТ 25951)							
Фольга алюминиевая (ГОСТ 618)	0,06-0,1	1	2	2	2	2	2
Изол (ГОСТ 10296)	2	1	2	2	2	2	2
Рубероид (ГОСТ 10923)	1	3	-	-	-	-	-
	1,5	2	3	3	-	=	-

Примечания

- 1 Допускается применение других материалов, обеспечивающих уровень сопротивления паропроницанию не ниже, чем у приведенных в таблице.
- 2 Для материалов с закрытой пористостью, имеющих коэффициент паропроницаемости менее 0,1 мг/(м·ч·Па), во всех случаях принимается один пароизоляционный слой.
- **5.18** Теплоизоляционные конструкции из материалов с группой горючести Г3 и Г4 не допускается предусматривать для оборудования и трубопроводов, расположенных:
- а) в зданиях, кроме зданий IV степени огнестойкости, одноквартирных жилых домов и охлажлаемых помещений холодильников:
 - б) в наружных технологических установках, кроме отдельно стоящего оборудования;
- в) на эстакадах, галереях и в тоннелях при наличии кабелей или трубопроводов, транспортирующих горючие вещества.

При этом допускается применение горючих материалов группы Г3 или Г4 для:

- пароизоляционного слоя толщиной не более 2 мм;
- слоя окраски или пленки толщиной не более 0,4 мм;
- покровного слоя трубопроводов, расположенных в технических подвальных этажах и подпольях с выходом только наружу в зданиях I и II степеней огнестойкости при устройстве вставок длиной 3 м из негорючих материалов не более чем через 30 м длины трубопровода;
- теплоизоляционного слоя из заливочного пенополиуретана при покровном слое из оцинкованной стали в наружных технологических установках и тоннелях.

Покровный слой из слабогорючих материалов групп Г1 и Г2, применяемых для наружных технологических установок высотой 6 м и более, должен быть на основе ткани из минерального или стеклянного волокна.

5.19 Тепловая изоляция трубопроводов и оборудования должна соответствовать требованиям безопасности и защиты окружающей среды.

Для трубопроводов надземной прокладки при применении теплоизоляционных конструкций из горючих материалов групп Γ 3 и Γ 4 следует предусматривать:

- вставки длиной 3 м из негорючих материалов не более чем через 100 м длины трубопровода;
- участки теплоизоляционных конструкций из негорючих материалов на расстоянии не менее 5 м от технологических установок, содержащих горючие газы и жидкости.

При пересечении трубопроводом противопожарной преграды следует предусматривать теплоизоляционные конструкции из негорючих материалов в пределах размера противопожарной преграды.

При применении конструкций теплопроводов в тепловой изоляции из горючих материалов в негорючей оболочке допускается не делать противопожарные вставки.

Требования к пожарной безопасности теплоизоляционных конструкций трубопроводов тепловых сетей приведены в СНиП 41-02.

5.20 Для элементов оборудования и трубопроводов, требующих в процессе эксплуатации систематического наблюдения, следует предусматривать сборно-разборные съемные теплоизоляционные конструкции.

Съемные теплоизоляционные конструкции должны применяться для изоляции люков, фланцевых соединений, арматуры, сальниковых и сильфонных компенсаторов трубопроводов, а также в местах измерений и проверки состояния изолируемых поверхностей.

5.21 Изделия из минеральной и стеклянной ваты, применяемые в качестве теплоизоляционного слоя для трубопроводов подземной канальной прокладки, должны быть гидрофобизированы.

Не допускается применение теплоизоляционных материалов, подверженных деструкции при взаимодействии с влагой (мастичная изоляция, изделия известково-кремнеземистые, перлитоцементные и совелитовые).

6 ПРОЕКТИРОВАНИЕ ТЕПЛОВОЙ ИЗОЛЯШИИ

- **6.1** Определение толщины теплоизоляционного слоя по нормированной плотности теплового потока.
- **6.1.1** Нормы плотности теплового потока через изолированную поверхность объектов, расположенных в Европейском регионе России, следует принимать не более указанных:

для оборудования и трубопроводов с положительными температурами, расположенных:

- на открытом воздухе по таблицам 2 и 3;
- в помещении по таблицам 4 и 5;

для оборудования и трубопроводов с отрицательными температурами, расположенных:

- на открытом воздухе по таблице 6;
- в помещении по таблице 7;

при прокладке в непроходных каналах:

- для трубопроводов двухтрубных водяных тепловых сетей по таблицам 8 и 9:
- для паропроводов с конденсатопроводами при их совместной прокладке в непроходных каналах по таблице 10;

для трубопроводов двухтрубных водяных тепловых сетей при бесканальной прокладке — по таблицам 11, 12.

При проектировании тепловой изоляции для технологических трубопроводов, прокладываемых в каналах и бесканально, нормы плотности теплового потока следует принимать как для трубопроводов, прокладываемых на открытом воздухе.

- **6.1.2** При расположении изолируемых объектов в других регионах страны следует применять коэффициент K, учитывающий изменение стоимости теплоты в зависимости от района строительства и способа прокладки трубопровода (места установки оборудования):
- нормы плотности теплового потока для плоской поверхности и цилиндрической поверхности с условным проходом более $1400 \text{ мм } q^{red}$ определяются по формуле

$$q^{red} = qK, (1)$$

- нормы плотности теплового потока для цилиндрической поверхности условным проходом 1400 мм и менее определяются по формуле

$$q_l^{red} = q_l K \,, \tag{2}$$

где q — нормированная поверхностная плотность теплового потока, B_T/M^2 , принимаемая по таблицам 2—7;

 q_1 — нормированная линейная плотность теплового потока (на 1 м длины цилиндрического объекта), B_7/M^2 , принимаемая по таблицам 2—12.

Коэффициент K, учитывающий изменение стоимости теплоты и теплоизоляционной конструкции в зависимости от района строительства и способа прокладки трубопровода (места установки оборудования), следует принимать по таблице 13.

6.1.3 Расчетные характеристики теплоизоляционных материалов и изделий, применяемых для изоляции оборудования и трубопроводов

надземной и подземной прокладок, следует принимать с учетом плотности в конструкции, влажности в условиях эксплуатации, швов и влияния мостиков холода элементов крепления.

Коэффициент теплопроводности уплотняющихся материалов при оптимальной плотности в конструкции следует принимать по данным сертификационных испытаний или по данным, приведенным в Своде правил на проектирование тепловой изоляции.

Таблица 2 — **Нормы плотности теплового потока оборудования и трубопроводов с** положительными температурами при расположении на открытом воздухе и числе часов работы более 5000

1 7]	Гемпер	эатура	тепло	носит	еля, °(C			
Условный проход	20	50	100	150	200	250	300	350	400	450	500	550	600
трубопровода, мм				Π.	потнос	ть тег	ІЛОВОГ	о потс	ка, Вт	/ _M			
15	4	9	17	25	35	45	56	68	81	94	109	124	140
20	4	10	19	28	39	50	62	75	89	103	119	135	152
25	5	11	20	31	42	54	67	81	95	111	128	145	163
40	5	12	23	35	47	60	75	90	106	123	142	161	181
50	6	14	26	38	51	66	81	98	115	133	153	173	195
65	7	16	29	43	58	74	90	108	127	147	169	191	214
80	8	17	31	46	62	78	96	115	135	156	179	202	226
100	9	19	34	50	67	85	104	124	146	168	192	217	243
125	10	21	38	55	74	93	114	136	159	183	208	235	263
150	11	23	42	61	80	101	132	156	182	209	238	267	298
200	14	28	50	72	95	119	154	182	212	242	274	308	343
250	16	33	57	82	107	133	173	204	236	270	305	342	380
300	18	39	67	95	124	153	191	224	259	296	333	373	414
350	22	45	77	108	140	173	208	244	281	320	361	403	446
400	25	49	84	117	152	187	223	262	301	343	385	430	476
450	27	54	91	127	163	200	239	280	322	365	410	457	505
500	30	58	98	136	175	215	256	299	343	389	436	486	537
600	34	67	112	154	197	241	286	333	382	432	484	537	593
700	38	75	124	170	217	264	313	364	416	470	526	583	642
800	43	83	137	188	238	290	343	397	453	511	571	633	696
900	47	91	150	205	259	315	372	430	490	552	616	681	749
1000	52	100	163	222	281	340	400	463	527	592	660	729	801
1400	70	70 133 215 291 364 439 514 591 670 750 833 916 1098											
Более 1400 и	Плотность теплового потока, Bт/м ²												
плоские	15	27	41	54	66	77	89	100	110	134	153	174	192
поверхности													
	Іромеж	суточні	ые зна	чения	норм	плотн	ости	геплов	ого по	тока (следует	г опре	делять
интерполяцией.													

Таблица 3 — **Нормы плотности теплового потока оборудования и трубопроводов с** положительными температурами при расположении на открытом воздухе и числе часов работы 5000 и менее

V]	Гемпер	ратура	тепло	носит	еля, °(C			
Условный проход	20	50	100	150	200	250	300	350	400	450	500	550	600
трубопровода, мм				П	тотнос	ть теп	ІЛОВОГ	о пото	ка, Вт	/M			
15	4	10	18	28	38	49	61	74	87	102	117	133	150
20	5	11	21	31	42	54	67	81	96	112	128	146	164
25	5	12	23	34	46	59	73	88	104	120	138	157	176
40	6	14	26	39	52	67	82	99	116	135	154	174	196
50	7	16	29	43	57	73	90	107	126	146	167	189	212
65	8	18	33	48	65	82	100	120	141	162	185	209	234
80	9	20	36	52	69	88	107	128	150	172	197	222	248
100	10	22	39	57	76	96	116	139	162	187	212	239	267
125	12	25	44	63	84	113	137	162	189	216	245	276	307
150	13	27	48	70	92	123	149	176	205	235	266	298	332
200	16	34	59	83	109	146	176	207	240	274	310	347	385
250	19	39	67	95	124	166	199	234	270	307	346	387	429
300	22	44	76	106	138	184	220	253	297	338	380	424	469
350	27	54	92	128	164	202	241	282	324	368	413	460	508

400	30	60	100	139	178	219	260	304	349	395	443	493	544
450	33	65	109	150	192	235	280	326	373	422	473	526	580
500	36	71	118	162	207	253	300	349	399	451	505	561	618
600	42	82	135	185	235	285	338	391	447	504	563	624	686
700	47	91	150	204	259	314	371	429	489	551	614	679	746
800	53	102	166	226	286	346	407	470	535	602	670	740	812
900	59	112	183	248	312	377	443	511	581	652	725	800	877
1000	64	123	199	269	339	408	479	552	626	702	780	860	941
1400	87	165	264	355	444	532	621	712	804	898	995	1092	1193
Более 1400 и				Пл	относ	ть теп	лового	отоп с	ка, Вт	$/\mathrm{M}^2$			
плоские	19	35	54	70	85	99	112	125	141	158	174	191	205
поверхности													
Примечание— Г	Іромеж	уточны	ые зна	чения	норм	плотн	ости т	еплово	ого по	тока	следует	г опре	делять
интерполяцией.													

Таблица 4 — Нормы плотности теплового потока для оборудования и трубопроводов с положительными температурами при расположении в помещении и числе часов работы более 5000

1 7				Te	мперат	ура те	плонос	ителя,	°C			
Условный проход	50	100	150	200	250	300	350	400	450	500	550	600
трубопровода, мм				Пло	гность	теплог	вого по	тока, І	Зт/м			
15	6	14	23	33	43	54	66	79	93	107	122	138
20	7	16	26	37	48	60	73	87	102	117	134	151
25	8	18	28	40	52	65	79	94	110	126	144	162
40	9	21	32	45	59	73	89	105	122	141	160	180
50	10	23	36	50	64	80	96	114	133	152	173	194
65	12	26	41	56	72	89	107	127	147	169	191	214
80	13	28	44	60	77	95	114	135	156	179	202	227
100	14	31	48	65	84	103	124	146	169	193	218	244
125	16	35	53	72	92	113	136	159	184	210	237	265
150	18	38	58	79	100	123	147	172	199	226	255	285
200	22	46	70	93	118	144	172	200	230	262	294	328
250	26	53	79	106	134	162	193	224	257	291	327	364
300	29	60	88	118	148	179	212	246	281	318	357	396
350	33	66	97	129	161	195	230	267	306	344	385	428
400	36	72	106	139	174	210	247	286	326	368	411	456
450	39	78	114	150	187	225	264	305	348	392	437	484
500	43	84	123	161	200	241	262	326	370	417	465	514
600	49	96	139	181	225	269	315	363	412	462	515	569
700	55	107	153	200	247	295	344	395	448	502	558	616
800	61	118	169	220	270	322	376	431	487	546	606	668
900	67	130	185	239	294	350	407	466	527	589	653	718
1000	74	141	201	259	318	377	438	501	565	631	699	768
1400	99	187	263	337	411	485	561	638	716	797	880	964
Более 1400 и	Плотность теплового потока, Bт/м ²											
плоские	23	41	58	69	82	94	106	118	130	141	153	165
поверхности												
Примечание —	Промех	куточн	ые знач	нения н	норм п	лотност	ги тепл	ового	потока	следуе	ет опре	делять
интерполяцией.												

Таблица 5 — Нормы плотности теплового потока для оборудования и трубопроводов с положительными температурами при расположении в помещении и числе часом работы 5000 и менее

17				Te	мперат	ура тег	ілонос	ителя,	°C			
Условный проход	50	100	150	200	250	300	350	400	450	500	550	600
трубопровода, мм			l.	Пло	тность	теплон	вого по	тока, І	Вт/м			l.
15	6	16	25	35	46	58	71	85	99	114	130	147
20	7	18	28	40	52	65	79	93	109	126	143	161
25	8	20	31	43	56	70	85	101	118	136	154	174
40	10	23	36	49	64	80	96	114	132	152	172	194
50	11	25	40	54	70	87	105	124	144	165	187	210
65	13	29	45	62	79	98	118	139	161	184	208	233
80	14	32	49	66	85	105	126	148	171	195	221	247
100	16	35	54	73	93	115	137	161	186	212	239	267
125	18	39	60	81	103	126	151	176	203	231	261	291
150	21	44	66	89	113	138	164	192	221	251	282	315
200	26	53	80	107	134	163	194	225	258	292	328	365
250	30	62	92	122	153	185	218	253	290	327	366	407
300	34	70	103	136	170	205	241	279	319	359	402	446
350	38	77	113	149	186	224	263	304	347	391	436	483
400	42	85	123	162	201	242	284	328	373	419	467	517
450	46	92	134	175	217	260	305	351	398	448	498	551
500	51	100	144	189	233	279	327	375	426	478	532	587
600	58	114	164	214	263	314	367	420	476	533	592	652
700	65	127	182	236	290	345	402	460	520	582	645	710
800	73	141	202	261	320	379	441	504	568	635	703	772
900	81	156	221	285	349	413	479	547	616	687	760	834
1000	89	170	241	309	378	447	518	590	663	739	816	896
1400	120	226	318	406	492	580	668	758	850	943	1038	1136
Более 1400 и	Плотность теплового потока, Bт/м ²											
плоские	26	46	63	78	92	105	119	132	145	158	171	190
поверхности												
Примечание — интерполяцией.	Промех	куточні	ые знач	іения і	норм п	лотност	ги тепл	ювого	потока	следуе	ет опре	делять

Таблица 6 — Нормы плотности теплового потока для оборудования и трубопроводов с отрицательными температурами при расположении на открытом воздухе

Условный		Температура теплоносителя, °С									
проход	0	минус	минус	минус	минус	минус	минус	минус	минус	минус	минус
трубопровода,	U	10	20	40	60	80	100	120	140	160	180
MM				Плотн	ость те	плового	потока	а, Вт/м			
20	3	3	4	6	7	9	10	12	14	16	17
25	3	4	5	6	8	9	11	12	15	17	18
40	4	5	5	7	9	10	12	13	16	18	19
50	5	5	6	8	10	11	13	14	16	19	20
65	6	6	7	9	11	13	14	16	18	20	21
80	6	6	8	10	12	14	15	17	19	21	22
100	7	7	9	11	13	15	17	18	20	22	23
125	8	8	9	12	14	16	18	20	21	24	25
150	8	9	10	13	15	17	19	21	23	26	27
200	10	10	12	16	18	20	23	25	27	29	31
250	11	12	14	18	20	23	26	27	31	33	35
300	12	13	16	20	22	25	28	30	34	36	38
350	14	15	18	22	24	27	30	33	36	38	41
400	16	16	20	23	26	29	32	34	38	40	43

450	17	18	21	26	28	31	34	37	39	42	45
500	19	21	23	27	30	33	36	38	41	44	46
Более 500 и				Плотн	ость тег	ілового	потока	, Вт/м ²			
плоские	11	12	12	13	13	14	15	15	16	17	17
поверхности											
Примечание -	— Пром	ежуточі	ные зна	чения н	юрм пл	отности	теплово	ого пото	ока след	цует опр	ределять
интерполяцией.											

Таблица 7 — Нормы плотности теплового потока для оборудования и трубопроводов с отрицательными температурами при расположении в помещении

Условный				Темі	тератур	а тепло	носител	я, °С			
проход	0	минус	минус	минус	минус	минус	минус	минус	минус	минус	минус
трубопровода,	U	10	20	40	60	80	100	120	140	160	180
MM				Плотн	ость те	плового	потока	а, Вт/м			•
20	5	6	6	7	9	10	12	14	15	16	18
25	6	7	7	8	10	11	12	14	16	17	20
40	7	7	8	9	11	12	13	16	17	19	21
50	7	8	9	10	12	13	14	17	19	20	22
65	8	9	9	11	13	14	16	18	20	21	23
80	9	9	10	12	13	15	17	19	20	22	24
100	10	10	11	13	14	16	18	20	21	23	25
125	11	11	12	14	16	18	20	21	23	26	27
150	12	13	13	16	17	20	21	23	25	27	30
200	15	16	16	19	21	23	25	27	30	31	34
250	16	17	19	20	23	26	27	30	33	36	38
300	19	20	21	23	26	29	31	34	37	39	41
350	21	22	23	26	29	32	34	36	38	41	44
400	23	24	26	28	30	34	36	38	41	44	46
460	25	27	28	30	33	35	37	40	42	45	48
500	28	29	30	33	35	37	40	42	45	47	49
Более 500 и				Плотн	ость те	плового	потока	, Вт/м ²			
плоские	15	16	16	16	16	16	17	17	18	18	18
поверхности											
Примечание – интерполящией.	– Пром	иежуточн	ные зна	чения н	орм пл	отности	теплово	ого пото	ока след	цует опр	ределять

интерполяцией.

Таблица 8— Нормы плотности теплового потока для трубопроводов двухтрубных водяных сетей при подземной канальной прокладке продолжительности работы в год более 5000 ч

V	Среднегодовая темпер	атура теплоносителя (по	дающий/обратный), °С
Условный проход трубопровода, мм	65/50	90/50	110/50
трубопровода, мм	Суммарная лин	ейная плотность теплово	ого потока, Вт/м
25	19	24	28
32	21	26	30
40	22	28	32
50	25	30	35
65	29	35	40
80	31	37	43
100	34	40	46
125	39	46	52
150	42	50	57
200	52	61	70
250	60	71	80
300	67	79	90
350	75	88	99
400	81	96	108

450	89	104	117
500	96	113	127
600	111	129	145
700	123	144	160
800	137	160	177
900	151	176	197
1000	166	192	212
1200	195	225	250
1400	221	256	283

Примечания

Таблица 9 — **Нормы плотности теплового потока для трубопроводов двухпроводных** водяных сетей при подземной канальной прокладке и продолжительности работы в год 5000 ч и менее

Vаларин й проуол	Среднегодовая температура теплоносителя (подающий/обратный), °C									
Условный проход трубопровода, мм	65/50	90/50	110/50							
грубопровода, мм	Суммарная ли	нейная плотность теплов	ого потока, Вт/м							
25	21	26	31							
32	24	29	33							
40	25	31	35							
50	29	34	39							
65	32	39	45							
80	35	42	48							
100	39	47	53							
125	44	53	60							
150	49	59	66							
200	60	71	81							
250	71	83	94							
300	81	94	105							
350	89	105	118							
400	98	115	128							
450	107	125	140							
500	118	137	152							
600	134	156	174							
700	151	175	194							
800	168	195	216							
900	186	216	239							
1000	203	234	261							
1200	239	277	305							
1400	273	316	349							
Примечание — См. пр	имечания к таблице 8.	•								

 $^{^{1}}$ Расчетные среднегодовые температуры воды в водяных тепловых сетях 65/50, 90/50 и 110/50 °C соответствуют температурным графикам 95—70, 150—70 и 180—70 °C

² Промежуточные значения норм плотности теплового потока следует определять интерполяцией.

Таблица 10— Нормы плотности теплового потока через поверхность изоляции паропроводов с конденсатопроводами при их совместной прокладке в непроходных каналах

про трубопр	вный оход ооводов, им	Паропровод	Конденсатопровод										
					Р асчетн	ая тем	перату		тоноси	теля, °(C		
		115	100	150	100	200	100	250	100	300	100	350	100
25	25	22	18	30	18	41	18	51	18	64	18	79	18
32	25	23	18	32	18	43	18	54	18	69	18	83	18
40	25	25	18	33	18	45	18	58	18	73	18	88	18
50	25	27	18	36	18	52	18	64	18	79	18	95	18
66	32	31	21	43	21	58	21	71	21	88	20	103	20
80	40	35	23	46	23	62	23	81	22	98	22	117	21
100	40	38	23	49	23	66	23	81	22	98	22	117	21
125	50	42	24	53	24	72	24	88	23	107	23	126	23
150	65	45	27	58	27	78	27	94	26	115	26	142	26
200	80	52	27	68	27	89	27	108	28	131	28	153	28
250	100	58	31	75	31	99	31	119	31	147	31	172	31
300	125	64	33	83	33	110	33	133	33	159	33	186	33
350	150	70	38	90	38	118	38	143	37	171	37	200	34
400	180	75	42	96	42	127	42	153	41	183	41	213	41
450	200	81	44	103	44	134	44	162	44	193	43	224	43
500	250	86	50	110	50	143	50	173	49	207	49	239	48
600	300	97	55	123	55	159	55	190	54	227	54	261	53
700	300	105	55	133	55	172	55	203	54	243	53	280	53
800	300	114	55	143	55	185	55	220	54	-	-	-	-
Прим интерпол	ечание — іяцией.	- Пром	ежуточ	ные зн	ачения	норм	плотно	сти тег	ілового	потока	а следу	ет опр	еделять

интерполяцией.

Таблица 11— Нормы плотности теплового потока для трубопроводов двухтрубных при подземной бесканальной водяных сетей прокладке продолжительности работы в год более 5000 ч

V	Среднегодовая темпер	атура теплоносителя (по,	дающий/обратный), °С				
Условный проход трубопровода, мм	65/50	90/50	110/50				
трубопровода, мм	Суммарная лин	Суммарная линейная плотность теплового потока. Вт/м					
25	27	32	36				
32	29	35	39				
40	31	37	42				
50	35	41	47				
65	41	49	54				
80	45	22	59				
100	49	58	66				
125	56	66	73				
150	63	73	82				
200	77	93	100				
250	92	106	117				
300	105	121	133				
350	118	135	148				
400	130	148	163				

450	142	162	177
500	156	176	194
600	179	205	223
700	201	229	149
800	226	257	179
900	250	284	308
1000	275	312	338
1200	326	368	398
1400	376	425	461
Примечание - См. приме	чание к таблице 8.		

Таблица 12— Нормы плотности теплового потока для трубопроводов двухтрубных водяных сетей при подземной бесканальной прокладке и продолжительности работы в год 5000 ч и менее

Условный проход		атура теплоносителя (по		
трубопровода, мм	65/50 90/50		110/50	
трубопровода, мм	Суммарная лине	ейная плотность теплово	ого потока, Вт/м	
25	30	35	40	
32	32	38	43	
40	35	41	47	
50	40	47	53	
65	46	55	60	
80	51	60	66	
100	57	67	74	
125	65	76	84	
150	74	86	94	
200	93	107	117	
250	110	125	138	
300	126	144	157	
350	140	162	177	
400	156	177	194	
450	172	196	213	
500	189	214	232	
600	219	249	269	
700	147	290	302	
800	278	312	341	
900	310	349	380	
1000	341	391	414	
1200	401	454	491	
1400	467	523	567	

Таблица 13 — Коэффициент K, учитывающий изменение стоимости теплоты в зависимости от района строительства и способа прокладки трубопровода (места установки оборудования)

	Способ прокладки оборудования и месторасположение оборудования						
Район строительства	на открытом	в помещении,	в непроходном	бесканальный			
	воздухе	тоннеле	канале				
Европейские районы	1,0	1,0	1,0	1,0			
Урал	0,98	0,98	0,95	0,94			
Западная Сибирь	0,98	0,98	0,95	0,94			
Восточная Сибирь	0,98	0,98	0,95	0,94			
Дальний Восток	0,96	0,96	0,92	0,9			
Районы Крайнего Севера	0,96	0,96	0,92	0,9			
и приравненные к ним							

6.1.4 При бесканальной прокладке трубопроводов теплопроводность основного слоя теплоизоляционной конструкции λ_k определяется по формуле

$$\lambda_k = \lambda_o K \,, \tag{3}$$

где λ_{o} — теплопроводность сухого материала основного слоя, $BT/(M \cdot K)$;

К — коэффициент, учитывающий увеличение теплопроводности от увлажнения, принимаемый в зависимости от вида теплоизоляционного материала и типа грунта по таблице 14.

Таблица 14

	Коэффициент увлажнения K				
Материал теплоизоляционного слоя	Тип грунта по ГОСТ 25100				
	Маловлажный	Влажный	Насыщенный водой		
Пенополиуретан	1,0	1,0	1,0		
Армопенобетон	1,05	1,05	1.1		
Пенополимерминерал	1,05	1,05	1.1		

- **6.1.5** За расчетную температуру окружающей среды при расчетах по нормированной плотности теплового потока следует принимать:
 - а) для изолируемых поверхностей, расположенных на открытом воздухе:
 - для технологического оборудования и трубопроводов среднюю за год
 - для трубопроводов тепловых сетей при круглогодичной работе среднюю за год;
- для трубопроводов тепловых сетей, работающих только в отопительный период, среднюю за период со среднесуточной температурой наружного воздуха 8 °С и ниже;
 - б) для изолируемых поверхностей, расположенных в помещении,—20 °C;
 - в) для трубопроводов, расположенных в тоннелях,—40 °C;
- г) для подземной прокладки в каналах или при бесканальной прокладке трубопроводов среднюю за год температуру грунта на глубине заложения оси трубопровода.

При величине заглубления верхней части перекрытия канала (при прокладке в каналах) или верха теплоизоляционной конструкции трубопровода (при бесканальной прокладке) 0,7 м и менее за расчетную температуру окружающей среды должна приниматься та же температура наружного воздуха, что и при надземной прокладке.

6.1.6 Расчетную температуру теплоносителя технологического оборудования трубопроводов следует принимать в соответствии с заданием на проектирование.

Для трубопроводов тепловых сетей за расчетную температуру теплоносителя принимают:

а) для водяных тепловых сетей:

для подающего трубопровода при постоянной температуре сетевой воды и количественном регулировании — максимальную температуру теплоносителя;

для подающего трубопровода при переменной температуре сетевой воды и качественном регулировании — в соответствии с таблицей 15;

для обратных трубопроводов водяных тепловых сетей — $50 \, ^{\circ}$ C;

Таблица 15

Температурные режимы водяных тепловых сетей, °С	95-70	150-70	180-70
Расчетная температура теплоносителя t_w , °C	65	90	110

- б) для паровых сетей максимальную температуру пара, среднюю по длине рассматриваемого участка паропровода;
- в) для конденсатных сетей и сетей горячего водоснабжения максимальную температуру конденсата или горячей воды.
- **6.1.7** При определении температуры грунта в температурном поле подземного трубопровода тепловых сетей температуру теплоносителя следует принимать:

для водяных тепловых сетей — по температурному графику регулирования при среднемесячной температуре наружного воздуха расчетного месяца;

для паровых сетей — максимальную температуру пара в рассматриваемом месте паропровода (с учетом падения температуры пара по длине трубопровода);

для конденсатных сетей и сетей горячего водоснабжения — максимальную температуру

конденсата или воды.

6.2 Определение толщины изоляции по заданной величине теплового потока.

Расчетные параметры принимают в соответствии с 6.1.5 и 6.1.6.

При определении толщины тепловой изоляции следует учитывать влияние опор трубопроводов и оборудования.

6.3 Определение толщины тепловой изоляции по заданной величине охлаждения (нагревания) вещества, сохраняемого в емкостях в течение определенного времени.

Расчетную температуру окружающего воздуха следует принимать для оборудования и трубопроводов, расположенных на открытом воздухе:

- для поверхностей с положительными температурами среднюю наиболее холодной пятидневки с обеспеченностью 0,92;
- для поверхностей с отрицательными температурами веществ среднюю максимальную наиболее жаркого месяца;
- для поверхностей, расположенных в помещении, в соответствии с заданием на проектирование, а при отсутствии данных о температуре окружающего воздуха 20 °C.

Расчетную температуру вещества принимают в соответствии с заданием на проектирование.

6.4 Определение толщины тепловой изоляции по заданному снижению температуры вещества, транспортируемого трубопроводами (паропроводами).

Расчетную температуру окружающей среды следует принимать для трубопроводов, расположенных:

- на открытом воздухе и в помещении в соответствии с 6.3:
- в тоннелях 40 °C;
- в каналах или при бесканальной прокладке трубопроводов минимальную среднемесячную температуру грунта на глубине заложения оси трубопровода.

Расчетную температуру теплоносителя принимают в соответствии с заданием на проектирование.

6.5 Определение толщины тепловой изоляции по заданному количеству конденсата в паропроводах.

Расчетные параметры окружающего воздуха следует принимать в соответствии с 6.3.

Расчетную температуру вещества принимают в соответствии с заданием на проектирование.

6.6 Определение толщины тепловой изоляции по заданному времени приостановки движения жидкого вещества в трубопроводах в целях предотвращения его замерзания или увеличения вязкости.

Расчетные параметры окружающего воздуха и теплоносителя следует принимать в соответствии с 6.3 и 6.5.

- **6.7** Определение толщины тепловой изоляции по заданной температуре на поверхности изоляции.
 - **6.7.1** Температуру на поверхности тепловой изоляции следует принимать не более, °С:
- а) для изолируемых поверхностей, расположенных в рабочей или обслуживаемой зоне помещений и содержащих вещества:

б) для изолируемых поверхностей, расположенных на открытом воздухе в рабочей или обслуживаемой зоне:

Температура на поверхности тепловой изоляции трубопроводов, расположенных за пределами рабочей или обслуживаемой зоны, не должна превышать температурных пределов применения материалов покровного слоя, но не выше 75 $^{\circ}$ C.

- **6.7.2** Расчетную температуру окружающего воздуха следует принимать для поверхностей, расположенных:
 - на открытом воздухе среднюю максимальную наиболее жаркого месяца;
 - в помещении в соответствии с 6.1.5, б и в.
- **6.8** Определение толщины тепловой изоляции с целью предотвращения конденсации влаги из окружающего воздуха на покровном слое тепловой изоляции оборудования и трубопроводов, содержащих вещества с температурой ниже температуры окружающего воздуха.

Данный расчет следует выполнять только для изолируемых поверхностей, расположенных в помещении.

Расчетная температура и относительная влажность воздуха принимаются в соответствии с

заданием на проектирование.

- **6.9** При расчете толщины тепловой изоляции с целью предотвращения конденсации влаги на внутренних поверхностях объектов, транспортирующих газообразные вещества, содержащие водяные пары или водяные пары и газы, которые при растворении в сконденсировавшихся водяных парах могут привести к образованию агрессивных продуктов, расчетную температуру окружающей среды следует принимать в соответствии с 6.3,
- **6.10** Для изолируемых поверхностей с отрицательными температурами, расположенных в помещении, толщина теплоизоляционного слоя, определенная по условиям 6.1, 6.2, должна быть проверена по 6.8. В результате принимается большее значение толщины слоя.
- **6.11** Теплоизоляционную конструкцию с теплоизоляционным слоем из однородного материала, установленного в несколько слоев, при расчетах рассматривают как однослойную.

Расчет толщины теплоизоляционного слоя конструкции, состоящей из двух и более слоев разнородных материалов, следует проводить исходя из того, что межслойная температура не превышает максимальную температуру применения теплоизоляционного материала последующих слоев. Толщину каждого слоя рассчитывают отдельно.

- **6.12** Расчетную толщину теплоизоляционного слоя в конструкциях тепловой изоляции на основе волокнистых материалов и изделий (матов, плит, холстов) следует округлять до значений, кратных 10 мм.
- В конструкциях на основе минераловатных цилиндров, жестких ячеистых материалов, материалов из вспененного синтетического каучука, пенополиэтилена и пенопластов следует принимать ближайшую к расчетной толщину изделий по нормативным документам на соответствующие материалы.

Если расчетная толщина теплоизоляционного слоя не совпадает с номенклатурной толщиной выбранного материала, следует принимать по действующей номенклатуре ближайшую более высокую толщину теплоизоляционного материала.

Допускается принимать ближайшую более низкую толщину теплоизоляционного слоя в случаях расчета по температуре на поверхности изоляции и нормам плотности теплового потока, если разница между расчетной и номенклатурной толщиной не превышает 3 мм.

6.13 Минимальную толщину теплоизоляционного слоя следует принимать:

при изоляции цилиндрами из волокнистых материалов — равной минимальной толщине, предусматриваемой государственными стандартами или техническими условиями;

при изоляции тканями, полотном стекловолокнистым, шнурами — 20 мм.

при изоляции изделиями из волокнистых уплотняющихся материалов — 20 мм;

при изоляции жесткими материалами, изделиями из вспененных полимеров — равной минимальной толщине, предусматриваемой государственными стандартами или техническими условиями.

6.14 Предельная толщина теплоизоляционного слоя в конструкциях тепловой изоляции оборудования и трубопроводов приведена в приложении Б.

Если расчетная толщина больше, чем может обеспечить в соответствии с приложением Б выбранный теплоизоляционный материал, следует применить более эффективный теплоизоляционный материал.

Применение конструкций с большей толщиной теплоизоляционного слоя требует технического обоснования.

6.15 Толщину теплоизоляционного слоя в конструкциях тепловой изоляции приварной, муфтовой и несъемной фланцевой арматуры следует принимать равной толщине изоляции трубопровода.

Толщину теплоизоляционного слоя в съемных теплоизоляционных конструкциях фланцевых соединений и фланцевой арматуры с положительной температурой транспортируемых веществ следует принимать равной толщине изоляции трубопровода, но не более 120 мм.

Толщину теплоизоляционного слоя в съемных теплоизоляционных конструкциях фланцевых соединений и фланцевой арматуры трубопроводов с отрицательной температурой транспортируемых веществ следует принимать равной толщине изоляции трубопровода.

- **6.16** Для поверхностей с температурой выше 350 °C и ниже минус 60 °C не допускается применение однослойных конструкций. При многослойной конструкции последующие слои должны перекрывать швы предыдущего,
- **6.17** Заказные толщину и объем теплоизоляционных изделий из уплотняющихся материалов следует определять по рекомендуемому приложению В.
- **6.18** Толщину металлических листов, лент, применяемых для покровного слоя, в зависимости от наружного диаметра или конфигурации теплоизоляционной конструкции рекомендуется принимать по таблице 16.

Таблица 16 — Толщина металлических листов для покровного слоя тепловой изоляции

В миллиметрах

	Толщин	на листа, не мене	е, при диаметре и	золяции
Материал покровного слоя				Св. 1600 и
Triarepriasi frompoblici o estosi	350 и менее	Св. 350 до 600	Св. 600 до 1600	плоские
				поверхности
Листы и ленты из нержавеющей	0,5	0,5	0,8	0,8
стали				
Листы из тонколистовой стали, в	0,5	0,8	0,8	1,0
том числе с полимерным				
покрытием				
Листы из алюминия и	0,3	0,5	0,8	1,0
алюминиевых сплавов				
Ленты из алюминия и	0,25	0,3	0,8	1,0
алюминиевых сплавов				

- **6.19** В качестве покровного слоя теплоизоляционных конструкций диаметром изоляции более 1600 мм и плоских, расположенных в помещении с неагрессивными и слабоагрессивными средами, допускается применять металлические листы и ленты толщиной 0,7—0,8 мм, а для трубопроводов диаметром изоляции более 600 до 1600 мм 0,6 мм.
- **6.20** Листы и ленты из алюминия и алюминиевых сплавов толщиной 0,25—0,3 мм рекомендуется применять гофрированными.
- **6.21** Штукатурный покровный слой теплоизолированной поверхности, расположенной в помещении, должен быть оклеен тканью. Толщину штукатурного покрытия при укладке по жестким или волокнистым материалам в зависимости от диаметра изолируемого объекта рекомендуется принимать по таблице 17.

Таблица 17

	Толщина штукатурного покрытия, мм				
Вид изоляционного материала	Вид изолируемого объекта				
(основание)	Трубопроводы наружны	Оборужаранна			
	до 133 вкл.	159 и более	Оборудование		
Жесткие изделия	10	15	20		
Волокнистые изделия	15	15—20	20—25		

6.22 Для теплоизоляционных конструкций, подвергающихся воздействию агрессивных сред, следует предусматривать защиту металлических покрытий от коррозии.

При применении в качестве покровного слоя листов и лент из алюминия и алюминиевых сплавов и теплоизоляционного слоя в стальной неокрашенной сетке или при устройстве каркаса следует предусматривать установку под покровный слой прокладки из рулонного материала или окраску по покровному слою изнутри битумным лаком.

- **6.23** Под покровный слой из неметаллических материалов в помещениях хранения и переработки пищевых продуктов следует предусматривать установку сетки стальной из проволоки диаметром не менее 1 мм с ячейками размером не более 12×12 мм.
- **6.24** Конструкция тепловой изоляции должна исключать ее деформацию и сползание теплоизоляционного слоя в процессе эксплуатации. В составе теплоизоляционных конструкций оборудования и трубопроводов следует предусматривать опорные элементы и разгружающие устройства, обеспечивающие механическую прочность и эксплуатационную надежность конструкций.

На вертикальных участках трубопроводов и оборудования опорные конструкции следует предусматривать через каждые 3—4 м по высоте.

6.25 В конструкциях тепловой изоляции оборудования и трубопроводов с отрицательными температурами веществ не следует применять металлические крепежные детали, проходящие через всю толщину теплоизоляционного слоя. Крепежные детали или их части следует предусматривать из материалов с теплопроводностью не более 0,23 Вт/(м·К).

Деревянные крепежные детали должны быть обработаны антипиреном и антисептическим

составом.

Элементы крепления, изготовленные из углеродистой стали, должны иметь антикоррозионное покрытие.

- **6.26** Размещение крепежных деталей на изолируемых поверхностях следует принимать в соответствии с ГОСТ 17314.
- **6.27** Детали, предусматриваемые для крепления теплоизоляционной конструкции на поверхности с отрицательными температурами, должны иметь покровный слой от коррозии или изготавливаться из коррозионно-стойких материалов.

Крепежные детали, соприкасающиеся с изолируемой поверхностью, следует предусматривать:

для поверхностей с температурой от минус 40 до 400 °C — из углеродистой стали;

для поверхностей с температурой выше 400 и ниже минус 40 °C — из того же материала, что и изолируемая поверхность.

Элементы крепления теплоизоляционного слоя и покровного слоя теплоизоляционных конструкций оборудования и трубопроводов, расположенных на открытом воздухе в районах с расчетной температурой окружающего воздуха ниже минус $40~^{\circ}$ C, следует применять из легированной стали или алюминия.

6.28 Конструкция покровного слоя тепловой изоляции должна допускать возможность компенсации температурных деформаций изолируемого объекта и теплоизоляционной конструкции.

Температурные швы в защитных покрытиях горизонтальных трубопроводов следует предусматривать у компенсаторов, опор и поворотов, а на вертикальных трубопроводах — в местах установки опорных конструкций.

При изоляции жесткими формованными изделиями следует предусматривать вставки из волокнистых материалов в местах устройства температурных швов.

- **6.29** Выбор материала покровного слоя теплоизоляционных конструкций оборудования и трубопроводов, расположенных на открытом воздухе в районах с расчетной температурой окружающего воздуха минус 40 °C и ниже, следует производить с учетом температурных пределов применения материалов по действующим нормативным документам,
- **6.30** Конструкция крепления покровного слоя тепловой изоляции оборудования и трубопроводов с отрицательными температурами веществ должна исключать возможность повреждения пароизоляционного слоя в процессе эксплуатации.
- 6.31 Для оборудования и трубопроводов с отрицательными температурами при применении пароизоляционного слоя из рулонных материалов без сплошной наклейки следует предусматривать герметизацию швов пароизоляционного слоя; при температуре изолируемой поверхности ниже минус $60\,^{\circ}\mathrm{C}$ следует также предусматривать герметизацию швов покровного слоя герметиками или пленочными клеящимися материалами.
- **6.32** Для бесканальной прокладки трубопроводов тепловых сетей в сухих грунтах возможно применение изоляции из штучных формованных изделий (скорлупы, сегменты) из пенополиуретана или полимербетона с водонепроницаемым покровным слоем, при этом теплоизоляционные изделия следует укладывать на водостойких и температуростойких мастиках или клеях.

ПЕРЕЧЕНЬ НОРМАТИВНЫХ ДОКУМЕНТОВ, НА КОТОРЫЕ ИМЕЮТСЯ ССЫЛКИ В ТЕКСТЕ:

СНиП 41-02-2003 Тепловые сети

ГОСТ 618—73 Фольга алюминиевая для технических целей. Технические условия

ГОСТ 4640—93 Вата минеральная. Технические условия

ГОСТ 9438—35 Пленка поливинилбутиральная клеящая. Технические условия

ГОСТ 10296—79 Изол. Технические условия

ГОСТ 10354—82 Пленка полиэтиленовая. Технические условия

ГОСТ 10923—93 Рубероид. Технические условия

ГОСТ 17314—81 Устройства для крепления тепловой изоляции стальных сосудов и аппаратов. Конструкция и размеры. Технические требования

ГОСТ 25100—95 Грунты. Классификация

ГОСТ 25951—83 Пленка полиэтиленовая термоусадочная. Технические условия

ГОСТ 30732—2001 Трубы и фасонные изделия стальные с тепловой изоляцией из пенополиуретана в полиэтиленовой оболочке. Технические условия.

ПРИЛОЖЕНИЕ Б (рекомендуемое)

ПРЕДЕЛЬНЫЕ ТОЛЩИНЫ ТЕПЛОИЗОЛЯЦИОННЫХ КОНСТРУКЦИЙ ДЛЯ ОБОРУДОВАНИЯ И ТРУБОПРОВОДОВ

			Способ проклад	ки трубопрово	да		
Наружный диаметр, Над		дземный В тоннеле			В непроходном канале		
MM	Предел	тьная толщина	теплоизоляцио	онного слоя, ми	и, пои темпера	, пои температуре, °С	
	19 и ниже	20 и более	19 и ниже	20 и более	до 150 вкл.	151 и более	
18	80	80	80	80	50	60	
25	120	120	100	100	60	80	
32	140	140	120	100	80	100	
45	140	140	120	100	80	100	
57	150	150	140	120	90	120	
76	160	160	160	140	90	140	
89	180	170	180	160	100	140	
108	180	180	180	160	100	160	
133	200	200	180	160	100	160	
159	220	220	200	160	120	180	
219	230	230	200	180	120	200	
273	240	230	220	180	120	200	
325	240	240	240	200	120	200	
377	260	240	260	200	120	200	
426	280	250	280	220	140	220	
476	300	250	300	220	140	220	
530	320	260	320	220	140	220	
630	320	280	320	240	140	220	
720	320	280	320	240	140	220	
820	320	300	320	240	140	220	
920	320	300	320	260	140	220	
1020 и более	320	320	320	260	140	220	

Примечания

¹ Для трубопроводов, расположенных в каналах, толщина изоляции указана для положительных температур транспортируемых веществ. Для трубопроводов с отрицательными температурами транспортируемых веществ предельные толщины следует принимать такими же, как при прокладке в тоннелях.

² В случае если расчетная толщина изоляции больше предельной, следует принимать более эффективный теплоизоляционный материал и ограничиться предельной толщиной тепловой изоляции, если это допустимо по условиям технологического процесса.

ОПРЕДЕЛЕНИЕ ТОЛЩИНЫ И ОБЪЕМА ТЕПЛОИЗОЛЯЦИОННЫХ ИЗДЕЛИЙ ИЗ УПЛОТНЯЮЩИХСЯ МАТЕРИАЛОВ

В.1 Толщину теплоизоляционного изделия из уплотняющихся материалов до установки на изолируемую поверхность следует определять с учетом коэффициента уплотнения K_c по формулам:

для цилиндрической поверхности

$$\delta_1 = \delta K_c \frac{d+\delta}{d+2\delta}; \tag{B.1}$$

для плоской поверхности

$$\delta_2 = \delta K_c \,, \tag{B.2}$$

где δ_1 , δ_2 — толщина теплоизоляционного изделия до установки на изолируемую поверхность (без уплотнения), м;

 δ — расчетная толщина теплоизоляционного слоя с уплотнением в конструкции, м;

d — наружный диаметр изолируемого оборудования, трубопровода, м;

 K_c — коэффициент уплотнения теплоизоляционных изделий, принимаемый по таблице В.1 настоящего приложения.

Примечание —В случае если в формуле (В.1) произведение $K_c \frac{d+\delta}{d+2\delta}$ меньше единицы, оно должно приниматься равным единице.

- **В.2** При многослойной изоляции толщину изделия до его уплотнения следует определять отдельно для каждого слоя. При определении толщины последующего теплоизоляционного слоя за наружный диаметр (d) принимают диаметр изоляции предыдущего слоя.
- **В.3** Объем теплоизоляционных изделий из уплотняющихся материалов для теплоизоляционного слоя до уплотнения следует определять по формуле

$$V = V_i K_c \,, \tag{B.3}$$

где V — объем теплоизоляционного материала или изделия до уплотнения, M^3 ;

 V_i — объем теплоизоляционного материала или изделия в конструкции с учетом уплотнения, м³.

Таблица В.1

Тоттомо данном на материя и и на тотна	Коэффициент
Теплоизоляционные материалы и изделия	уплотнения K_c
Маты минераловатные прошивные	1,2
Маты теплоизоляционные «TEXMAT»	1,35-1,2
Маты и холсты из супертонкого базальтового волокна при укладке на	
трубопроводы и оборудование условным проходом, мм:	
	3,0
то же, при средней плотности 50-60 кг/м ³	1,5*
	2,0
то же, при средней плотности 50-60 кг/м ³	1,5*
Маты из стеклянного штапельного волокна на синтетическом	
связующем марки:	
M-45, 35, 25	1,6
M-15	2,6
Маты из стеклянного штапельного волокна «URSA» марки:	
M-11	3,6-4,0*
M-15, M-17	2,6
М-25 при укладке:	
на трубы	1,5-1,8**
на оборудование	1,4
Плиты минераловатные на синтетическом связующем марки:	

35, 50	1,5
75	1,2
100	1,1
125	1,05
Плиты из стеклянного штапельного волокна	
П-30	1,1
П-15, П-17, и П-20	1,2
Песок перлитовый вспученный мелкий марок 75,100,150	1,5

^{*} Коэффициент уплотнения матов «URSA» марки M-11 при укладке на трубы условным проходом до 40 мм вкл. — 4,0, при укладке 50 мм и более — 3,6.

Ключевые слова: изоляция тепловая, оборудование, трубопровод, проектирование

СОДЕРЖАНИЕ

Введение

- 1 Область применения
- 2 Нормативные ссылки
- 3 Термины и определения
- 4 Общие положения
- 5 Требования к материалам и конструкциям тепловой изоляции
- 6 Проектирование тепловой изоляции
- Приложение А Перечень нормативных документов, на которые имеются ссылки в тексте

Приложение Б Предельные толщины теплоизоляционных конструкций для оборудования и трубопроводов

Приложение В Определение толщины и объема теплоизоляционных изделий из уплотняющихся материалов

^{**} Коэффициент уплотнения матов «URSA» марки M-25 при укладке на трубы условным проходом до 100 мм вкл. — 1,8, св. 100 до 250 мм вкл. — 1,6, св. 250 мм — 1,5.