Данный файл представлен исключительно в ознакомительных целях.

Уважаемый читатель!
Если вы скопируете данный файл,
Вы должны незамедлительно удалить его сразу после ознакомления с содержанием.
Копируя и сохраняя его Вы принимаете на себя всю ответственность, согласно действующему международному законодательству.
Все авторские права на данный файл сохраняются за правообладателем.
Любое коммерческое и иное использование кроме предварительного ознакомления запрещено.

Публикация данного документа не преследует никакой коммерческой выгоды. Но такие документы способствуют быстрейшему профессиональному и духовному росту читателей и являются рекламой бумажных изданий таких документов.

Данный электронный документ предназначен только для внутреннего использования в качестве справочного пособия.

Любая форма продажи и перепродажи данного электронного документа **запрещена**!

С вопросами, замечаниями и предложениями, касающимися данного электронного документа обращаться к

ПЕРЕХОД К ОГЛАВЛЕНИЮ ДОКУМЕНТА Основана в 1967 году

Н.В. Никитин Ю.Ф. Гаршин С. Х. Меллер

КРАТКИЙ СПРАВОЧНИК МОНТАЖНИКА И РЕМОНТНИКА

2-е издание, переработанное

МОСКВА ЭНЕРГОАТОМИЗДАТ 1990

ББК 31.37 H62 УДК 621.311.22.002.5.002.72(035.5)

Редакционная коллегия:

Жильченко Н. И. (председатель), Белкин С. А., Богод В. Б., Волобуева И. В., Грузер Л. Б., Кузнецов А. А., Лещенко В. Л., Мерэликин Н. И., Уланов Г. А., Шпагин Ю. П.

Репензент Уланов Г. А.

Редактор издательства Кузнецов А. А.

Никитин Н. В. и др.

Н 62 Краткий справочник монтажника н ремонтника/Н. В. Никитин, Ю. Ф. Гаршин, С. Х. Меллер. — 2-е изд., перераб. — М.: Энергоатомиздат, 1990. — 192 с.: ил. — (Б-ка тепломонтажника).

ISBN 5-283-00134-2

В книге приведены номенклатура и технические характеристики основного оборудования, механизмов и приспособлений, применяемых при монтаже и ремонте тепломеханического оборудования электростанций. Дан ассортимент стального проката, труб, матерналов, используемых при монтажных и ремонтных рабогах. Рассмотрены примеры расчетов элементов монтажных и ремонтных приспособлений.

Первое издание книги вышло в 1983 году. Во втором издании обновлены ссылки на нормативно-техническую докумен-

танию

Книга рассчитана на бригадиров, мастеров, рабочих, выполняющих монтаж и ремонт тепломеханического оборудования ТЭС и АЭС.

 $H \frac{2203060000-078}{051(01)-90} 158-90$

ББК 31.37

ISBN 5-283-00134-2

© Энергоатомиздат, 1983 © Авторы, 1990, с изменениями

Предисловие

Монтаж и ремонт тепломеханического оборудования ТЭС и АЭС являются сложными технологическими процессами с применением разнообразных механизмов, оборудования, приспособлений и использованием широкого ассортимента материалов. Выполнение монтажных и ремонтных работ требует высокого уровня организации производства и соответствующей подготовки персонала.

Монтажные и ремонтные работы, как правило, обеспечиваются проектами производства работ (ППР), разрабатываемыми специализированными организациями. Однако ППР, определяя организационные и техиологические вопросы монтажа и ремонта на основании соответствующих проектных, нормативных и директивных материалов, не всегда могут учесть или предусмотреть конкретно складывающиеся условия. Это требует от бригадиров и мастеров умення оперативно и грамотно решать ряд технических вопросов, в том числе проводить расчет конструктивных элементов монтажных и ремонтных устройств и приспособлений; выбор и определение режима использования грузоподъемных, транспортных и прочих монтажных и ремонтных механизмов; выбор строповочных средств, всномогательных материалов и пр.

Необходимые справочные материалы имеются в специализированных справочниках, учебных пособиях и нормативных документах, но пользование ими в условиях монтажной или ремонтной площадки сопряжено с неудобствами. Поэтому авторы в настоящем справочнике стремились дать мастеру и бригадиру краткие систематизированные сведения по широкому кругу вопросов, встречающихся в повседневной работе с тем, чтобы освободить их от поиска этих сведений в специализированных изданиях. В книге в связи с широким распространением в практике монтажных и ремонтных работ использованы единицы физических величин МКГСС и внесистемные. Для

нспользования согласно ГОСТ 8.417-81 (СТ СЭВ 1052-78) Международной системы единиц СИ приводятся основные и производные единицы физических величин системы СИ (см. приложение ПП.1), а также соотношения между внесистемными единицами, единицами МКГСС и системы СИ. В настоящем втором издании справочника внесены уточиения в связи с изменением номенклатуры монтажиого и ремонтного оборудования.

Замечания и пожелания по книге просьба направлять по адресу: 113114, Москва, М-114, Шлюзовая иаб., 10, Энергоатомиздат.

Авторы

РАЗДЕЛ ПЕРВЫЙ

ПРОЕКТ ПРОИЗВОДСТВА РАБОТ

1.1. ОБЩАЯ ЧАСТЬ

Проект производства работ (ППР) — основной руководящий документ, определяющий организацию и технологию монтажных и ремонтных работ. ППР предусматривает безопасное выполнение работ наиболее эффективными методами, способствующими снижению их себестоимости и трудоемкости, сокращению продолжительности и улучшению качества. ППР на монтаж и ремонт тепломеханического оборудования разрабатывается организациями, выполняющими эти работы, или по их заказам специализированными организациями, согласовывается с генподрядной организацией и утверждается руководством монтажной или ремонтной организации.

Основными исходными материалами для разработки ППР являются: проект организации строительства; генеральный план промплощадки и стройдвора; строительные чертежи, компоновочные и установочные чертежи оборудования; рабочие чертежи оборудования и трубопроводов; уточненные сроки ввода в действие оборудования и объектов.

1.2. СОСТАВ И СОДЕРЖАНИЕ ПРОЕКТА ПРОИЗВОДСТВА РАБОТ

Проект производства работ на монтаж тепломеханического оборудования состоит из разделов общеплощадочного ППР (общая часть) и разделов по монтажу оборудования отдельных объектоз электростанции (котельное отделение, машинный зал, химводоочистка и т. д.).

В разделе «Общеплощадочный ППР» разрабатываются следующие чертежи: стройгенплан с указанием временных сооружений и транспортных коммуникаций, схема монтажных проемов, схема раскладки блоков на сборочно-укрупнительных площадках, схемы разводки магистралей газа, схемы монтажа грузоподъемных механизмов, ведомости необходимого оборудования, приспособлений, инструмента и вспомогательных материалов, заявочные спецификации на металлопрокат и трубы для изготовления приспособлений и пояснительная записка, в которой приводятся краткая характеристика электростанции и данные о сроках ввода энергоблоков, объемах теп-

ломонтажных работ, средствах механизации сборочных и монтажных работ, временных сооружениях, источниках всех видов энерго-

снабжения.

Разделы ППР по монтажу отдельных объектов содержат: план и разрезы монтируемого объекта с указанием расположения грузоподъемных средств и полъездных путей, схемы разбивки оборудования на монтажные блоки и последовательность их монтажа, рабочне чертежи приспособлений для сборки и монтажа блоков, монтажные и сварочные формуляры, локальный график производства работ и пояспительную записку, в которой приводятся уточненные данные об объемах работ, описание принятой технологии производства работ, схемы механизации трудоемких и ручных процессов и совмещения строительных и монтажных работ, даются указания по технике безопасности для конкретных условий производства работ.

Для производства работ по сборке и монтажу отдельных сложных блоков и узлов оборудования дополнительно разрабатываются технологические карты, содержащие состав монтажных блоков, схемы строповки и раскрепления блоков при транспортировке и уста-

новке в проектное положение.

Все организационио-технические мероприятия, технологические процессы, монтажные устройства и приспособления, разрабатываемые в ППР, должны соответствовать требованиям нормативных документов, регламентирующих охрану труда и технику безопасности при производстве соответствующих работ.

РАЗДЕЛ ВТОРОЙ

ОБОРУДОВАНИЕ И МЕХАНИЗМЫ ДЛЯ ПРОИЗВОДСТВА ТАКЕЛАЖНЫХ РАБОТ

2.1. KAHATЫ

Для комплектования такелажных устройств, изготовления монтажных стропов и чалочных приспособлений применяются стальные канаты:

типа ТЛК-О (с точечно-линейным касанием проволок в прядях) из шести прядей по 37 проволок (всего 222 проволоки) с одним ор-

ганическим сердечником по ГОСТ 3079-80 (табл. 2.1);

типа ТК (с точечным касанием проволок между слоями пряди) из шести прядей по 37 проволок (всего 222 проволоки) с одним органическим сердечником по ГОСТ 3071-88 (табл. 2.2);

типа ЛК-РО (с линейным касанием проволок в прядях) из шести прядей по 36 проволок (всего 216 проволок) с одним органическим сердечником по ГОСТ 7668-80 (табл. 2.3);

типа ЛК-О (с линейным касанием проволок в прядях) из шести прядей по 19 проволок (всего 114 проволок) с одним органическим сердечником по ГОСТ 3077-80 (табл. 2.4, только для расчалок).

Таблица 2.1. Канаты типа ТЛК-О коиструкции $6\times37(1+6+15+15)+1$ о. с. (по ГОСТ 3079-80)

		Маркировочная груг	па, МПа (кгс/мм²)
Днаметр ка-	Ориентировочная	1568 (160)	1764 (180)
ната, мм	масса 1000 м сма-	Разрывное усилие кан	иата в целом, Н (кгс),
	занного каната, кг	не м	енее
11,5	468,0	62 600 (6390)	68 750 (7010)
13,5	662,5	88 650 (9050)	97 100 (9910)
15,5	851,5	113 500 (11 600)	124 000 (12 700)
17,0	1065,0	142 000 (14 500)	155 500 (15 900)
19,5	1350,0	180 000 (18 400)	197 000 (20 150)
21,5	1670,0	225 500 (22 750)	244 500 (24 950)
23,0	1930,0	258 000 (26 750)	283 000 (29 300)
25,0	2245,0	300 000 (30 650)	328 500 (33 550)
27,0	2650,0	354 500 (36 200)	388 500 (39 650)
29,0	3015,0	403 500 (41 200)	441 500 (45 100)
30,5	3405,0	455 500 (46 500)	499 000 (50 950)
33,0	3905,0	522 000 (53 300)	571 500 (58 350)
35,0	4435,0	590 000 (60 550)	650 000 (66 350)
39,0	5395,0	722 000 (73 700)	791 000 (80 750)
43,0	6675,0	893 000 (91 150)	980 000 (99 850)
47,0	7845,0	1 045 000 (107 000)	1 145 000 (117 000)

Примечание. Канаты, разрывное усилие которых указано справа от жирной линии, изготовляются из проволоки без покрытия.

Таблица 2.2. Қанаты типа ТҚ конструкции $6\times37(1+6+12+18)+1$ о. с. (по ГОСТ 3071-88)

		Маркировочная гру	ппа, МПа (кг/мм²)					
Диаметр ка-	Ориентировочная	1570 (160)	1770 (180)					
ната, мм	масса 1000 м сма- занного каната, кг	Разрывное усилие каната в целом, Н (кго не менее						
8,5 11,5 13,5 15,5 22,5 24,5 27,0 29,0	246 427 613 834 1705 2060 2455 2880	32 400 (3310) 56 350 (5750) 80 750 (8240) 109 500 (11 200) 224 000 (22 900) 271 000 (27 700) 323 500 (33 050) 379 500 (38 750)	36 500 (3720) 61 250 (6250) 87 800 (8960) 119 500 (12 200) 244 000 (24 900) 295 000 (30 150) 352 500 (36 000) 413 500 (42 200)					
33,5	3835	506 000 (51 650)	550 000 (56 100)					

		Маркировочная груг	ппа, МПа (кгс/мм²)					
Диаметр ка-	Ориентировочная	1570 (160)	1770 (180)					
ната, мм	масса 1000 м сма- занного каната, кг	Разрывное усилие каната в целом, H (кгс) не менее						
36,5 38,0 39,5	4360 4920 5515	575 500 (58 750) 649 000 (66 250) 728 000 (74 300)	626 500 (63 950) 707 000 (72 150) 792 000 (80 850)					
44,5 49,0	6805 8235	895 500 (91 400) 1 080 000 (110 500)	975 000 (99 500) 1 180 000 (120 500)					

 Π римечание. Канаты, усилие которых указано справа от жириой линии, изготовляются из проволоки без покрытия.

Таблица 2.3. Канаты типа ЛК-РО конструкции $6\times36(1+7+7/7+14)+1$ о. с. (по ГОСТ 7668-80)

		Маркировочная гру	ппа, МПа (кгс/мм²)
Диаметр ка-	Ориентировочная	1568 (160)	1764 (180)
вата, мм	масса 1000 м сма-	Разрывное усилие кан	ата в целом, Н (кгс),
	занного каната, кг	не м	неисе
9,7	383,5	49 850 (5090)	56 100 (5725)
11,5	513,0	66 750 (6815)	75 100 (7665)
13,5	696,5	90 650 (9255)	101 500 (10 400)
15,0	812,0	112 000 (11 450)	116 500 (12 900)
16,5	1045,0	135 500 (13 800)	150 000 (15 500)
18,0	1245,0	161 500 (16 500)	175 500 (17 950)
20,0	1520,0	197 500 (20 200)	215 000 (21 950)
22,0	1830,0	237 500 (24 250)	258 500 (26 400)
23,5	2130,0	277 000 (28 150)	304 000 (30 600)
25,5	2495,0	324 000 (33 100)	352 500 (36 000)
29,0	3215,0	417 500 (42 650)	454 500 (46 400)
31,0	3655,0	475 000 (48 500)	517 000 (52 800)
33,0	4155,0	540 500 (55 200)	588 000 (60 050)
34,5	4550,0	592 000 (60 450)	644 500 (65 800)
36,5	4965,0	646 000 (66 000)	703 500 (71 800)
39,5	6080	791 500 (80 840)	861 000 (87 760)

Примечание. Канаты, разрывное усилие которых указано справа от жирной линии, изготовляются из проволоки без покрытия.

Таблица 2.4. Канаты типа ЛК-О конструкции 6×19(1+9+9)+1 о. с. (по ГОСТ 3077-80)

		Маркировочная груп	па, МПа (кгс/мм²)
Диаметр ка-	Ориентировочная	1568 (160)	1764 (180)
ната, мм	масса 1000 м сма- заяного каната, кг		ата в целом, Н (кгс), менее
11,5	487,0	66 150 (6750)	72 450 (7390)
13,0	597,5	81 100 (8280)	88 700 (9070)
15,0	852,5	115 500 (11 800)	126 500 (12 950)
17,5	1155,0	156 000 (15 950)	171 500 (17 500)
19,5	1370,0	183 000 (18 950)	203 500 (20 800)
20,5	1551,0	210 500 (21 500)	230 500 (23 550)
22,0	1745,0	236 500 (24 150)	259 000 (26 450)
23,0	1950,0	264 500 (27 000)	289 500 (29 550)
25,5	2390,0	324 500 (33 150)	355 500 (36 300)
28,0	2880,0	391 000 (33 900)	428 000 (43 700)
30,5	3410,0	463 500 (47 300)	507 500 (51 800)
35,0	4610,0	626 500 (63 950)	686 000 (70 050)

Примечание. Канаты, разрывное усилие которых указано справа от жирной линии, изготовляются только из светлой проволоки.

К каждому стальному канату согласно техническим условиям пс ГОСТ 3241-80 заводом-изготовителем должен быть приложен сертификат, в котором указываются конструкции и результаты испытачий каната, в том числе и разрывное усилие. При отсутствии сертификата разрывное усилие каната определяется путем лабораторного испытания на разрыв отдельных проволок. Расчетное разрывное усилие каната в целом составляет 0,83 от суммарного разрывного усилия проволок.

Расчет канатов на прочность производится по формуле

$$P/S \geqslant k$$

где P — разрывное усилие каната, кгс; S — усилие на канат, кгс; k — коэффициент запаса прочности, для стальных канатов определяется по табл. 2.5. для пеньковых принимается не менее 8.

Износ каната определяется по внешнему виду и по количеству

обрывов отдельных проволок на длине одного шага свивки.

Даниые отбраковки в зависимости от запаса прочности канатов приведены в табл. 2.6. Если канат имеет поверхностный изиос или коррозию проволок, то при браковке каната количество обрывов проволок, приведенное в табл. 2.6, должно быть уменьшено путем умножения на коэффициент A (табл. 2.7).

Допускаемый днаметр ролика блока и барабана, огибаемых

стальным канатом, определяется по формуле

Таблица 2.5. Наименьший допускаемый коэффициент запаса прочности канатов

Назначение каната и характеристика грузоподъемной машины	Коэффициент запаса прочности
Грузовой и стреловой для грузоподъемной машины с ручным приводом Грузовой и стреловой для грузоподъемной машины с машинным приводом и режимом работы: легким средним Стреловой, являющийся растяжкой Расчалки (ванты)	4,0 5,0 5,5 3,5 3,5 9,0

Таблица 2.6. Число обрывов проволок на одном шаге свивки каната, при котором канат должен быть забракован

Kanara, n	on norope										
			Коиструкц	ия каната							
	6×19 и од нический ни	сердеч-	6×37 и од пический пи	сердеч-	6×61 и один орга инческий сердеч- ник						
Первоначальный коэффициент запаса проч-	Число обрывов проволок на длине одного шага свивки каната, при котором канат должен быть забракозан										
ности при установленном правилами соотношении D/d^*	Крестовая свивка	Односторонняя свнвка	Крестовая свивка	Односторонияя свивка	Крестовая свивка	Односторонняя свивка					
До 6 Свыше 6 Свыше 7	12 14 16	6 7 8	22 26 30	11 13 15	36 38 40	18 19 20					

^{*} D — диаметр барабана лебедки или ролика блока, мм; d — диаметр каната, мм.

Таблица 2.7. Нормы браковки каната в зависимости от поверхностного износа или коррозии

V	
Уменьшение диаметра проволок в результате поверхиостного износа или коррозни, %	Коэффициент A уменьшения допу- скаемого числа обрывов
10	0,85
15 20	$ \begin{array}{r} 0,75 \\ 0,70 \end{array} $
25	. 0,60
30	0,50
40 и более	Канат бракуется

Таблица 2.8. Наименьшие допустимые значения коэффициента e

Тип грузоподъемной машины	Привод механизма	Режим работы механизма	Зна- чение
	Ручной	— Легкий	18 20
Грузоподъемные машины всех типов, за исключением стреловых кранов, электроталей и лебедок	Машинный	Средний Тяжелый Весьма тяже- лый	25 30 35
Краны стреловые	Ручной		16
Механизмы подъема груза и стрел	Машинный	Легкий Средний Тяжелый Весьма тяже- лый	16 18 20 25
Лебедки для подъема гру- зов	Ручной Машинный		12 20
Электрические тали	_		22

Таблица 2.9. Пеньковые канаты бельные (по ГОСТ 483-75)

Ориентировочный	Разрывная нагрузка каната, кгс, не менее							
днаметр, мм	обыкновенного	повышенной прочности						
10	628	710						
10	740	840						
13	980	1110						
14	1200	1360						
16	1550	1750						
19	2080	2360						
22	2820	3190						
26	3520	3990						
29	4400	4980						

где D — диаметр барабана лебедки или ролика блока, измеряемый по средней линии навитого каната, мм; d — диаметр каната, мм; e — коэффицисит, зависящий от типа грузоподъемной машины и режима ее работы (табл. 2.8).

Для подъемов грузов вручную и в качестве оттяжек применяются пеньковые бельные капаты по ГОСТ 483-75 (табл. 2.9). Расчет пеньковых канатов производится аналогично расчету стальных ка-

натов.

2.2. СТРОПЫ

На монтажных и ремонтных рабогах используются стропы типа УСК1 (петлевые, рис. 2.1) и типа УСК2 (кольцевые, рис. 2.2). Стропы изготовляются из стальных канатов, свитых из тонкой проволоки с маркировочной группой 1568 (160) МПа (кгс/мм²). Характеристики стропов приведены в табл. 2.10 и 2.11.

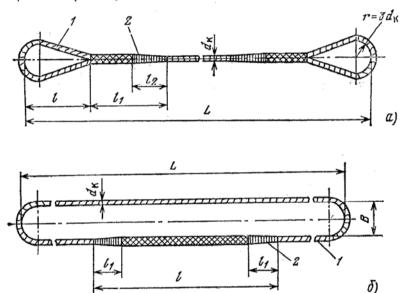
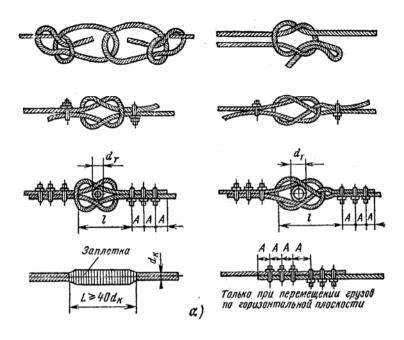



Рис. 2.1. Размеры стропов:

а — типа УСК1 (петлевого) исполнения 1 к табл. 2.10: 1 — канат грузового назначения марки 1, нераскручивающийся; 2 — место обмотки концов прядей каната проволокой:

б — типа УСК2 (кольцевого) исполнения 2 к табл. 2.11;
 1 — канат грузового иазначения марки 1, нераскручивающийся; 2 — место обмотки концов прядей проволокой

При изготовлении стропов разового использования, а также для сращивания и закрепления концов канатов (рис. 2.2, а и 2.2, б), при завязке узлов (табл. 2.12) применяются зажимы (рис. 2.3, табл. 2.13 и 2.14). Необходимое число зажимов и расстояние между ними А определяются по табл. 2.15.

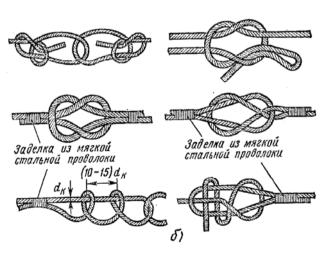


Рис. 2.2. Способы сращивания канатов: $a \sim$ стальных; 6 - пеньковых

Таблица 2.10. Размеры стронов типа УСК исполнения 1 (петлевых)

	етке, шт.	oicii		3,06									_		0,82	
	з ири за-			202		សេរ	വാ	າດ ທ		99	9	99	9		4.4	
	Проволока 1—0 для обмотки по ГОСТ 3282-74 Длина	развертки,	_	4600 4600	7500	7500	16 000	16 000	29 000	29 000	29 000	47 200	47 200	2)	1800	4100
	провол для об	l ₂ , MM	МП а (кгс/мм²)	 66	230	888	26	961	260	260	260	350	320	МПа (кгс/мм²)	88	
	-пев вни мм ,1 ил	тэп	МПа (0000	420	420	2002	200	800	850	38	000	1000		4	250
	нна петли ма	M '7	8(160)	320 320	400	400	100	400	400	200	200	8 66	200	68(160)	320	
	вникд вад м ,имаото	19O 9385	та 156	8,0 9,0	4 0 80,4	88	27.0 6.33	8,33	9,63	139,00	23,00	14,1	24,1	ппа 15	3,32	3,43
	ріляний іс Бузка при		чная груг	9180 0.00	3,125	3,125	3,125 6,25	6,25	12,23	27 E	2,21	15,625 15,625	15,625	чная гру	0,625	1.562
	гие кана- рывное кН (лс)	і Лси	3079-80. Маркировочная группа 1568(160)	113,5 (11,6)	180 (18,4)	180 (18,4)	300 (30,6)	300 (30, 6)	590 (30,0) 590 (60,0)	590 (60,5)	590 (60,5)	893 (91, 1)	893 (91,1)	3071-88. Маркировочная группа 1568(160)	₩.	80,7 (82)
	ускаемая рузка, тс			1,6	67 c	7 67 5 70	2, 70	0,0	0,0	0,0	0.0	2,0	12,5			1,25
·	на стро- м ,2	нтД Бп	FOCT	6/4	C) =	+ 9	10	9	<u> </u>	41	202	, <u>0</u>	20	rocr	2	4 01
	метр ка•		Канат по ГОСТ	5,5 5,5	19,5	19,5	25,55	25,0	0,0 0,0	S S	8.18 0.0	43,0	43,0	Канат по	α α ισ ι	
	Обозначение стропа		K	VCK1-1,6/2000	VCK1-2,5/2000	VCK1-2,5/4000 VCK1-2,5/6000		VCK1-5,0/6000	VCK1-5,0/10000 VCK1-10.0/6000	VCK1-10,0/10000	VCK1-10,0/15000 VCK1-10,0/20000	VCK1-12,5/10000	VCK1-12,5/2000	¥	yCK1-0,5/2000	VCK1-0,5/4000 VCK1-1,25/2000
4																

_	3,33	4,55	3,00	6,34	8,01	14,2	20,0	25,8	37,3	8,3	50,7	0,68	67,2	8,16	116	
	5	ເດ	ເດ	ເດ	ນ	ນ	9	9	9	9	9	9	9	9	9	
_	4100	4100	4600	4600	9400	9400	19 000	19 000	19 000	28 000	28 000	28 000	30 200	30 500	30 200	
	80	80	06	90	130	130	190	190	190	260	260	692	Ž	7 92	260	
	250	250	300	300	200	500	700	700	200	00	·	200	9	850	820	_
_	320	320	320	320	400	400	9	408	400	500		200	200	200	200	
\	7,43	7,43	3,60	09	9	8.86	6.94	8.94	12.94	9:50	9	23,20	9	18,65	23,65	
/	1,562	- -	0.2	2,0	4,0	4,0	7,875	7,875	7,875	10,0	10,0	10,0	12,5	12,5	12,5	
_	2	· 20	<u>~~</u>	13	6	6	<u>.</u>	<u></u>	<u>_</u>	(9	6)	9	<u>a</u>	<u> </u>	<u></u>	
	80,7 (8,	80,7 (8,2)	109 (11,2	109	224 22	224 (22	379 (38,	379 (38,	379 (38,	506 (51,	506 (51,	506 (51,	649 (66,	649 (66,2	649 (66,2)	
_		1,25 80.7 (8.3					_				8,0 506 (51,					
-		_					_						10,0			
-		_				6 3,2	4 6,3	6 8,3	10 6,3		0,8	8,0	10,0			

Канат по ГОСТ 7668-80. Маркировочная группа 1568(160) МПа (кгс/мм²)

,	1,75	2,78	3,80
_	4	4,	4
-	3200	3200	3200
0	œ	80	80
1	7200	250	250
		320	
(3,42	5,45	7,42
		1,25	
		66,7 (6,81)	
	1,0	1,0	1,0
	.71	4	9
:	c, 11	11,5	11,5
0000	K1-1,0/2000	VCK1-1,0/4000	K1-1,0/6000

Примечание. Изтотельние и испытание стропов производить согласно ГОСТ 25573-82*, ОСТ 24.090.48-79 и ОСТ 24.090.49-79.

Таблица 2.11., Размеры стропов типа УСК исполнения 2 (кольцевых)

														_		
	KL	Macca,		12,7	30,7	48,7	71,1	54,4	85,6	124,6	148.0	215,0 282,0		. 1	3,10	5,45
	-62 R	число плетке плетке		5	- L	151	0 10 	9+9	9+9	9 4	9+9	9+9	_	444	44	4+4
•	Проволока 1—0 для обмотки по ГОСТ 3282-74	Длина разверт- ки. мм	٤)	8400	16 000	16,000	16 000	29 000	29 000	29 000	50 200	50 200 50 200		1800	1800	4600
o Cit menominan z (nombacebaly)	Прово. для об ГОСТ	/, MM	1568(160) МПа (кгс/мм²)	08.5	190	190	96	260	260	200	320	320	KTC/MM ²	9	000	06
7 L	-66 MM (1)	Длиив ихтэгл	MIIa (800	800	1000	000	1100	1100	1100	1250	1250 1250	M Ma ()	300	200	200
	a crpo-	ни д иШ ,8. вп	(160)	200	38	200	200	250	250	220	250	250 250	8(160)	50	120	150
1	вки' и Гриня	ведидО ютолье		9,39	13,68	21,68	41,68	13,92	21,92	41,92	22,18	32, 18 42, 18	па 156	4.5	8 4 7 0	6,8
	иди вя эт ,нин	Нагруз испыта	очная груг	8,25 25,5	12,5	12,5 7,5	12 12 13 13 13 13 13 13 13 13 13 13 13 13 13	20,0	8,0	8,8	31,25	31,25	эчная груг	1.25	3,125	3,125
double adams	ветви	Разрые Кенате кН (тс	3079-80. Маркировочная группа	180 (18,4)	300 (30,6)	300 (30,6)	300 (30.6)	522 (53,3)	522 (53,3)	522 (03, 3)	893 (91, 15)	893 (91, 15) 893 (91, 15)	8. Маркировочная группа 1568(160) М.Па (кгс/мм ²	32.4 (3.31)	32,4 (3,31) 80,5 (8,24)	80,5 (8,24)
,	каемая эт ,ея	Донус Нагруз	T 3079-	0,0	10,0	0,0	0.0	16,0	0,91	0,6	22,0	25,0 5,0	3071-88.	1.0	2,5	2,5
	-oqro	аницД, ,Д вп	10 FOCT	40	9	5 F	202	9	0 1	202	é	20	rocr		40	4
	к, _{ми} 1b кs-	эменД b втвн	Канат по	19,55	85 60	18 H	3 K3	33,0	33,0	33,0	43,0	43,0 43,0	Канат по	8.5	8 13,55	13,5
	Обознацение серода			VCK2-5,0/4000	VCK2-10,0/6000	VCK2-10,0/10000	VCK2-10,0/15000	VCK2-16,0/6000	VCK2-16,0/10000	VCK2-16,0/15000	VCK2-28,0/10000	VCK2-28,0/15000 VCK2-28,0/20000	- Ka	VCK2-1.0/2000	yCK2-1,0/4000 yCK2-2,5/2000	VCK2-2,5/4000
j																

2,93 36,5 39,5 62,9 91,7 84,1 1122,4 1165,8 1109,0 1158,2	1,80 4,10 7,35 10,60 103,8 103,8 103,8 1116,3 112,3 152,8
+0000000000	44000000000000000000000000000000000000
4600 14 000 19 000 19 000 19 000 28 000 28 000 28 000 30 500 30 500 30 500	2800 2800 5200 5200 5200 14 000 16 000 16 000 26 000 26 000 26 000
260 260 260 260 260 260 260 260 260 260	(Krc/MM²) 80 80 90 90 190 190 190 190 260 260 260
800 800 1100 1100 1100 1100 1250 1250	МПа 323 320 320 600 600 800 800 1000 1100
150 200 200 200 200 200 200 200 200 200 2	1568(160) 4
29,441 13,884 21,884 21,92 31,92 31,92 31,92 32,14 41,92 41,92 41,92 41,92 41,92 41,92 41,92 41,92	4,64 4,64 8,64 5,040 13,040 13,040 13,040 13,040 21,40 21,6 41,6 41,6 21,81 31,81
23,125 15,625 115,625	gı
80,5 (8,24) 223 (22,9) 223 (22,9) 378 (38,7) 378 (38,7) 378 (38,7) 505 (51,6) 647 (66,2) 647 (66,2)	7668-80. Маркировочная 1,6 49,8 (5,09) 2,0 1,6 49,8 (5,09) 2,0 3,2 104 (11,4) 4,0 3,2 104 (11,4) 4,0 3,2 104 (11,4) 4,0 8,0 237 (24,2) 10,0 8,0 237 (24,2) 10,0 8,0 237 (24,2) 10,0 10,0 324 (33,1) 12,5 10,0 324 (33,1) 12,5 16,0 475 (48,5) 20,0 16,0 475 (48,5) 20,0 16,0 475 (48,5) 20,0
20024255552888 20024555558888 200255555555555555555555555555	
9409070707070	10 FOCT 20 20 20 20 20 20 20 20 20 20 20 20 20
	Канат по 9,7 15,0 15,0 15,0 15,0 15,0 15,0 15,0 15,0
CK2-2,5/6000 CYK2-6,3/4000 CYK2-6,3/10000 CYK2-12,5/10000 VCK2-12,5/10000 VCK2-12,5/15000 VCK2-16,0/10000 VCK2-16,0/10000 VCK2-16,0/10000 VCK1-20,0/10000 VCK1-20,0/10000	VCK2-1,6/2000 VCK2-3,6/4000 VCK2-3,2/2000 VCK2-3,2/6000 VCK2-8,0/4000 VCK2-8,0/4000 VCK2-8,0/10000 VCK2-10,0/10000 VCK2-10,0/10000 VCK2-16,0/10000 VCK2-16,0/10000 VCK2-16,0/10000

Примечание. Изготовление и испытание стронов производить согласно ГОСТ 25573-82, ОСТ 24.090.48-79 и ОСТ 24.090.49-79.

Таблица 2.12. Вязка концов и сращивание чалочных канатов

Тип узла и способ вязки	Наименование узла-	∖Назначение узл а
	Прямой	Для привязки кон-
	Брамштоковый	ца стального ка- ната к петле
	Беседочный	
	Двойной бе сед о ч- ный	Для образовання петли на конце ка- ната
	Штыковой	

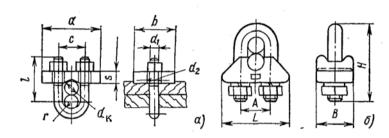


Рис. 2.3. Зажимы: а-к табл. 2.13; б-к табл. 2.14

Таблица 2.13. Основные размеры зажимов (рис. 2.3, а)

Диаметр ка- ната, мм	Размеры, мм								
	а	ь	с	l	s	d_1	d_2	r	Масса кг
8,5 11,5 13,5 18,0 20,0 24,5 28,5 32,5	45 55 70 90 95 110 120 135	30 30 40 50 50 60 60 80	21 26 33 40 44 50 58 65	45 45 55 75 75 90 90 110	12 12 14 16 16 18 18 20	10 12 16 20 20 22 24 28	14 14 18 22 22 22 24 26 30	11,5 13 16,5 20 22 25 29 33	0,3 0,3 0,6 1,1 1,7 2,0 3,5

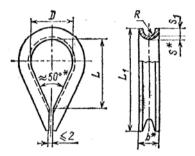
Таблица 2.14. Основные размеры зажимов по ОСТ 34-13-105-80 (рис. 2.3, б)

Обозначение зажима	_			I		
	Диаметр каната <i>d</i> , мм	A	В	L	Н	Масса, кг
10 13 16 19 22 25 28 32 36	Свыше 8 до 10 » 10 » 13 » 13 » 16 » 16 » 19 » 19 » 22 » 22 » 25 » 22 » 25 » 25 » 28 » 28 » 32 » 32 » 36	22 26 30 36 40 48 50 55 62	22 26 28 34 36 40 42 46 48	42 50 55 66 70 82 86 100 104	50 55 65 80 86 100 110 125 132	0,14 0,26 0,32 0,57 0,69 0,86 1,27 1,56 2,33

Таблица 2.15. Рекомендуемое число зажимов и их расположение

Диаметр каната,	11,5	13,5	18	22,5	24,5	27	28,5	35
мм Число зажимов, шт.	3 80	3	120	4	4 150	5 180	5 200	6 230
Расстояние между зажимами, мм	<i>8</i> 0	100	120	140	150	100	200	230

В некоторых случаях (для предохранения канатов от преждевременного износа) в петли стропов устанавливаются коуши сердцевидные (рис. 2.4, табл. 2.16).


Таблица 2.16. Основные размеры коушей по ГОСТ 2224-72 (рис. 2.4)

:		Размеры, мм							
Диаметр каната, мм	D	b*	L	L ₁	R	S*	S_1	са, к	
Or 10,2 до 12,5 Or 12,5 до 15,5 Or 15,5 до 18,5 Or 18,5 до 22,0 Oт 22,0 до 25,5 Or 25,5 до 30,0 Or 30,0 до 34,5 Or 34,5 до 39,5 Or 39,5 до 44,5 Or 44,5 до 49,5	40 45 56 63 75 85 95 105 120 130	20 24 28 32 38 42 50 56 64 70	65 74 92 104 125 142 158 175 202 217	100 115 144 160 190 225 255 280 325 350	7,0 9,0 10,0 12,0 14,0 16,0 19,0 22,0 24,0 27,0	3,0 3,0 4,0 4,0 5,0 5,0 6,0 8,0 8,0	9,0 11,0 13,0 16,0 19,0 21,0 24,0 27 0 30,0 33,0	0,18 0,20 0,40 0,55 0,97 1,32 1,85 2,30 4,00 4,70	

Расчет стропов и канатов для строповки грузов производится по формуле

$$\frac{P}{S} \geqslant k$$
.

где P — разрывное усилие каната, кгс; S — усилие на одну ветвь стропа, кгс; k — коэффициент запаса прочности.

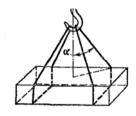


Рис. 2.4. Қоуш сердцевидный (по Рис. 2.5. ГОСТ 2224-72) стро

Рис. 2.5. Отклонение ветвей стропа от вертикали

При расчете стропов для подъема грузов с обвязкой или зацепкой крюками, кольцами или серьгами коэффициент запаса прочности принимают не менее 6.

Расчет стропов производится с учетом числа ветвей стропа и угла наклона их к вертикали (рис. 2.5). Усилие на одну ветвь стропа S, кгс, определяется по формуле

$$S = \frac{1}{\cos \alpha} \frac{Q}{n} = m \frac{Q}{n} ,$$

где Q — масса груза, кг; n — число ветвей стропа; m — размерный коэффициент, численно равный $1/\cos\alpha$; α — угол наклона ветви стропа к вертикали.

Значения коэффициента т для наиболее часто применяемых углов наклона стропов к вертикали приведены ниже:

Угол
$$\alpha$$
 0° 15° 30° 45° 60° Коэффициент m 1,0 1,03 1,15 1,42 2,0

Выбор днаметра стропа можно производить по табл. 2.17.

Строповка грузов. Строп следует укреплять только за надежные части груза. Способы крепления стропов на крюках — см. рис. 2.6. Все ветви стропа должны быть натянуты равномерно; равнодействующая от натяжения стропов должна проходить через центр тяжести груза. Ветви стропа ие должны соскальзывать вдоль груза в случае нарушения равновесия. Между стропом и острыми кромками груза должны быть подложены и надежно закреплены

Таблица 2.17. Грузоподъемность одной ветви стропа, т

Диаметр каната,	Уr	ол наклона стр	опа к вертикал	и
MM	0.	30°	45°	60°
i	(анат тила ТЛ	К-О (по ГО	CT 3079-80)	
13,5 15,5 19,5 21,5 23,0 25,0 29,0 30,5 33,0 35,0	1,50 1,90 3,06 3,78 4,40 5,10 6,85 7,75 8,85 10,0 15,18	1,30 1,65 2,65 3,28 3,85 4,40 5,95 6,70 7,70 8,65 13,20	1,05 1,30 2,15 2,65 3,10 3,55 4,80 5,45 6,25 7,02 10,65	0,75 0,95 1,50 1,88 2,20 2,55 3,40 3,87 4,45 50,0 7,59
	Канат типа Т	K (no FOCT	3071-88)	
13,5 15,5 22,5 24,5 29,0 33,5 36,5 38,0 44,5	1,35 1,85 3,80 4,60 6,45 8,60 9,77 11,00 15,20	1,10 1,60 3,30 4,00 5,60 7,48 8,50 9,60 13,20	0,96 1,30 2,65 3,25 4,53 6,00 6,86 7,75 10,70	0,68 0,93 1,90 2,30 3,20 4,30 4,86 5,50 7,60
Ka	нат типа ЛК	РО (по ГОС	T 7668-80)	
9,7 11,5 13,5 15,0 18,0 20,0 22,0 29,0 31,0 33,0	0,84 1,13 1,52 1,90 2,70 3,35 4,02 7,10 8,05 9,20	0,73 0,98 1,32 1,65 2,34 2,90 3,50 6,16 7,03 8,00	0,59 0,79 1,07 1,33 1,90 2,35 2,80 5,00 5,65 6,45	0,42 0,56 0,75 0,95 1,35 1,66 2,00 3,55 4,05 4,60

Примечание. Таблица составлена для стальных канатов с маркировочной группой 1568(160) МПа (кгс/мм²) при запасе прочности, равном 6

деревянные или металлические подкладки. Строп не должен иметь переломов, перекручиваний и петель.

Применение траверс предохраняет детали оборудования при строповке от дополнительных напряжений.

Для равномерного распределения нагрузки на отдельные ветви стропа рекомендуется применять длинный строп в несколько ветвей вместо отдельных коротких стропов. Строповка длинномерных гру-

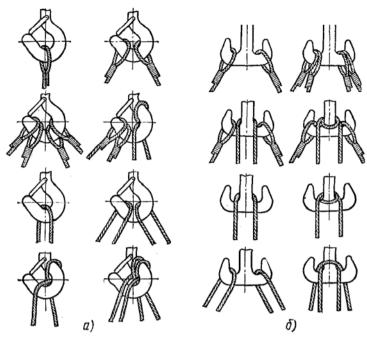
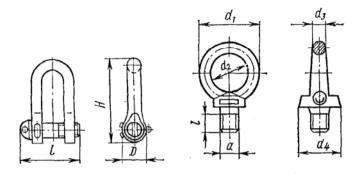


Рис. 2.6. Способы обвязки стропов: a— за однорогий крюк; δ — за двурогий крюк

зов (например, колонн и балок, прямых труб) должна производиться двумя стропами.


2.3. СКОБЫ ТАКЕЛАЖНЫЕ, РЫМ-БОЛТЫ, ТАЛРЕПЫ

Скобы такелажные (рис. 2.7, табл. 2.18) используются в качестве соединительных элементов при строповке грузов.

Таблица 2.18. Скобы типа СА (по ГОСТ 2476-72)*

Допускаемая нагрузка, тс	D, mm	l, mm	Н, мм	Масса, кг
2,5	50	104	131	1,38
5,0	75	147	184	4,25
8,0	90	185	235	7,99
12,5	110	216	288	14,28
16,0	120	233	320	17,65
20,0	130	268	360	26,59
25,0	140	289	400	34,47

^{*} Даны для справок, ГОСТ 2476-72 отменен.

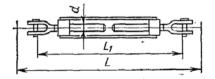

Гис. 2.7. Скоба такелажного типа СА

Рис. 2.8. Рым-болт

Таблица 2.19. Основные размеры рым-болтов (по ГОСТ 4751-73), мм

Условное обозна- чение резьбы	d_1	d ₂	d ₃	d _i	l ₁ не ме- нее	Масса, кг
M8	36	20	8	20	12	0,05
M10	45	25	10	25	15	0,12
M12	54	30	12	30	19	0,19
M16	63	35	14	36	25	0,31
M20	72	40	16	40	29	0,50
M24	90	50	20	50	35	0,87
M30	108	60	24	63	44	1,58
M36	126	70	28	75	51	2,43
M42	144	80	32	85	58	3,72
M48	162	90	36	95	68	5,54
M56	180	100	40	105	78	8,09
M64	198	110	44	115	93	10,95
M72×6	234	130	52	135	98	18,54
M80×6	270	150	60	160	108	25,40
M100×6	324	180	72	190	133	43,82

Рис. 2.9. Талреп сварной конструкции

Рым-болты (рис. 2.8, табл. 2.19, 2.20), устанавливаемые на узлах оборудовання, используются для крепления стропов. Грузоподъемность рым-болтов должна соответствовать указанной в табл. 2.20.

Талрепы (рис. 2.9, табл. 2.21) применяются для натяжения расчалок из стальных канатов.

Таблица 2.20. Грузоподъемность рым-болтов (по ГОСТ 4751-73)

	1 pysono	дъемность на 1 рым-С	олт, кг		
Условное		Направление стропа	. :		
обозначение резьбы	по вертикальной оси рым-болта	в плоскости кольца	с отклопением от плоскости кольца		
		150			
M8 M10 M12 M16 M20 M24 M30 M36 M42 M48 M56 M64 M72×6 M80×6 M100×6	120 200 300 550 850 1250 2000 3000 4000 5000 6200 7500 10 000 14 000 20 000	80 125 175 250 325 500 700 1000 1300 1650 2000 2500 3500 4500 6500	40 65 90 125 150 250 350 500 650 800 1000 1250 1750 2250 3250		

Примечание. При подъеме груза направление строна под углом от вертикальной оси рым-болта свыше 45° не допускается. Для установки в одной плоскости колец двух ввинченных до упора рым-болтов допускается применение плоских шайб толщиной: до 1 мм — под рым-болты с резьбой М8— М12; не более половины шага резьбы — под рым-болты с резьбой свыше М12.

2.4. БЛОКИ И ПОЛИСПАСТЫ

Блоки предназначены для подъема груза, изменення направления тягового конца каната и устройства полиспастных систем. Размеры блоков для стальных канатов не стандартизированы. В табл. 2.22 приведены основные данные блоков Каширского завода металлоконструкций (рис. 2.10). Основные данные блоков треста «Стальконструкция» (рис. 2.11) приведены в табл. 2.23. В качестве отводных блоков применяются блоки с откидной щекой (рис. 2.12). Отводные блоки выбираются в зависимости от усилия, действующего на них. Усилие, действующее на отводной блок, зависит от натяжения каната и угла, образуемого между направлением ниток

Габлица 2.21. Тапрепы открытые сварные типа ВВ (по ГОСТ 9690-71)*

		100	Размеры, м	М	i	
Допускаемая нагрузка; кгс	Днаметр каната	Резьба <i>d</i>	Ход талрепа	L	L ₁	1 16
2000	15,5	M20	185	603	418	3,6
2500	17,5	M22	185	629	444	4,2
3200	19,5	M24	212	719	507	6,0
4000	22,5	.M27	212	757	545	7,1
5000	26,0	М33	248	. 881	633	12,8
6300	2 8,5	M36	248	900	652	14,0
8000	31,0	M39	265	987	722	21.2
10 000	35,0	M42	265	1027	762	23,6
12 500	39,0	M48	290	1133	843	33,4

[•] Даны для справок, ГОСТ 9690-71 отменен.

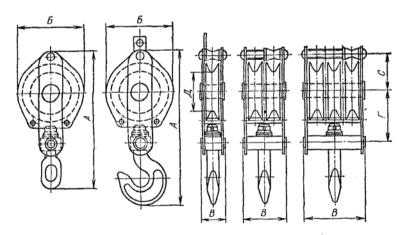


Рис. 2.10. Блоки конструкции Каширского завода металлоконструкций

каната, огнбающих блок (рис. 2.13). Усиление Q, действующее на отводной блок, всегда больше усилия на сбегающем конце каната S и определяется по формуле

$$Q = k_1 S$$
,

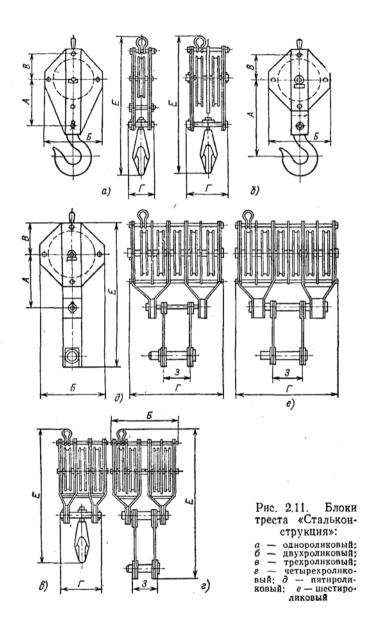
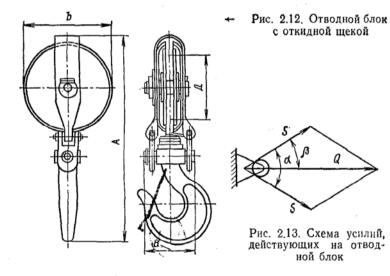



Таблица 2.22. Основные данные блоков Каширского завода металлоконструкций

	Do-	p	ρ.		Pa	азмер, м	М		Kr
Грузоподъ- емность, т	Число ликов,	Диаметр ролика, мм	Диаметр каната, мм	А	Б	В	Г	С	Macca,
1	1	110	11,0	327	146	79	87	110	3,88
3	1	140	15,5	506	195	103	113	155	14,6
3 5	1	180	19,5	641	245	144	140	200	31,6
	2	. 140	15,5	589	195	155	113	175	30,0
10	1	260	22,0	890	340	175	197	275	77,4
	2	180	19,5	800	245	180	140	235	70,7
20	3	350	17,5	1205	420	328	235	390	306
30	4	450	24	1450	504	530	300	480	613
50	6	450	24	1788	530	710	380	545	1000
5	li	180	17,5	580	245	118		_	20
(с откид- ной щет- кой)									

где k — коэффициент, зависящий от угла α :

Угол α .				0°	30°	45°	60°	90°
Коэффициент	k_1			2,0	1,94	1,84	1,73	1,41

При выборе отводного блока следует пользоваться данными, приведенными в табл. 2.24.

Таблица 2.23. Основные данные блоков треста «Стальконструкция»

Грузо-	Число	Диаметр	Диаметр			Разме	р, мм			Macca
подъем- ность, т	роди- ков, шт.	ролика, мм	каната, мм	A	Б	В	Γ	E	3	, , , КГ
1	1	150	8,7	165	240	132	80	505		10,
5	1.	300	19,5	290	420	205	130	890		46
10	1	400	24	380	560	320	165	1170	—	93,
10	2	300	19,5	320	440	250	210	1040	· ·	-88
15	2 2	400	24	415	560	310	235	1300	· —	175
20	2	400	24	430	560	320	245	1380		203
20	-3	400	24	530	560	320	320	1580	124	200
25	3	400	24	530	560	320	330	1550		242
30	4.	400	24	580	560	320	440	1636	158	335
40	5	400	24	560	560	320	505	1625	192	-423
50	6	. 400	24	545	560	320	585	1610	258	539

Таблица 2.24. Усилня на отводные блоки, кгс

Усилие действующее	Угол между канатами α									
на канат, S, кгс	. 00	30°	45°	60°	900					
1000	2000	1940	1840	1720	1400					
1500	3000	2910	2760	2580	2100					
2000	4000	3880	3680	3440	2800					
2500	- 00	4850	4600	4300	3500					
3000	6000	5820	5520	5160	4200					
3500	7000	6790	6440	6020	4900					
4000	8000	7760	7360	6880	5600					
4500	9000	8730	8280	7740	6300					
5000	10 000	9700	9200	8600	7000					

Таблица 2.25. Полиспасты Қаширского завода металлоконструкций

Грузоподъемность полиспастов, т	Диаметр роликов, мм	Число роликов в блоках, шт.	Длина в стянутом состоянии, мм (не менее)
3 5 10 20 30 50	140 180 260 350 450	1 2 1 3 4 6	1300 1690 2300 3200 3900 4570

Полиспасты. Длина полиспаста в стянутом состоянии H, \mathbf{M} (рис. 2.14), определяется по формуле

$$H == h_1 + h_2 + A,$$

где h_1 — строительная высота верхиего блока, м; h_2 — строительная высота нижнего блока, м; A — минимальное расстояние в свету между верхним и нижним блоками, принимаемое для полиспастов грузоподъемностью до 3.0 т — 0.5 м; 10 т — 0.7 м; 25 т — 0.8 м; 50 т — 1.0 м. Основные данные полиспастов из блоков Каширского завода металлоконструкций приведены в табл. 2.25.

Длину каната, м, для оснастки полиспаста можно определить по формуле

$$L = n(h + 3d) + l + 20$$
.

где n — число инток полиспаста; h — максимальная высота подъема груза, м; d — диаметр ролика блока, м; l — расстояние от точки подвешивания неподвижного блока до лебедки (при наличии отводных блоков по ломаной линии), м; 20 — запас длины каната, м.

В табл. 2.26 приведены данные для определения длины канатов полиспастов.

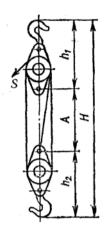


рис. 2.14. Схема полиспаста в стянутом состоянии

Таблица 2.26. Длина каната полиспастов

Высота подвески	Число инток, полиспаста, л.т.								
верхнего блока	1	. 2	3	4	5	6			
землей, м	Длина каната <i>L</i> , м								
5	40	46	52	57	62	68			
10	50	61	72	82	92	103			
15	60	76	92	107.	122	138			
20	70	91	112	132	152	173			
25	80	106	132	157	182	208			
30	90	121	152	182	212	243			
35	100	136	172	207	242	278			

Примечание. Длина сбегающего конца каната от верхнего блока полиспаста до лебедки принята равной высоте подвешивания верхнего блока плюс 20 м.

Усилие в сбегающем конце каната с учетом отводных блоков, кгс, определяется по формуле

$$S = \frac{Q}{\eta^n \eta_{ss}^{n_1}} ,$$

Таблица 2.27. Коэффициент полезного действия и натяжение тягового каната полиспастов

			Число рабочих инток, шт.	х инток, шт.		
	-	2	8	4	2	9
			Схема полиспаста	лиспаста		
Наименование	2	4		4	4	
•	10	₹ 4.	3	200	s a	3-
				-		
КПД полиспаста η	96.0	0,94	0,92	06,0	0,88	0,87
Усилие в сбегающем конусе тягового каната S,кгс	1,040	0,53 Q	0,36 Q	0,28 Q	0,23 Q	0,19 Q

где Q — масса поднимаемого груза, кг; n — число инток полиспаста, шт.; η_{6n} — КПД отводного блока, принимаемый 0,96; n_1 — число отводных блоков, шт.; η — КПД полисваста.

Значения КПД полиспастов для стальных канатов приведены в табл. 2.27. В этой же таблице значения S подсчитаны в зависимости от Q для полиспастов с различным числом ниток (без учета КПД отводных блоков).

Подъем груза полиспастами, как правило, должен производиться при вертикальном положенин полиспаста.

При необходимости оттягивания груза во время подъема уси-

лие, кгс, в оттяжке определяется по формулам: при горизоитальном направлении оттяжки (рис. 2.15, a)

 $S = Q \operatorname{tg} \alpha$

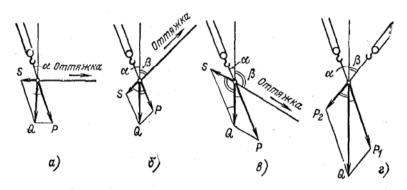


Рис. 2.15. Расчетная схема усилий на полиспаст и оттяжку

где S — усилие на оттяжку, кгс; Q — масса груза, кг; при наклонном направлении оттяжки (рис. 2.15, δ)

$$S = \frac{Q \sin \alpha}{\sin (\alpha + \beta)}.$$

Направление_оттяжки по рис. 2.15, в нежелательно, так как при этом возникает дополнительная нагрузка на полнепаст. В этом случае усилие в полиспасте, кгс,

$$P = \frac{Q \sin \beta}{\sin (\alpha + \beta)}.$$

При подъеме груза за один строп двумя полисплстами, расположенными под углом друг к другу (рис. $2.15, \epsilon$), усилия определяются по формулам

$$P_1 = \frac{Q \sin \beta}{\sin (\alpha + \beta)}$$
; $P_2 = \frac{Q \sin \alpha}{\sin (\alpha + \beta)}$,

где P_1 и P_2 — усилия на полиспасты, кгс.

Подъем громоздких грузов может производиться двумя полиспастами за несколько стропов. Усилия на полиспасты определяются в каждом отдельном случае по расчету в зависимости от углов наклона полиспастов и расположения стропов по отношению к центру тяжести груза.

2.5. ЛЕБЕДКИ, ТАЛИ И КОШКИ

Ручные и ручные рычажные лебедки (рис. 2.16 и 2.17, табл. 2.28 и 2.29) применяются в качестве вспомогательных механизмов для оттяжки и подтаскивания грузов, фиксации их в промежуточных положениях, поворота монтажных стрел и пр.

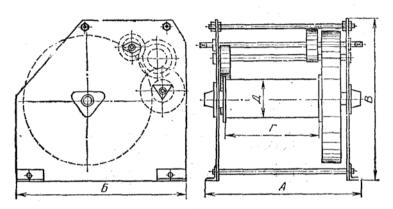


Рис. 2.16. Ручная лебедка

Таблица 2.28. Техническая характеристика лебедок с ручным приводом

	, é	£ #	6a-	e.) i d	Pas	меры,	М	
Марка лебедки	Тяговое усилие,	Диаметр барабана Д. мм	Длина рабана мм	Диаметр каната, мм	Канато- емкость.	A	Б	В	Macca,
ЛР-0,5	500	130	400	8,7	100	0,8	0,7	-	0,16
T-68	1000	180	500	11,0	150	0,9	0,8	-	0,29
ПР-1,5	1500	190	390	13,0	65	1,3	0,8	_	0,18
T-6 9	3000	2 50	350	15,0	150	1,1	1,2	0,9	0,57
T-102	5000	270	640	19,5	220	1 1	1,1	1,1	1,75
				'		İ			

Примечание, Заводы-изготовители — Орский завод строительных машин и Миллеровский завод подъемно-транспортного оборудования им. Гаврилова.

Таблица 2.29. Техническая характеристика ручных рычажных лебедок

Наименование	Тяговое усилие, кгс					
	3000	1500	750			
Подача каната за один ход рычага, мм	26-35	32	35			
Усилие рабочего на рычаге, кгс	45—70	35	25			
Длина рычага, ым	1200	1080	-			
Канат типа ТК 7×19 с металлическим сер- дечником (ГОСТ						
3067-74): днаметр, мм	16,5	12	7			
длина, м	15	20	20			
Разрывное усилие, кгс	20 4.0	8500	-			
Габаритные размеры,						
длина	726	634	500			
ширина	155	155	140			
высота	325	325	285			
Масса лебедки с ка- натом, кг	56,3	35	17			

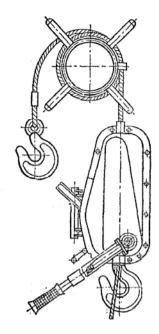


Рис. 2.17. Ручная рычажная лебедка

Электрические лебедки (рис. 2.18, табл. 2.30) используются в качестве грузоподъемного механизма при производстве монтажных работ вне зон действия кранов. Канатоемкость барабанов лебедок при замене диаметра каната определяется при помощи коэффициентов (табл. 2.31).

Тали ручные (рис. 2.19 и 2.20, табл. 2.32 и 2.33) применяются для подъема грузов на небольшую высоту. При необходимости сов-

Таблица 2.31. Коэффициенты для определения канатоемкости лебедок

15,5	17,5	22,5	24	29	30,5
1 1,23	0,8	0,4	_	_	_
1,95	1,45	1	0,71		_
	_	1,15	1 00	0,74	
			1,28	1,5	0,85
	1	1 0,8 1,23 1 1,95 1,45	15,5 17,5 22,5 1 0,8 0,4 1,23 1	1 0,8 0,4 — 1,23 1,95 1,45 1 0,71 — — 1,15 1 — — 1,28	15,5 17,5 22,5 24 29 1 0,8 0,4 — — — — — — — — — — — — — — — — — —

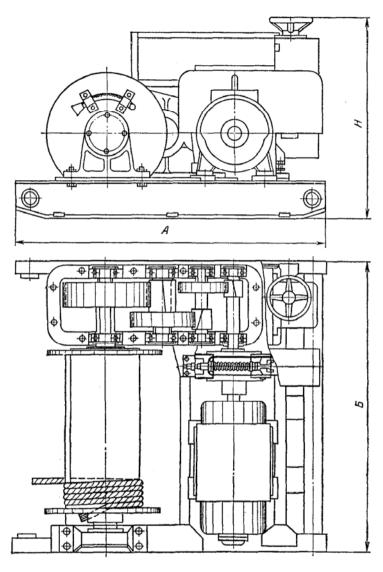


Рис. 2.18. Электрические лебедки грузоподъемностью 3-5 т

Таблица 2.30. Техническая характеристика электрических лебедок

							rac Lac	Габариты. м			
Марка лебедки	Тяговое усилие, тс	Скорость навивки, каната, м/жин	Диаметр бар абана, мм	Длина барабана, мм	Диаметр стального каната, мм	Канато- емкость, м	Длина А		Шири- Высога на Б	Мошность электро- двигате- ля, кВт	Macca, Kr
ЦКБ-ГСМ	12,5	7,6	750	1	33	800	2,9	3,3	1,8	20	5,5
ИЗ-587	7,5	7	200	. 1	28,5	350	2,2	1,6	1,3	10	2,2
Л-7502	7,5	3,1-4,0	1	1	56	130	1,6	1,5	1,4	ય	23
JC-5-30-900	z,	1,1; 1,5; 29,8	426	1	22	006	2,9	1,9	1,2	22	2,4
JC-5-30-450	ro	1,12; 1,5	426	1	22	450	1,8	1,2	1,2	22	1,9
MЭЛ-5-23*	ro Ca	14,1—20,6	370	800	24	259	1,7	1,55	1,22	16	1,74
M3JI-1,5-219**	1,5	16,5	319	009	12,5	212	1,12	1,16	0,65	ß	0,77
Q = 0.125	0,125	6,7-10,5	1	}	4,8	09	0,52	0,38	0,29	9,0	0,047
VJ-5M***	5	7,04	. [ı	21	120	1,27	1,0	1,0	ဗ	1,37
VJ-3M***	ಣ	11,11	1	1	16,5	120	1,27	1,0	1,0	က	0,89
VJ-1,5M***	1,5	8,6	!	1	11,5	80	1,19	1,19 0,84	1,0	ဂ	0,55

Завод-изготовитель: * Киевский экспериментальный механический завод треста «Электромеханизация»; ** Московский опыт-по-экспервментальный завод монтажной техники Союзэнергомонтажа; *** Волжское производственное объединение «Энерго-Ma™.

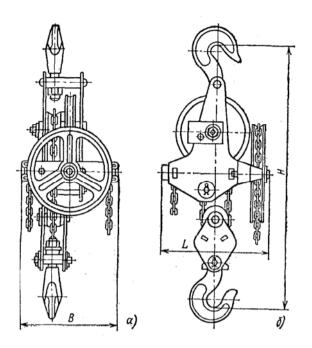


Рис. 2.19. Тали с червячной передачей по ТУ 24.09.701-88

Таблица 2.32. Тали с червячной передачей (по ТУ 24.09.701-88)

		1	Размеры, м	м		
Грузоподъ- емность, т		Н (в стя- нутом виде)	В	L.	Усилие тяговой цепи, кгс	Масса, кг
1 3,2 5 8 12,5	3 3 3 3	570 860 1060 1200 1900	240 360 460 570 700	270 340 440 500 670	35 65 75 75 75	32 75 145 270 410

мещения подъема и горизонтального перемещения грузов тали используются совместно с кошками (рис. 2.21 и 2.22, табл. 2.34, 2.35).

Тали электрические каиатные по ГОСТ 22584-77 с односкоростными механизмами подъема и передвижения (рис. 2.23, табл. 2.36, 2.37) предназначены для вертикального и горизонтального перемещений подвешенного иа крюке груза,

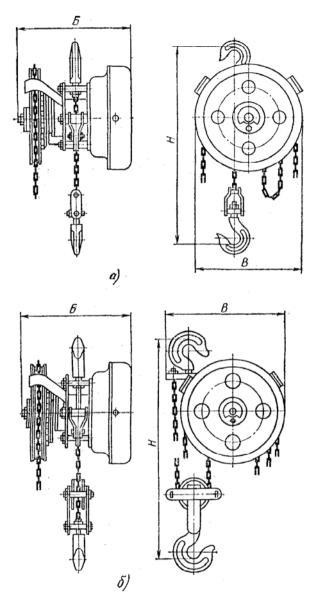
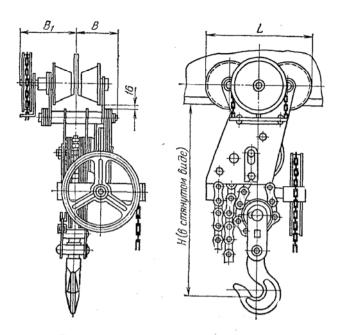



Рис. 2.20. Тали ручные шестеренные: a — тип A; δ — тип B

Рис, 2.21. Тали передвижные червячные (по ТУ 24.09.701-88)

Таблица 2.33. Тали ручные шестеренные (по ГОСТ 2799-75)

			Paan	иеры, м	М	1	1
Тиπ	Грузо- подъем- ность, т	Высота подъема груза, м	H (в стя- нутом виде)	Б	B	Усилие тяговой цепи, кгс	Macca, Kr
A	0,25 0,5 1,0 2,0	3; 6 9; 12	280 320 360 470	160 180 220 250	150 210 250 280	· 25 32 32 50	15 20 30 50
Б	3,2 5,0	3; 6; 12	680 800	280 280	330 350	50 50	70 125

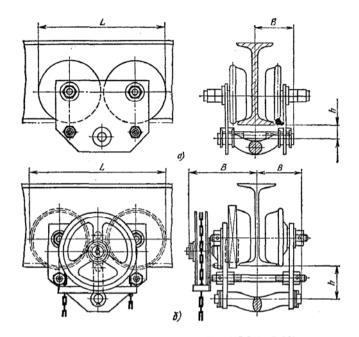


Рис. 2.22. Ручные кошки (по ГОСТ 47-63): a — без механизма передвижения (тип A); δ — с ручным механизмом передвижения (тип B)

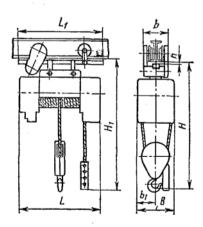


Рис. 2.23. Тали электрические канатные

Таблица 2.34. Тали с червячной передачей передвижные (по ТУ 24.09.701-88)

одъем. Т	подъе- за, м	лие на	е уси- цепях, гс	. P	азмер	ы, мм		тавровые ки ГОСТ	ус за- ления пу- и (не ме-	K
Грузоподъем иость, т	Высота 1 ма груз	подъе- ма	пере- дви- ження	Н	L	В	B ₁	Двутав балки] 8239-72	Радиус круглен ти, м (Macca,
1,0 3,2 5,0 8,0	3 3 3	35 65 75 75	10 18 20 25	460 700 860 1100	260 310 380 460	140 180 210 250	200 230 260 300	16—33 22—45 30—45 40—50	1,2 2,0 2,5 3,0	52 120 200 410

Таблица 2.35. Кошки с ручным приводом (по ГОСТ 47-63)

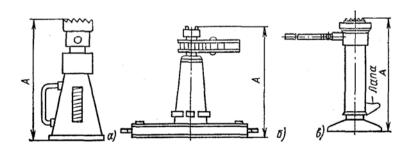
кошки	одъем- т	е уси- цепи зма пе-		Размеј	ры, м	м	вровые (по 8239-72)	: 3а- ния м	ΚΓ
Тип ко	Грузоподъем иость, т	Тяговое уси лне на цепи механнзма г редвиження кгс	h	L	В	B ₁	Двутавровые балки (по ГОСТ 8239-72	Раднус за кругления пути, м	Масса,
Α .	0,25 0,5 1,0		50 60 80	190 230 260	85 90 110	 - -	12, 14, 16 14, 16, 18 16, 18, 20	0,8 1,0 1,0	5 9 13
Б	1,0 2,0 3,2	10 15 18	80 100 120	260 270 310	110 120 130	180 200 220	16, 18, 20 20, 22, 24 22, 24, 27	1,0 1,6 2,0	20 30 40

Таблица 2.36. Тали электрические (по ГОСТ 22584-77). Исполнение 5

	ż	بف	1			P	азмер, мм			
	7 T	подъ	В	b	b ₁	Н	ì	менее	L	L_1
Марка тали	Грузоподъем- ность, т	Высота ема, м		не	более		Н,	<i>h</i> не ме	ве С	элее
ТЭ 025-511	0,25	6	210	570	110	550	5500		640	650
ТЭ 050-511		6					5700	20	560	600
TЭ 050-521	0,5	12	390	450	250	780	11 700	20	725	765
ТЭ 050-531		18					17 700		915	955

	-жә	1.p-				Pa	змер, мм			
	одъ	подъ-	В	b	b ₁	H		uee	L	L_{1}
Марка талн	Грузоподъем- ность, т	Высота ема, м		не С	олее		H_{1}	и не меиее	не бо	лее
TЭ 100-511		6					5900		655	695
ТЭ 100-521	1,0	12	330	325	160	855	11 900		870	920
ТЭ 100-531		18					17 900	00	1085	1135
TЭ 200-511		6					6000	20	800	800
TЭ 200-521	2,0	12	370	370	185	1150	12 000		1020	960
TЭ 200-531		18					18 000		. 1260	1200
ТЭ 320-511		6					6300		915	955
ТЭ 320-521	3,2	12	440	390	220	1310	12 300		1145	1185
ТЭ 320-531		18					18 300		1375	1415
TЭ 500-511		6					6500	20	1000	950
TЭ 500-521	5,0	12	500	400	250	1520	12 500		1200	1150
TƏ 500-531		18					18 500		1410	1360

2.6. ДОМКРАТЫ


Винтовые, реечные и гидравлические домкраты (рис. 2.24—2.26, табл. 2.38—2.40) применяются для вертикального и горизонтального перемещении тяжеловесного оборудования на небольшие расстояния: 200—400 мм.

Клиновые домкраты (табл. 2.41) используются для незначнтельных (до 15 мм) вертикальных перемещений оборудования при его выверке.

Таблица 2.37. Техническая характеристика электри

Грузо-	Высота подъ-	Скоро	сть, м/мин		ная мощность внгателя, кВт
подъем- ность, т	ема, м	подъема	передвижения	подъема	передвижения
0,25	6	8,0	20 или 32	0,6	0,08
0,5	6; 12; 18	$\frac{8,0}{8,0}$	20 или 32 20 или 32	$\frac{0,75}{0,75}$	0,12
. 1,0	6; 12; 18	8,0	20 или 32	1,7	0,18
2,0	6; 12; 18	8,0	20 или 32	3,0	0,4
3,2	6; 12; 18	8,0 8,0	20 или 32 20 или 32	5,0 5,0	0,6 0,6
5,0	6; 12; 18	8,0	20 или 32	7,5	1,2

^{*} Радиус указан для талей с высотой подъема 18 м.

Рнс. 2.24. Винтовые домкраты: a — без трещотки; b — с трещоткой; b — с няжней лапой

ческих талей (по ГОСТ 22584-77). Исполнение 5

	лей двутавро- ия подвесного ти	Нанменьший радну с	Расчетная нагрузка	Ma	еса тали	, Kr
		закруглення путн, м	на каток Н, кгс, не	высо	ота под	ьема
FOCT 19425-74	FOCT 8239-72	,,	более	6	12	18
12 м; 24 м	14—20a; 22; 24	0,5	115	85		
18 м; 24 м	16—20a; 22; 24	0,5 0,8	325	<u>96</u>	1111	<u>-</u> 126
18 m; 24 m; 30 m; 36 m	_	1,0; 1,5*	500	195	220	245
24 m; 30 m; 36 m		1,0; 1,5*	1000	290	325	360
80 м; 36 м; 45 м	_	1,5; 2,0*	1480 1480	470	515	560
30 м; 36 м; 45 м	_	2,0; 2,5*	2200	700	755	815

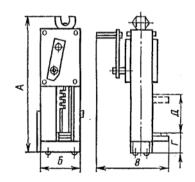


Рис 2.25. Реечный домкрат

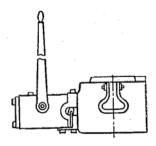


Рис. 2.26. Гидравлический домкрат

Таблица 2.38. Техническая характеристика внитовых домкратов

Тип и марка домкрата	Номер рисунка	Грузо- подъем- ность, т	Высота подъема, мм	Высота домкрата минималь- ная А, мм	Macca, Kr
Бутылочный мало- габаритный	_	2,5 3 5	35 45 70	130 180 240	2,8 4,3 7,1
БО-3 БО-5	Рис, 2,24, а	3 5	130 300	300 510	6,2 17
6T-5 6T-10 6T-15 6T-20	Рис. 2,24, 6	5 10 15 20	300 330 350 290	510 585 610 670	21 37 48 92
Винтовой с нижней лапой	Рис. 2.24, в	5	180	450	20

Таблица 2.39. Техническая характеристика реечных домкратов

	1		Pŧ	змеры,	MM		Ī
Марка домкрата	Грузо- подъем- ность, т	Высота подъема Д, мм	A	Б	В	Высота лапы Г.	Macca, Kr
ДР-3 ДР-5 ДРМ-5	3 5 5	400 350 400	710 675 700	150 226 200	332 350 376	60 70 67	27 35 29,7

Таблица 2.40. Техническая характеристика гидравлических домкратов

Тип и марка домкрата	Грузо- подъем- ность, т	Высо- та подъе- ма, мм	Макси- мальное давление, кгс/см²	Высота домкрата минималь- иая, мм	Macca Kr
Облегченные малогабаритные домкраты без привода (треста «Металлургмонтаж»)	5 10 25 50 75 100	75 75 75 100 100 155	400 400 400 400 400 400	160 185 210 279 293 368	3 5,8 18,7 36,6 68 78
Домкрат ГД-50	50	150	400	480	80

Тип и марка домкрата	Грузо- подъем- ность, т	Высо- та подъе- ма, мм	Макси- мальное давление, кгс/см²	Высота домкрата минималь- ная, мм	Macca,
Домкраты Ногинского механического завода:					
ДГ-50 ДГ-100 ДГ-200	50 100 200	100 155 155	410 392 408	220 310 330	70 175 320

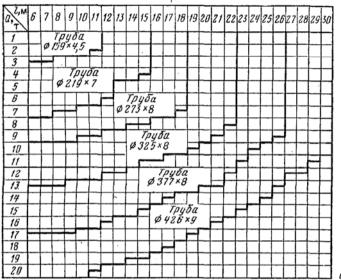
Таблица 2.41. Техническая характеристика клиновых домкратов

	Грузоподт	ьемиость, т
Наименование	. 5	10
Максимальная высота подъема груза, мм Габаритные размеры, мм:	15	10
длина ширина высота Масса, кг	285 80 55 5,5	380 170 53 13,5

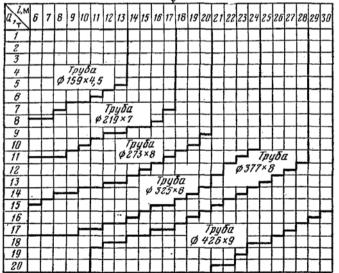
2.7. МАЧТЫ, СТРЕЛЫ, ЯКОРИ

Мачты. При отсутствии грузоподъемных механизмов и невозможности передачи монтажных нагрузок на строительные конструкции здания для подъема грузов применяются монтажные мачты. Матты изготавливаются из стальных труб, а при высоте их более 25 м решетчатыми из сортовой стали, состоящими из отдельных звеньев, скрепляемых болтами повышенной точности. Сечение трубы для мачты определяется по графику рис. 2.27 в зависимости от высоты и грузоподъемности мачты и проверяется расчетом. Расчетные данные для мачты из труб приведены в табл. 2.42.

Узлы и детали трубчатых мачт показаны на рис. 2.28, а размеры их в зависимости от диаметра мачты приведены в табл. 2.43.


Расчет стержия мачты

Усилие на завязку верхнего блока полиспаста без учета натяжения сбегающего конца каната (рис. 2.29), кгс:


$$P = (Q + q) k/\cos \alpha$$
,

где Q — наибольшая масса поднимаемого груза, кг; q — масса полиспаста, кг; k — коэффициент динамичиости нагрузки; α — угол между направлениями полиспаста и осью мачты.

S)

Натяжение сбегающего конца каната, кгс:

$$S = P/n\eta$$
.

где n — число ниток полиспаста; η — КПД полиспаста, определяемый по табл. 2.27. Полное усилие на завязку верхнего блока полиспаста, кгс:

$$P_n = \frac{P \sin \alpha}{\sin \gamma} ,$$

где угол у определяется из уравнения

$$tg\,\gamma = \frac{P\sin\alpha}{P\cos\alpha + S} \ .$$

Натяжение расчалки, кгс:

$$P_p = \frac{P_n \sin \gamma}{\sin \beta} ,$$

где β — угол между направлением расчалки и осью мачты.

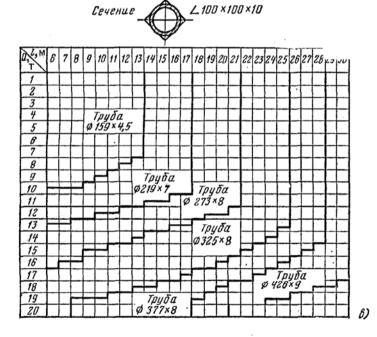


Рис. 2.27. Графики для выбора труб под мачты: а — труба без усиления; б — труба с усиленнем уголками 75×75×8 мм; в — труба с усилением уголками 100×100×10 мм

Таблица 2.42. Расчетные данные для мачт из труб

Сечение	Диаметр трубы $D_{\mathbf{H}}$ и толщина стенки, мм	Площадь сечения А, см²	Момент инерции Ј, см'	Момент сопро- тивления W, м³	Радиус инерции і, см	Масса 1 м тру- бы, кг
Труба	159×4,5 219×7 273×8 325×8 377×8 426×9	21,8 47,1 67,9 79,7 92,5 117,5	656 2560 5860 9980 15 620 24 600	82,5 242 430 613 830 1175	5,5 7,5 9 3 11,2 13,0 14,5	17,15 36,6 59,28 62,54 72,80 92,55
Труба, усилен- ная уголками 75×75×8	219×7 273×8 325×8 377×8 426×9	93,1 113,9 125,4 138,5 163,5	6430 11 572 17 980 26 100 37 800	418 637 843 1050 1430	8,4 10,1 12,0 13,7 15,2	73,2 89,6 98,66 108,72 128,9

Таблица 2.43. Размеры деталей трубчатых мачт (рис. 2.28)

Сторжень мачты	Труба (попе- речина)		Штырь		Башмак	Пли	та	Koc K	ын- а	Стык ма	чты
Дкаметр трубь $D_{\rm H}$ и толцина степки, мм	Дваметр d _н н толцина стенки б, мм	Длина трубы b, мы	р, мм Диаметр d₂, мм Длина b₂,мм		A каметр d и толщина стеики δ , мм	b_3 , MM	Толщина е, мм	Длина основания 1. мм	Толщина д., мм	Профиль угол- ков	Дляна уголков b., мм
159×4,5	159×5,5	360	20	360	219×7	250	10	65	8	63×6	500
219×7	159×5,5	420	24	420	273×8	300	10	70	8	63×6	600
273×8	159×5,5	470	30	470	3 2 5×8	360	12	75	10	75×8	800
325×8	159×5,5	525	30	525	377×8	420	12	80	10	75×8	1000
377×8	219×9	580	40	580	426×9	480	14	85	12	100×10	1200
426×9	219×9	630	40	630	470×10	550	14	90	12	100×10	1500

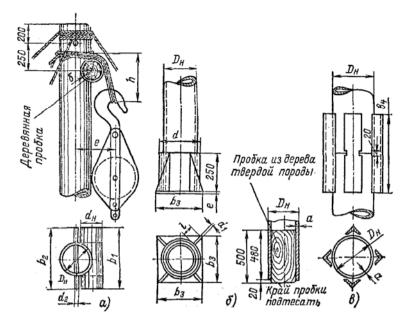


Рис. 2.28. Узлы и детали трубчатых мачт: a — верхини узел; b — опора; b — стык мачты

В некоторых случаях натяжение расчалки определьног по данным табл. 2.44.

Таблица 2.44. Натяжение расчалок мачт, кгс, при угле α, равном 10° (рис. 2.29)

Грузоподъемность	Угол наклона расчалки к горизонту в									
мачты, т	60°	45°	30°	20°						
10 15 20 25 30	3500 5250 7000 8750 10 500	2500 3750 5000 6250 7500	2000 3000 4000 5000 6000	1850 2775 3700 4625 5550						

Усилие вдоль мачты, кгс:

$$P_{\rm M} = P_{\rm II} \cos \gamma + P_{\rm P} \cos \beta$$
.

Изгибающий момент от внецентрального приложення нагрузки полиспаста

 $M = P_{\Pi} c \cos \gamma$,

где с - плечо от точки подвеса полиспаста до оси мачты, см.

Напряжение в мачте

$$\sigma = \frac{P_{\rm M}}{A\phi} + \frac{M}{W} \leqslant 1600 \text{ krc/cm}^2,$$

где A — площадь поперечного сечения, см²; W — нанменьший момент сопротивления опасного сечения мачты, см³; ϕ — коэффициент уменьшения допускаемого напряжения при продольном изгнбе, который надлежит принимать по табл. $\Pi 2.12$ в зависимости от гибкости мачты λ .

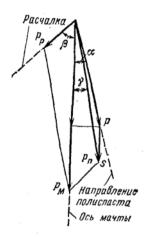


Рис. 2.29. Схема сил, действующих на мачту

Рис. 2.30. Схема сил, действующих на стрелу

Гибкость мачты определяется по формуле

$$\lambda = L/i$$
,

где L — расчетная высота мачты, см; l — наименьший раднус ннерции сечения мачты, см.

Стрелы устанавливаются на строительных конструкциях здания и применяются в качестве основного грузоподъемного механизма для монтажа оборудования при отсутствии грузоподъемных кранов. Вертикальные и горизонтальные нагрузки от стрел передаются на основные узлы здания.

Стрелы наготавливаются на бесшовных труб. Зона действия стрелы в горизонтальной плоскости — около 180°, в вертикальной плоскости — в пределах угла наклона стрелы к горизонту 30—80°.

Ниже приведена методика расчета стрелы.

Усилие на завязку верхнего блока грузового полиспаста без учета иатяжения сбегающего конца каната (рис. 2.30), кгс:

$$P = (Q + q) k,$$

где Q — масса поднимаемого груза, кг; q — масса оснастки, кг; k — коэффициент динамичности, равный 1,1.

Усилие на полиспаст наклона стрелы, кгс:

$$T = \frac{G\frac{l}{2}\cos\alpha + P(l\cos\alpha + a\sin\alpha + \frac{a}{n\eta})}{l\sin\beta + a\cos\beta},$$

где G — масса стрелы, кг; l — длина стрелы, см; α — угол наклона стрелы к горизонту; a — плечо от точки прикрепления полиспаста до оси стрелы, см; n — число ниток грузового полиспаста; η — КПД грузового полиспаста, определяемый по табл. 2.27; β = α + γ ; угол γ определяется по формуле

$$tg \gamma = \frac{h - l \sin \alpha - a \cos \alpha}{l \cos \alpha - a \sin \alpha}$$

Полное усилие вдоль осн стрелы, кгс:

$$S = P \sin \alpha + T \cos \beta + \frac{P}{nn}$$

Изгибающий момент, действующий на среднее сечение стрелы, кгс · см:

$$M = \frac{P}{n\eta} a + G \cos \alpha \frac{l}{8} + P \cos \alpha \frac{l}{2} + P \sin \alpha a - T \cos \beta a -$$
$$-T \sin \beta \frac{l}{2}.$$

Суммарное напряжение в среднем сеченин стрелы

$$\sigma = \frac{S}{A\phi} + \frac{G \sin \alpha}{A\phi} + \frac{M}{W} \leqslant 1600 \text{ kfc/cm}^2,$$

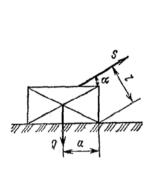
где A — площадь поперечного сечения трубы, см²; W — момент сопротивления (сечения) трубы, см³; ϕ — коэффициент уменьшения допускаемого напряжения, определяемый из табл. $\Pi 2.2$.

Наибольшая допустимая гнбкость $\lambda=180$. Допустимая гнбкость принята по учебному пособию «Примеры расчета такелажной оснастки». Под ред. Матвеева. — Л.: Стройиздат, 1979. Проверка напряження в стреле должна производиться для обоих крайних ее положений, т. е. при $\alpha=30^\circ$ и $\alpha=80^\circ$. При промежуточных положениях напряжения в стреле имеют меньшую величину.

Якор и применяются для крепления расчалок, лебедок, полиспастов при невозможности использовация для этой цели строительных конструкций. Ниже приведена методики расчета наиболее часто употребляемых видов якорей наземных бетонных и заглубленных (рис. 2.31, 2.32).

Масса груза, необходимого для загрузки рамы наземного бетонного якоря, в зависимости от усилия, прикладываемого к якорю, и направлении усилия (рис. 2.31) определяется по формуле

$$Q = k \left(\frac{S \cos \alpha}{\mu} + S \sin \alpha \right),$$


где Q — масса якоря, кг; S — усилие, прикладываемое к якорю, кгс; α — угол наклона тяги якоря к горизоиту; k — коэффициент запаса

прочности сдвигу якоря, принимаемый равным 1,5; μ — коэффициент трения бетона о грунг, принимаемый равным 0,15—0,7.

Проверку якоря на опрокидывание производят по формуле

$$Qa \gg R_1 Sl$$
,

где a — расстояние от центра тяжести якоря до точки опрокидывания, см; l — расстояние от места приложения усилия до точки опрокидывания, см; k_1 — коэффициент устойчивости, принимаемый равным 1,4.

 $\frac{b}{M_1} = \frac{b}{M_2} = \frac{b}{M_1} = \frac{b}$

Рис. 2.31. Схема сил, действующих на наземный якорь

Рис. 2.32. Схема сил, деис вующих иа заглубленным якорь

Для вертикальных сил, действующих на заглубленный якорь, должно соблюдаться условие (рис. 2.32):

$$Q+T \geqslant kN_2$$
.

Масса грунта, сопротивляющаяся вырыванию якоря, т, определяется по формуле

$$Q=\frac{b+b_1}{2}Hl\rho,$$

где ρ — плотность утрамбованного грунта, т/м³; для расчетов может приниматься равным 1,6 т/м³; b принимается из расчета угла откоса задней стенки котлована не более 30°; при этом снла трения бревна о стенку котлована при вырывании, тс:

$$T = fN_i$$
,

где f — коэффициент трення дерева по грунту, принимаемый равиым 0,5; k — коэффициент запаса для вертикальных сил, принимаемый $k\geqslant 3$: l — длина бревна, м; H — глубина заложения якоря, м.

Горизонтальная и вертикальная составляющие усилия в тяже якоря S, тс:

$$N_2 = S \sin \alpha$$
; $N_1 = S \cos \alpha$.

Для горизонтальных сил должно быть соблюдено условие $N_1 \ll ndl$ по.

где n — количество бревен, соприкасающихся со стенкой котлована; d — диаметр бревна, см; η — коэффициент уменьшения допускаемого давления на грунт вследствие неравномерного смятия; σ — допускаемое давление на грунт, кгс/см² (табл. 2.45).

Таблица 2.45. Допускаемое давление на грунт на глубине 2 м

Внд грунта	Допускаемое давление на грунт σ, МПа (кгс/см²)
Песок мелкий сухой плотный Песок мелкий влажный плотный Супесок сухой средней плотности Супесок влажный средней плотности Глина в пластическом состоянин	0,35 (3,5) 0,2—0,3 (2—3) 0,2 (2,0) 0,15 (1,5) 0,1—0,25 (1,0—2,5)

2.8. САМОХОДНЫЕ СТРЕЛОВЫЕ КРАНЫ

Характеристики применяемых гусеннчных, пневмоколесных, автомобильных и железнодорожных кранов приведены в табл. 2.46, 2.47, 2.48, 2.48а и рис. 2.33—2.67.

2.9. БАШЕННЫЕ КРАНЫ

Башенные краны грузоподъемностью до 75 т (рис. 2.68—2.70, табл. 2.49) применяются для монтажа строительных конструкций главных корпусов и тяжеловесного тепломеханического оборудования тепловых и автономных электростанций.

2.10. КОЗЛОВЫЕ И ПОЛУКОЗЛОВЫЕ КРАНЫ

Козловые краны (рис. 2.71—2.74, табл. 2.50) предназначены для работ на открытых складах и укрупнительно-сборочных площадках. Для монтажа и ремонта оборудования тепловых и атомных электростанций применяются краны спецнального назначения, различающиеся конструкцией и характеристиками.

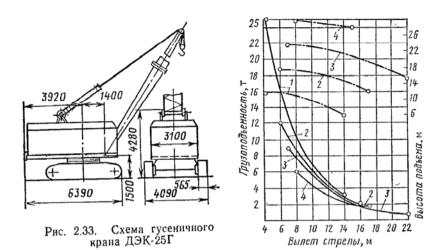
Полукозловые краны (табл. 2.50а) устанавливаются на перекрытии бункерно-деаэраторных отделений главного корпуса для механизации монтажа и ремонта оборудования пылеприготовления (сепараторов, циклонов и пылепроводов), регенеративных воздухоподогревателей, дымососов, золоуловителей и газовоздухопроводов.

2.11. МОСТОВЫЕ КРАНЫ

Мостовые краны электрические (рис. 2.75, табл. 2.51) устанавливаются в машинных залах, помещениях котельных и других зданиях н являются эксплуатационными, монтажными н ремонтными механизмами.

Таблица 2.46. Техническая характеристика гусеничных кранов

Марка крана	M	под ност	узо- (Ъем- ГЬ, Т, И ВЫ- ете елы	Вылет лы,		под; м, вы	сота ъема, при лете елы		формы,	ение на	
	Длина стрелы,	наименьшем	наибольшем	наименышнй	наибольший	наименьшем	нанбольшем	подъема груза, м/мин	вращения платформы об/мин	Удельное давление грунт, кгс/см2	Macca, T
ДЭК-25г	14 20 26 32	25 12 9 6	3,1 1,8 0,8 2	4,25 6 7 8	14 17 22 15	11,5 17,5 23,5 30	6 12 15,5 28	8,8	1,5	1,14	3,8
ДЭК∙251	14 19 22,75 24 27,75 32,75	25 14,7 13,5 12,5 10,9 7	4,3 2,8 1,8 1,8 1,2 1,2	4,75 5,4 6,1 6,3 7 7,9	14 18 21 22 25 20	13,5 18,5 22,2 23,2 26,9 31,8	7 9,6 12 12,9 14,5 26,7	1,10	0,3— 1,0	0,69	36,1
РДК-25 (стреловое исполнение с гуськом 5 м)	12,5 17,5 22,5 27,5 32,5	24,4 22,0 18,2 12,5 11,0	2,7 1,8 1,4	5,08	12,35 16,18 18,7 18,6 19,0	12 16,9 21,9 26,9 31,8	21,3	0,9; 7	0,44	0,86	42,6
ДЭК-50 (стреловое исполнение)	15 30 40	50 30 15	14,8 5,4 2,6	7,9 8 10	14 26 34	13,3 28,2 38,6	8,2 16,8 23,7	0,8	0,3	1,2	89
CKL-30	15 20 25	30 20 15	8,3 5,4 3,1	5 6 7,35	14 18 23	14,5 19,1 22,2	8,3 11,2 12,8	6	0,7	1,0	61,4
СҚГ~40	15 20 25 30	40,0 25,0 20,0 15,0	8,0 5,4 5,0 2,0	4,5 6,15 7,0 7,8	14 18 18 25	14,8 19,7 24,0 28,6	7,5 10,0 17,8 17,3	0,75	0,45	0,93	57,6
KC-8161 (CKT-100)	20 30 40	100 63 40	16,5 7,8 2,8	5-6 6,5-8 7,5-9	18 26 34	19,6 29,5 37,5	12,3 18,2 23	0.5 14	0,25	1,7	132
МКГ-100 (стреловое исполне- ние)	21 31 41	100 63 40	9 7 4,2	4,6—6,5 5—8,5 5,5—11	22,2 27,8 30,8	20 30 40	7 17 28	0,5-3	0,5	1,1	131
МКГ-100 (башенное всполне- ние)	31 41	40 40	28,8 28,2	8-14 8,5-13	18 18	45 55	32 42	0,0 -0	3,0	1,	


Таблица 2.47. Техническая характеристика пневмоколесных кранов

	Abi, M			темнос			лет елы,		сота ьема,	Скор	ость	
Марка крана		на оп		м без опор		м, прн вылете стрелы		rpysa,	плат- мин			
	Длина стрелы	наимень- шем	наиболь- шем	н аимень- илем	нанболь- шем	наименьший	наибольший	наимеиь- шем	нанболь- шем	подъема гр м/мии	вращения пла формы, об/мин	Масса, т
КС-4361 (К-161) без гуська	10 15 20 25	16 9 5,25 4	3 2 1,1 0,3	9 5,5 3,15 2,25	2,3 1,1 0,75 0,4	3,75 5 6,5 7,5	10 13,5 17 23	8,8 13,5 18,3 22,8	3,7 7,8 11,4 11,4	0-10	0,52,8	23,7
KC-5361 (K-255)	15 20 25	25 17 12	4 1,85 2	10 6,5 6	2 1 0,6	4,5 5,5 6,5	13.2 18 18,5	14 18 23	6.4 10,2 15,2	1÷7,5	0,3 <u>—</u> 1,5	32,9
KC-5363 (K-255A)	15 20 25 30	25 16,2 11,5 8	3,5 2,1 0,8 0,5	14 8 5,5 3,5	2 1,2 0,3	4,5 5,5 6,5 7,5	13,8 18 22,1 26,3	14 19,2 23,5 28,9	8 10,25 13 15,6	0,3—6 1,5—11	0,1 <u>-</u> i,6	33,
Прим	те ч	ание	. В	скобказ	к пан	ы ст			начения	я краноі	3.	,

Примечание. В скобках даны старые обозначения кранов.

Таблица 2.48. Техническая характеристика автомобильных кранов

						P, 0						
	2		зопод при стр				лет елы, м	подъ	сота ема, прн	Ској	ость	
Марка крана	стрелы,		порах	-	опор	ыший	ышкй	выл	елы	a rpysa,	ия плат- об/мин	H
	Длина	иаимень- шем	наиболь- шем	наимень шем	наиболь- шем	наименыший	наибольший	нанмень шем	наиболь- шем	подъема м/мин	вращения формы, об	Macca,
КС-2561Д	8,0 12,0	6.3 3,7	1,9 0,9	1,0	0,09	3,3 4,1	7,0	8,0 12,0	5,5 7,0	1,2— 10,5	0,3-	8,9
KC-3562A	10 18	10 3	1,6 0,5	2	0.4	4 6,75	10 17,7	10 17	5 7,5	0,2-	0,1-	14,
CMK-10	10 16	10.0 5,0	2,0 0,6	=	-	4,0 4,0	9,5 16,0	10,5 16,5	6,0 5,5	3,5— 10	1-	14,
КС-4561 (К-162)	10 14 18 22	16,0 12,0 8,15 5,5	2.8 1.5 1.2 1.14	4,4 3,0 2,2	1,0 0,43 0,24	3,9 4,2 5,0 6,0	10,0 13,0 14,0 14,0	10,5 14,5 18,5 22,4	4,7 7,7 13,0 18,5	1,3— 15,2	0,5—	22,5
KC-5473	10 15 20 24	25,0 16,0 9,5 7,0	7,0 3,0 1,4 0,6	5,0	1,0	3,2 3,5 4,2 5,4	8,0 12,0 18,0 20,0	10,0 14,2 19,3 22,6	4,2 7,2 5,4 11,4	6,0	0,2—	28,
KC-6471	11,0 15,0 20,0 27,0	40,0 28,0 18,6 10,0	10,0 5,8 3,8 0,5	10,0 8,0 5,6	1,8 1,0 0,8	3,5 3,5 4,5 6,0	9,0 11,5 14,0 22,0	10,6 14,5 20,0 26,5	5,2 8,0 7,0 14,8	_	-	-

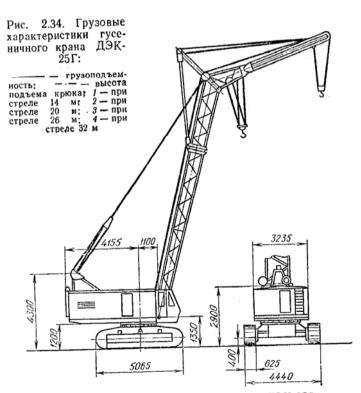
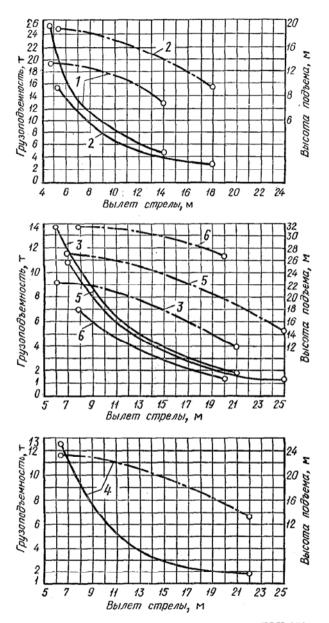



Рис. 2.35. Схема гусеничного крана ДЭК-251

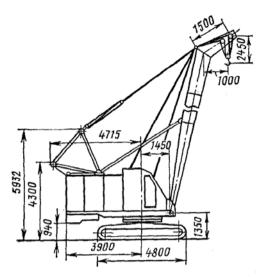


Рис. 2.37. Схема гусеничного крана РДК-25: ширина по гусеницам 3225 мм; ширина крана 3150 мм

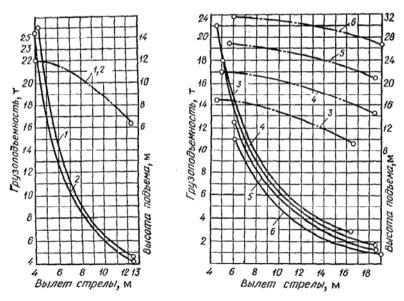


Рис. 2.38. Грузовые характернстики крана РДК-25:

— грузоподъемность; — — высота подъема крюка; I — при стреле 12,5 м; 2 — при стреле 12,5 м с жестким гуськом; 3 — при стреле 17,5 м с жестким гуськом; 4 — при стреле 22,5 м с жестким гуськом; 5 — при стреле 27,5 м с жестким гуськом 5 м; 6 — при стреле 32,5 м с жестким гуськом 5 м

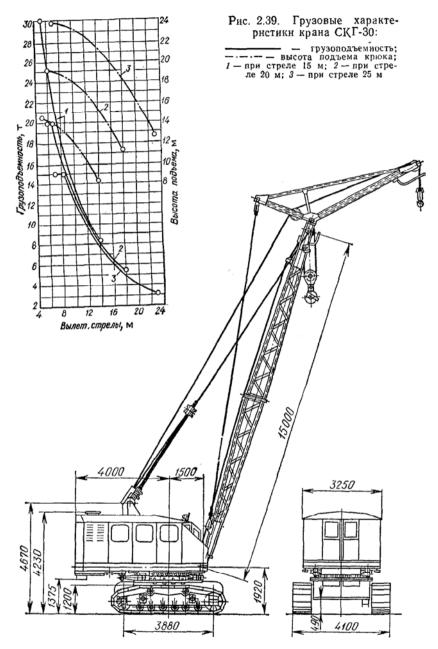
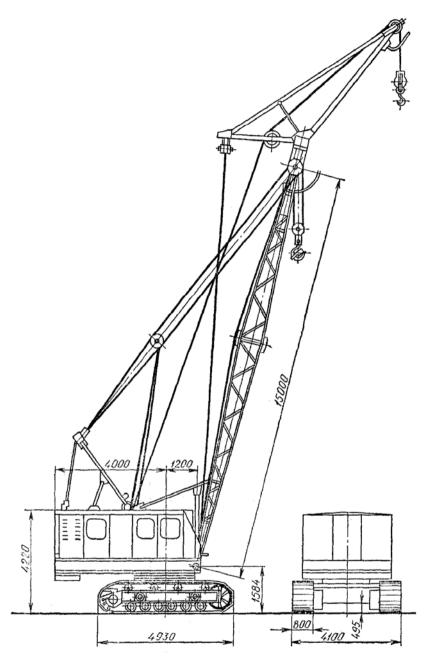
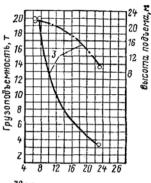
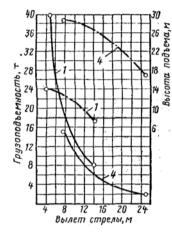
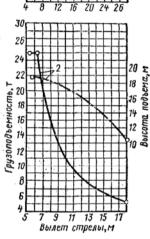
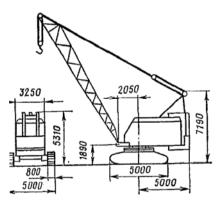


Рис. 2.40. Схема гусеничного крана СКГ-30


Рис. 2.41. Схема гусеничного крана СКГ-40


Рис. 2.42. Грузовые характеристики крана СКГ-40:

— грузоподъемность; — высота подъема крюка; 1— при стреле 15 м; 2— при стреле 20 м; 3— при стреле 25 м; 4— при стреле 25 м; 4— при стреле 30 м (при оборудовании стрел клювом длиной 5 м грузоподъемность основного крюка снижается на всех вылетах на 1 т)

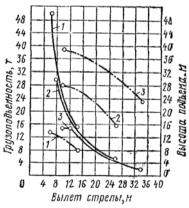


Рис. 2.43. Схема гусеничного крана ДЭК-50

Рис. 2.44. Грузовые характеристики крана ДЭК-50:

— грузоподъемиость; высота подъема крюка; 1— при стреле 15 м; 2— при стреле 30 м; 3— при стреле 40 м

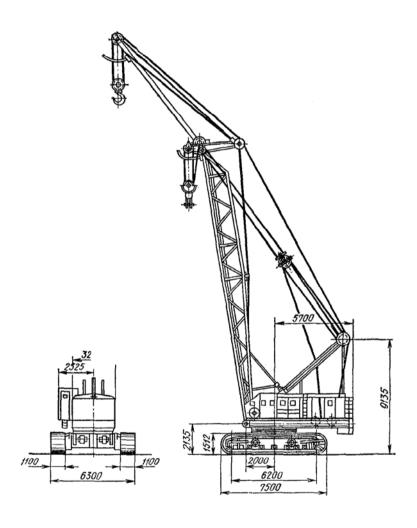


Рис. 2.45. Схема гусеничного крана КС-8161 (СКГ-100) в стреловом исполнении

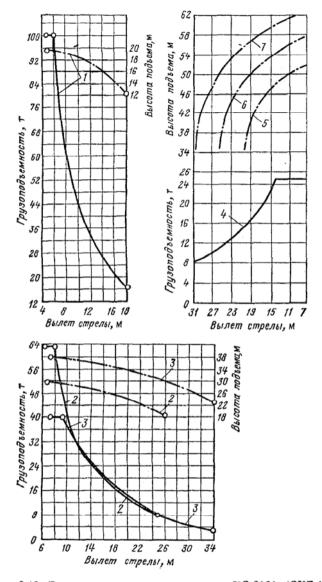


Рис. 2.46. Грузовые характеристики крана КС-8161 (СКГ-100):
— грузоподъемность; — — высота подъема крюка; *I* — при стреле 20 м; *2* — при стреле 30 м; *3* — при стреле 40 м; *4* — при стреле 35 м башенно-стрелового оборудования; *5*, *6*, *7* — при клювах соответственно 19, 24 и 29 м

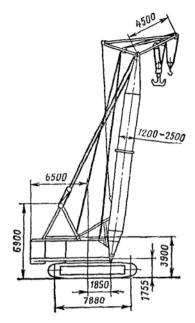


Рис. 2.47. Схема гусеничлого крана МКГ-100:

нирина гусеничного хода 7999 мм; ширина гусениц 1250 мм; ширина кабины 3215 мм

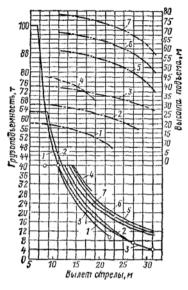


Рис. 2.48. Грузовые характери стики крана МГК-100:

грузоподъемность; - высота подъема крю-

ровом гуське 30 м

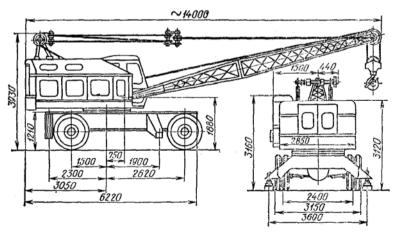
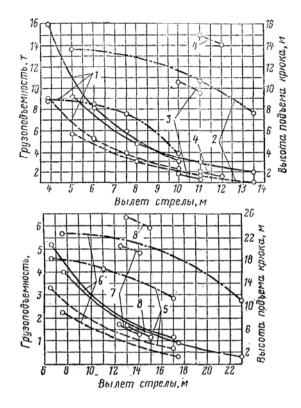



Рис. 2.49. Схема пневмоколесного крана КС-4361 (К-161)

Рис. 2.50. Грузовые характеристики крана КС-4361 (K-161):

Рис. 2.51. Схема пневмоколесного крана КС-5361 (К-255)

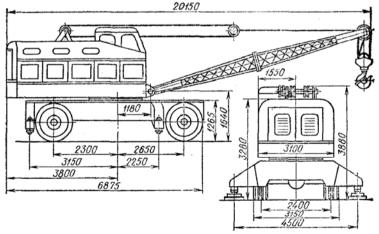
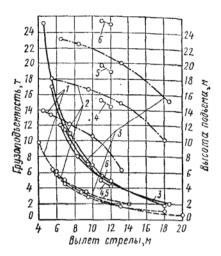



Рис. 2.52. Грузовые характеристики крана КС-5361 (K-155):

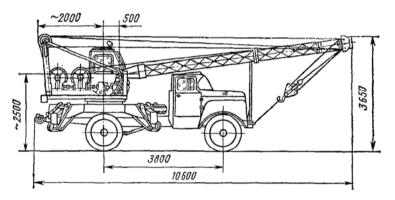
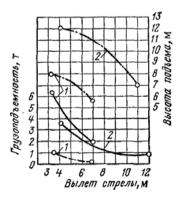



Рис. 2.53. Схема автомобильного крана ҚС-2561-Д

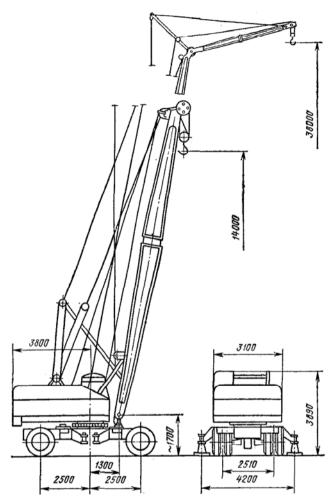
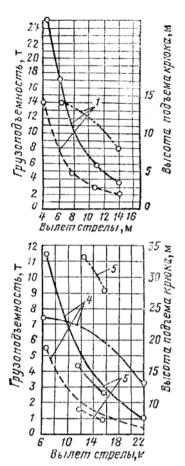
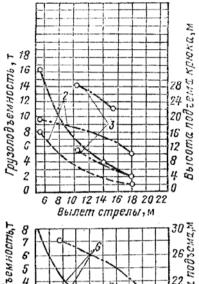




Рис. 2.55. Схема пневмоколесного крана КС-5363 (К-255А)

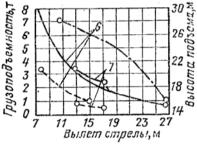


Рис. 2.56. Грузовые характеристики крана КС-5363 (K-255A):

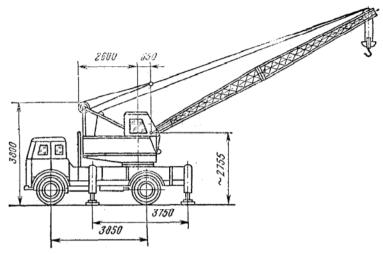
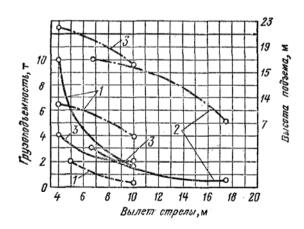



Рис. 2.57. Схема автомобильного крана КС-3562А

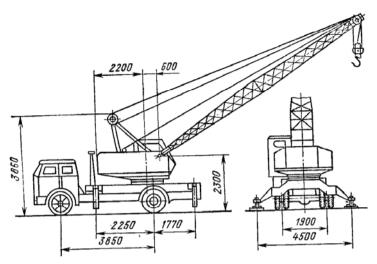
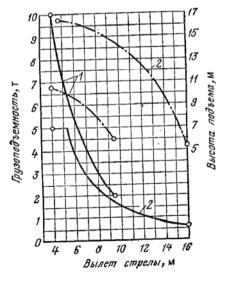



Рис. 2.59. Схема автомобильного крана СМК-10

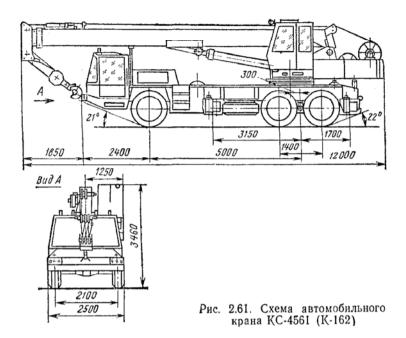
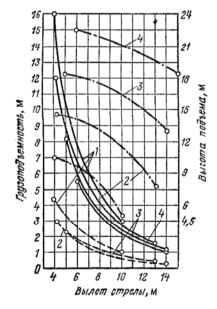
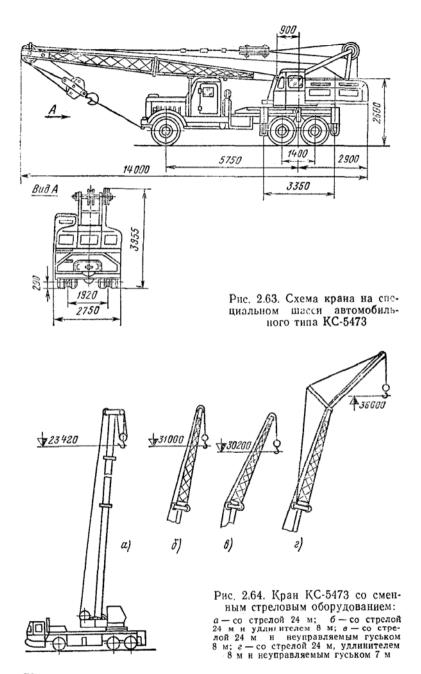




Рис. 2.62. Грузовые характеристики крана КС-4561 (К-162)
— на выносных опорах; — 683 выносных опор; полъема крюка; 1 — при стреле 10 м; 2 — при стреле 14 м; 3 — при стреле 18 м; 4 — при стреле 22 м

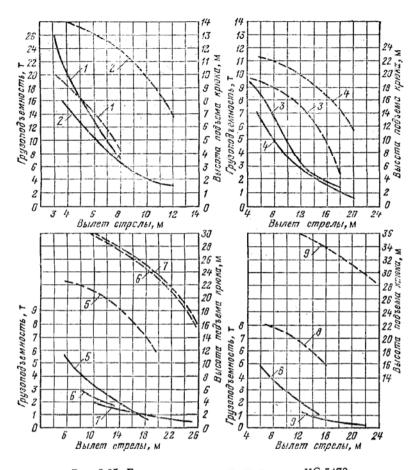


Рис. 2.65. Грузовые характеристики крана КС-5473:

РИС. 2.00. 1 рузовые характеристики крана χ C-3470.

— грузоподъемность; — — — высота подъема на выносных опорах; 1—при стреле 10 м; 2— при стреле 15 м; 3— при стреле 20 м; 4— при стреле 24 м; 5— при стреле 24 м с удливителем 8 м (α =0°) или пеуправляемым гуськом 8 м (α =15°), главный подъем; 6— при стреле 24 м с удлинителем 8 м (α =0°), всп. могательный подъем; 7— при стреле 24 м с неуправляемым гуськом 8 м (α =15°), вспологательный подъем; 8— при стреле 24 м с удлинителем 8 м (α =0°) н неуправляемым гуськом 7 м (α =30°), главный подъем; 9— при стреле 24 м с удлинителем 8 м (α =0°) н неуправляемым гуськом 7 м (α =30°), вспомогательный подъем

2100 2500

Рис. 2.67. Грузовые характеристики крана КС-6471:

крана (С-04/1;
— грузоподъемность; — — — при стреле 11 м на опорах; 2 — при стреле 11 м без выносных опор; 3 — при стреле 15 м на опорах; 4 — при стреле 15 м без выносных опор; 5 — при стреле 20 м на опорах; 6 — при стреле 20 м без выносных опор; 7 — при стреле 27 м на опорах; 7 — при стреле 27 м на опорах

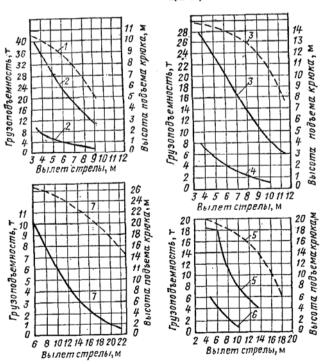
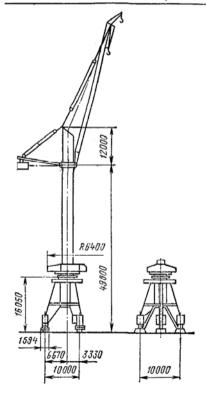



Таблица 2.48а. Краны стреловые на железнодорожном ходу

		Марка	крана	
Наименование	CK-30	CK-25	MK-20	КДЭ-161
Грузоподъемность при дли-				
не стрелы, т:				
наименьшей	30	25	20	15
наибольшей	9,5	9	5	2,9
Длина стрелы, м	15	15	40	14-18
Вылет стрелы, м:				
наименьший	5	6	12	4-4,5
наибольший	14	13	30	13,5
Высота подъема крюка при				
вылете стрелы, м:			- .	
наименьшем	14,5	15,3	54	17,8
наибольшем	8,4	10,6	40	6
Скорость, м/мин:	6.0	7,3	9,2	
подъема груза	6,0	1,3	9,2	_
перемещения по гори- зонтали	3,0	2.3	8,0	10,4
Масса крана, т	71	2,3 72	114	49,1
a account passes, 4	}			-3,1
	ı	1	1	I

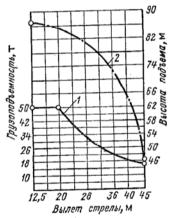
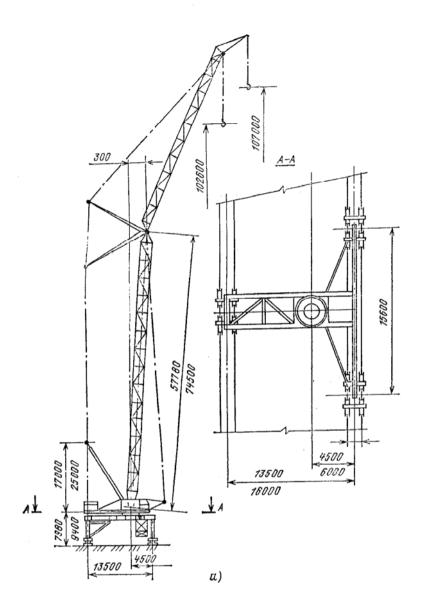
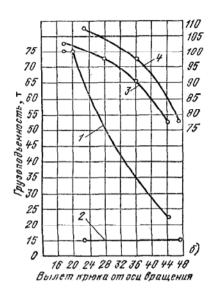




Рис. 2.69. График грузоподъемности и высоты подъема крана БК-1000: 1 — грузоподъемность; 2 высота подъема

Рис. 2.68. Схема башенного крана БК-1000

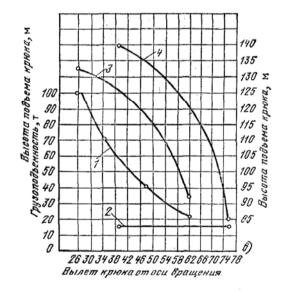


Рис. 2.70. Краиы башенные типа СКР:

a— схема кранов СКР-2200; δ — грузовые характеристнки крана СКР-2200; I— грузоподъемность главного крюка; 2— грузоподъемность вспомогательного крюка; δ — высота подъема главного крюка; δ — высота подъема вспомогательного крюка; δ — грузовые характеристнки крана СКР-3500; I— грузоподъемность главного крюка; δ — грузоподъемность вспомогательного крюка; δ — высота подъема вспомогательного крюка; δ — высота подъема вспомогательного крюка; δ — высота подъема вспомогательного крюка

Таблица 2.49. Техническая характеристика башенных кранов

	т ,вээвМ	259 393 393 390 500 650
м чено	прина ко	4.0 5.0 6.0 10.0 10.0 13.5
Мощность	электро- двигате- лей, кВт	33 38 58 58 58 58 58 58 198 198
Скорость	поворота стрелы крана, об/мин	0.6 0.6 0.5 0.2 0.19 0.2/0.08
Ској	подъема груза, м/мин	15-30 7: 15 13: 15 13:-10,7 0.8-3,6 0,4 5,3
Высота подъема, м, пря вылете стрелы	наиболь- шем	26 28 28 23,7 47 52 77,3
Высота по	нанмень-	38 45 45 60 88 91 102.4
Вылет стрелы, м	нан.олъ-	28 28 28 28 28 28 28 28 28 28 28 28 28 2
Вылет с	наямень- шнй	10 10 10 13 13 18 18 26
юдъемность, ри вылете стрелы	нанболь- шем	22 22 22 22 22 3
Грузоподъемность, т, при вылете стрелы	наименъ- шем	5 8 8 8 8 50 75 75 75
	Марка крана	MCK-5-20 MCK-8-20 MCK-10-20 KE-160,2 EK-1400 EK-1425 CKP-2200

Таблица 2.50. Техническая характеристика козловых кранов

						ð	Скорость, м/ми	INH .	Мощность	
Марка крана	Грузо- подъем- ность, т	Пролет крана, м	Вылет консолей, м	Высота подъема крюка, м	База крана, м	п одъем а груза	передви- жения тележки	передви- жения крана	электро- дангате- лей, кВт	Macca,
K-2 K-20-32 K-30-32 KCK-39-42A KC-56-42	ଅନ୍ତନ୍ତ	£2332 42333	2—3,5 ———————————————————————————————————	5,28 10,5 18,0 14,5	3,5 7,0 6,9 12,0 9,0	6,15 8,6 4,85 1,45 3,2	20 22 23 23 5,5 5,5	524888	4.0 32 4.9 77,5	2,89 32,2 46,5 97,5

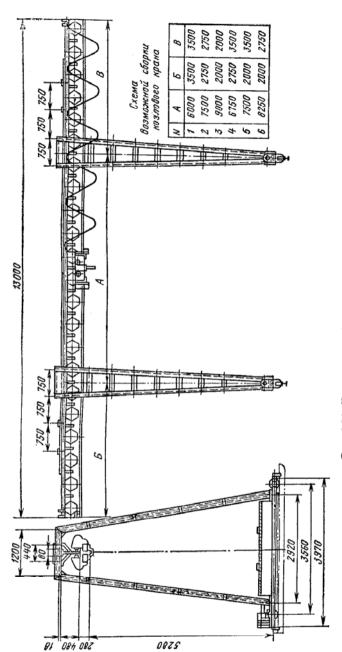


Рис. 2.71. Кран козловой грузоподъемностью 2 т

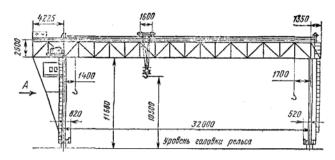
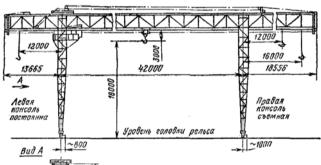



Рис. 2.72. Кран козловой К-30-32 грузоподъемностью 30 т

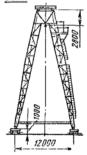


Рис. 2.73. Кран козловой КСК-30-42А грузоподъемностью 30 т. Грузоподъемность крана на левой консолн в пролете и на правой консоли до вылета 12 м — 30 т, на участке правой консоли на вылете с 12 до 16 м — 20 т

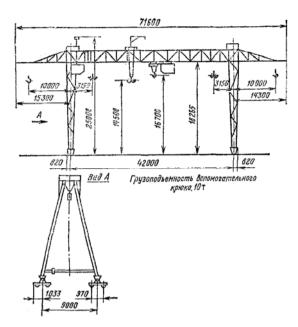


Рис. 2.74. Кран козловой КС-50-42 грузоподъемностью 50 т

Таблица 2.50а. Техническая характеристика полукозловых кранов

		Марі	ка крана		
		қп-	20-30	Қ-3	5-42
Наименование	К-30-11	Исполне- вие I	Исполне- ние II	Ислолне- ние I	Исполне- ние II
Грузоподъемность, т Пролет, м Высота подъема крюка (мак-	30 11 67	20 20 22	20 16 23	35 42 37,5	35 32 37,5
симальная), м Вылет консоли, м Высота подъема крюка от уровня головки нижнего под-	17	4,5 13	4,5 13	6,0 28	6,0 19
кранового рельса, м Разность отметок головок под- крановых рельсов, м	8,2	9,0	9,0	25	16

Таблица 2.51. Техническая

Грузо-								Pas	меры ,
подъем- ность,	Пролет <i>L</i> _к , м	Высота подъе ма крюка, м	В	Н	<i>l</i> ₁	l ₂	l,	I4 .	h
20/5	19 5 25,5 31,5	34/36	6100	2400	950	2270	2955	1635	700
30/5	19,5 25,5 28,5 31,5	39/41	6950	2850	1795	3 0 80	2255	970	400
50/10	22,5 26,5 28,5 31,5 36,5	50/52	8200	3230	1810	3380	2650	1090	1315
80/20	28 34	25/27	9100	4000	1900	3200	2700	1400	1000
100/10	41,5	72,9/75,3	8600	6500	2100	3200	2300	1300	1500
100/20	25 28 31	20/22	8500	4000	1900	3200	2700	1400	1200
	35÷43	-		4300					1000
	28 31								
125/20	34	20/22	8500	4000	1950	3200	2700	1400	1600
	35÷43		9300	4300					1300

MM			Macc	а, т	Скор подъема	ость , м/мин	Скорость виження	перед-
h,	F	Мощность, кВт	крана	тележ- ки	Главный подъем	Вспомо- гатель- ный подъем	крана	те- лежки
400	350 550 850	30 15 20	35 42 53	11	2,5	12	32	21
300	150 350 420 620	20 14 +13,5	41 48 56 61	13	2,1	11,8	-32	21
500	500 650 700 700 960	28 22 5,0 15	69 75 80 87 104	23,5	2,1	12	45	21,6
500	250	105	125	35	1,9	11,4	34,2	12,7
-800	-	132,5	159.7	_	3,0	16,0	31,8	11,4
-400 -700	266	28 37 6,3 28	130 140 150	38	1,1	7,3	32,4	11,5
-400	266	22 45 5	155 165 170 175	41	0,8	13	29,8	11,7

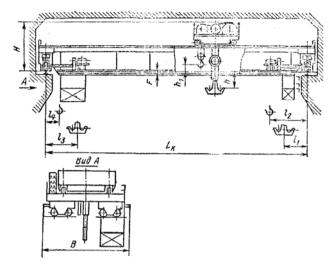


Рис. 2.75.

2.12. ТРАНСПОРТНЫЕ СРЕДСТВА

Для внутриобъектных перевозок материалов, оборудован и монтажных блоков используются тракторы, тягачи, автомобильн и железнодорожные транспортные средства (табл. 2.52—2.58).

Таблица 2.52. Техническая характеристика тракторов

	1	Марка	трактора	
Наименование	T-75	T-100M	T-180	дэт-2
Тяговое усилие на крюке,	3500	9500	14 700	22 000
Скорость движення, км/ч Удельное давление на грунт,	2,1—10,6 0,44	0,1-10,1 0,48	2.7—12,5 0,48	2,3—20 0,56
кгс/см ² Ширина гусеницы, мм Размеры, мм:	390	500	700	690
длина ширина	3600 1845	4255 2460	5300 2470	623 0 316 0
высота Масса, кг	2300 5720	3059 11 100	2800 15 200	318 0 26 80 0

Таблица 2.53. Техническая характеристика грузовых автомобилей

	ł	Марка ав	томобиля	
Наименование	ГАЗ-52-04	ГАЗ-53А	3ил-130	зил-133г
Грузоподъемность, т	2,5	4	6	8
Масса буксируемого с при- цепом груза, т	2,5	4	8	_
Погрузочная высота, мм	1210	1350	1450	1410
Размеры платформы, мм: длина ширина высота	3070 2070 610	3740 2170 680	3750 2325 575	6100 2328 575
Габаритные размеры, мм: длина ширина высота твтомобиля, кг дъемность, т о буксируемого с пригруза, т рузочная высота, мм	5715 2280 2130 2520 8,4 20,0	6395 2380 2220 3250 8,0 12	6670 2500 2300 4300 7,5 10	9000 2500 2395 6875 12 16,6
змеры платформы, мм: длина ширина высота	6260 2360 685	4960 2360 685	4565 2500 935	5770 2480 824
Габаритные размеры, мм: длина ширина высота Масса автомобиля, кг	8530 2500 3700 7450	7310 2500 2720 6725	8645 2750 3175 11 800	9660 2650 2620 10 300

Таблица 2.54. Техническая характеристика прицепов-тяжеловозов

	Марка	прицепа-тяжело	воза
Наименование	ЧМЗАП-5523А	ЧМЗАП-5208	ЧМЗАП-5212
Полезная нагрузка, кг Размеры погрузочной пло-	21 000	40 000	60 000
щадки, мм: длина ширина высота Общая длина, мм Масса без груза, кг	6765 3000 1200 12 950 8550	4880 3200 1140 9330 11 000	5500 3300 1000 11 370 14 500

Таблица 2.55. Техническая характеристика грузовых автомобилей-тягачей

		Mi	рка автом	обиля	
Наименование	KPA3-258	Урал-377С	MA3-504	3HJ-130B	3/4.4
Масса полуприцепа с гру- зом, т	30	18,5	17,4	10,5	7
Масса в снаряженном со- стоянии, т	9,7	6,8	6,3	3,7	
Дорожный просвет, мм	290	320	295		
Скорость движения, км/ч	60	60	75		
Расход топлива на 100 км пробега, л	50	58	32		
Вместимость бака, л	225	300	175×2	125 x 2	
Габаритные размеры, м: длина	7,4	7,0	5,4	5	
ширина	2,6	2,0	2,6	2,4	
высота	2,6	2,7	3,3	2,4	

Таблица 2.56. Техническая характеристика двухосных к автомобилям

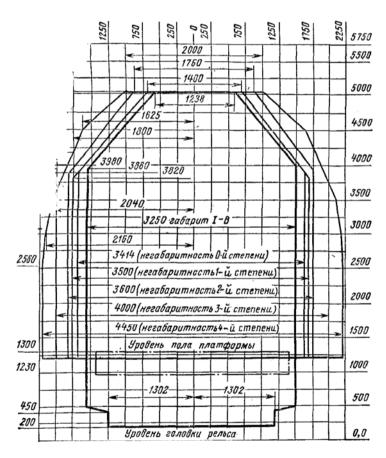
		Марка прицепа	
Наименованне	CM3-710B	5310	MA3-5207B
Полезная нагрузка, кг	2000	9330	6750
Погрузочная высота, мм	1160	1210	1040
Размеры платформы, мм: длина	3700	6848	4550
ширниа	2100	2500	2350
Длина в транспортном по- ложении, мм	5750	9500	6580
Масса, кг	1500	3500	3200

Грузы, подлежащие перевозке по железной дороге МПС, не должны выходить за пределы габарита очертания погрузки (рис. 2.76).

Грузы, выходящие за пределы габарита очертания погрузки, начются негабаритными. В зависимостн от того, в какое из очерпритивности вписывается груз, различают пять степеней абаритности — от 0 до IV степени.

Перевозка негабаритных грузов подлежит согласованию с управ-

Расчет прочности крепления и устойчивости грузов на железножных платформах выполняют в соответствии с «Техническими нями погрузки и крепления грузов» (М.; Транспорт, 1969) ченениями и дополнениями по состоянию на 01.11.75.



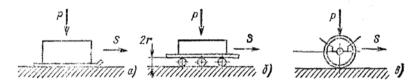

Рис. 2.76. Схема габаритов очертания погрузки

Таблица 2.57. Техническая характеристика вагонов и платформ

-		Плат	форма		1		-	
	yec	алли- кими ками	с деј ными	оевян- Сортами	Hon	увагон		ый ва- варной
Наименованне	q	етырехос	ная	двухосная	шесткос-	четырех- осный	четырех- осный	лвухос. ный
Грузоподъем- ность, т	63	62	50	20	94	63	.60	20
Длина по осям автосцепа, м	14,62	14,19	14,22	10,42	16,4	13,9	14,7	8,
База вагона, м	9,7	9,7	9,7	5,5	10,4	8,6	9,8	3,.
Длина по кон- цевым блокам рамы, м	13,4	12,97	12,91	9,11	_			_
Внутренние размеры, мм:								
длина	13,4	12,97	12,91	9,11	14,3	12	13,4	6,,
ширина	2,77	2,87	2,78	2,71	2,9	2,9	2,7	2.;
Высота бортов, мм	500	455	455	624			-	_
Высота от уровня головок рельсов до уровня пола, мм	1302	1270	1270	1300			-	_
Тара, т	20,9	21,4	18,4	9,2	31,5	21,8	22	12,1
Площадь по- ла, м ²	36,8	36,8	35,6	25,1	41,7	35,5	36,9	
Полезный объ- ем, м ³	, - ,	-	_		102	70,5	90,2	

Таблица 2.58. Техническая характеристика железнодорожных транспортеров

	Количество осей, шт.					
Наименование	4	- 4	8	16		
Грузоподъемность, т	55	62	100	200		
База транспортера, мм Длина, мм:	14 000	10 200	16 120	23 490		
по осям сцепления	19 470	15 580	24 250	38 430		
по концам главной балки	18 250	14 450	2 3 120	_		
Размеры погрузочной пло- щадки, мм:						
длина	10 000	6000	8000	8500		
ширина	2450	2400	2380	2270		
Расстояние от уровня голо- вок рельсов до уровня по-	683	570	700	940		
грузочной площадки, мм Масса, т	29,3	20,5	60,7	115,9		

Рнс. 2.77. Перемещение груза по горизонтальной плоскости: a- на стальном листе (санях); b- на катках; b- на платформе

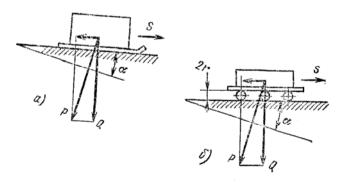


Рис. 2.78. Перемещение груза по наклонной плоскости: a- на санях; $\delta-$ на катках

Таблица 2.59. Определение тяговых усилий при перемещении грузов

$S = Pf$ $S = P (\sin \alpha + f \cos \alpha)$	При горизонтальном или наклонном перемещении грузов на санях или листах (рис. 2.77, a; 2.78, a)
$S = \frac{P(f + f'')}{2r}$ $S = P\left(\sin\alpha + \frac{f' + f''}{2r}\cos\alpha\right)$	При горизонтальном или наклонном перемещении грузов на катках (рис. 2.77, 6; 2.78, б)
$S = P \mu$	При перемещении грузов на вагонетках или платформах по горизонтальной плоскости (рис. 2.77, в)

В формулах: P — масса перемещаемого груза, кг; f — коэффициент трення скольжения, определяемый в зависимости от поверхностей:

дерево по стали...0,40; сталь по земле...0,42; дерево по снегу...0,10; сталь по снегу...0,10; дерево по земле...0,55; сталь по стали...0,11;

r — радиус катка, см; f' — коэффициент трения качении между опорной поверхностью и катком:

при стальных санях и катках 0,07 при деревянных санях и стальных катках 0,10

f'' — коэффициент трения качения между катком и поверхностью перемещения:

при перемещении катков по земле . . . 0,15 при перемещении катков по шпалам . . 0,10

ф угол наклона к горизонту плоскости перемещения груза;

µ — общий коэффициент трения качения:

при шарикоподшипниках 0,009 при подшипниках скольжения . . . 0,015

При производстве монтажных и ремонтных работ часто перемещают грузы на санях, листах, катках (рис. 2.77, 2.78).

Определение тяговых усилий S, кгс, при перемещении грузов производят по формулам, приведенным в табл. 2.59.

Тяговое усилие для перемещения грузов на санях можно опрелелить по табл. 2.60.

Таблица 2.60. Тяговые усилия при перемещении грузов по горизонтальной и наклоиным плоскостям

			Тягов	ое усилие,	тс		
	Го	ризонтальная	плоскост	ть	Наклонная плоскость		
груза, т	Переме на с	ещени е анях	Перемещение на санях по каткам			щение на угле нак	
Масса	по земле	по сиегу	по земле	по шпалам	5°	10°	15°
3 5 10 15 20 30	1,3 2,1 4,2 6,2 8,4	0,3 0,5 1,0 1,5 2	0,08 0,13 0,25 0,38 0,5	0,06 0,10 0,2 0,3 0,4 0,6	0,3 0,5 1,1 1,6 2,1 3,2	0,6 1,0 1,9 2,8 3,8 5,7	0,8 1,4 2,8 4,2 5,6 9,4

Примечания: 1. Тяговые усилия указаны при движении груза. Тя говое усилие для выведения груза из состояния покоя следует принимать вы-ше на 20—50 %.

3. Катки стальные из труб диаметром 108 м.

РАЗДЕЛ ТРЕТИЙ

МЕХАНИЗИРОВАННЫЙ ИНСТРУМЕНТ И ПРИСПОСОБЛЕНИЯ ДЛЯ ПРОИЗВОДСТВА СЛЕСАРНЫХ И СБОРОЧНЫХ РАБОТ

3.1. МЕХАНИЗИРОВАННЫЙ ИНСТРУМЕНТ ОБЩЕГО НАЗНАЧЕНИЯ

При производстве работ широкое распространение получил электрифицированный инструмент и инструмент с пневматическим приводом.

В табл. 3.1-3.4 приведены технические характеристики наиболее распространенного электрифицированного инструмента. В табл. 3.5 приведены характеристики пневматического инструмента.

^{2.} Во 2-й и 3-й графах приияты стальные сани, а в 4-й и 5-й графах -деревяиные сани.

Таблица 3.1. Техническая характеристика электрических сверлильных машинок

		Марка машинки					
Наименование	иэ-1003Б	ИЭ-1019А	ИЭ-1022В	иэ- 017			
Наибольший диаметр свер- ления, мм	6	9	14	22			
Электродвигатель: тип потребляемая мощ-	КНД 270	КНД 340	КНД 400				
ность, Вт напряжение, В частота тока, Гц Масса машинки (без кабе- ля), кг	220 50 1,9	220 50 2,0	220 50 3,0	200 5,0			

Таблица 3.2. Техническая характеристика электрических шлифовальных машинок

			Map	ка машин	ки		
Наименование	ИЭ-2004А	NЭ-2009	N9-2008	H3-8201A	TIIIM-125	ушэм-2301	ушэм-180
Диаметр абра- зивного круга, мм	150	125	63	200	125	2 30	18 0
Электродвига- тель: тип	АΠ	кнд	кнд	ЭВ	ΑП	АΠ	АΠ
потребляе- мая мощ- ность, Вт	1070	1200	600	1020	800	1600	1600
напряже- ние, В	36	220	220	220	36	36	36
частота то- ка, Гц	200	50	50	50	200	200	200
Масса машин- ки (без кабе- ля), кг	6,5	7,0	4,6	26,5	7,0	8,1	8,4

Таблица 3.3. Техническая характеристика электрогайковертов

	Марка галковерта				
Наименование	иэ-3116	ИЭ-3113	ИЭ-3109		
ший диаметр завинчи-	12	16	20		
езьбы, мм ьший момент затяжки,	6,3	12,5	25,0		
д вигатель:	кнд	кнд	АП		
Лот ребляемая мощность, В т	215	340	420		
напряжение, В частота тока, Ги	220 50	220 50	36 200		
Масса гайковерта (без кабе- ля), кг	3,9	3,9	4,2		

7 а блица 3.4. Техническая характеристика электрифицированного инструмента

Наименование	Марка	ножниц	Марка пе	Станок электроза « точный	
	ИЭ-5403А ИЭ-5404		ИЭ-4707	ИЭ-4709	ИЭ-9703
элцина разре- заемого листа, мм	2,5	1,6	_	-	_
жаметр просвер- зваемого отвер- тия, мм	-	_	50	32	_
Диаметр абрази- ва, мм	-	-	_	_	100
Электродвигатель: тип	КНД	КНД	АН	КНД	AH
потребляемая мощность, Вт	420	230	1350	650	300
напряжение, В	220	220	220	220	220
частота тока, Ги	50	50	50	50	50
Масса (без кабе- ля), кг	4,7	3,0	17,0	17,4	20,6

Таблица 3.5. Техническая характеристика пневматических сверлильных и шлифовальных машинок

	Ма	ка сверлі	ильной ман	Марка шлифоваль- ной машинки		
Наименованне	ИП-1020	ИП-1021	ИП-1023	ИП-1103 угловая	ИП-2009А	ИП-2014Д
Наибольший диа- метр сверла, кру- га, мм	12	14	2 5	32	63	15
Наибольщая мощ- ность на шпинде- ле, Вт	440	590	900	1900	440	1300
Наибольший рас- ход воздуха, м ³ /мии	0,9	1,0	1,2	2,0	0,9	1,3
Масса машинки, кг	1,9	2,6	5,3	7,5	2,1	5,9

Таблица 3.6. Техническая характеристика трубоотрезных станков типа 2T

	Марка станка							
Наименование	2T-194M	2T-299M	2T-377	2T-480	2T-570	2T-630	2T-820	2T-1020
Наружный диа- метр обрабаты- ваемой трубы, мм: наибольший	194	299	377	480	570	630	828	1020
наименьший	133	219	325	426	550		_	910
Скорость резания, м/мин: наибольшая наименьшая	19,7 13,5	19,6 14,4	18,0 15,5	20,0 17,8	19,2 18,6	19,6	20,8	18,0 16,0
Масса, кг	240	261	282	321	429	500	500	600

3.2. МЕХАНИЗИРОВАННЫЙ ИНСТРУМЕНТ И ПРИСПОСОБЛЕНИЯ ДЛЯ СПЕЦИАЛЬНЫХ РАБОТ

Для резки труб большого диаметра из перлитных и аустенитных сталей применяются переносные трубоотрезные станки типа 2Т. Переносные станки 2Т с плавающим суппортом предназначены для резки труб с толщиной стенки до 13 мм, с жестким суппортом—для толщины до 65 мм. Техническая характеристика станков типа 2Т приведена в табл. 3.6.

Для резки и подготовки под сварку труб из нержавеющей стадиаметром до 159 мм с толщиной стенки до 22 м применяются энки типа СРКТ.

Техническая характеристика станков типа СРКТ приведена в табл. 3.7.

Для отрезки и подготовки под сварку труб диаметром до

108 мм применяются труборезы типа ПТВ (табл. 3.8).

Для отрезки труб диаметром до 60 мм используются трубоотрезные машиики— электроножовка ОЭС-840 и машинка CA-60M

Таблица 3.7. Техническая характеристика трубоотрезных станков типа СРКТ

	Марка станка					
Наименование	CPKT 57-76	CPKT 78-108	CPKT 133-159			
Наружный диаметр обрабаты-	57—76	78—108	133—159			
корость резания, м/мин	8,2— 11,0	11,0— 15,6	11,0-20,0			
Масса, кг Электродвигатель:	14	18	28			
мощность, кВт напряжение, В частота тока, Ги	0,6 36 220	0,6 36 220	1,6 36 220			

Таблица 3.8. Техническая характеристика труборезов типа ПТВ

	Марка трубореза				
Наименование	HTB-16-28	ПТВ-32-60М	ПТВ-76-108		
Диаметр отрезаемых труб, мм Электродвигатель: тип мощность, кВт напряжение, В частота тока, Гц частота вращения, об/мин Частота вращения планшай- бы, об/мин Подача автоматнческая, мм/об Масса трубореза, кг	16—28 C-531 0,27 36 200 680 67 0,1	32—60 AII-33A 0,8 36 200 11 500 60 0,1 15,5	76—108 AП-33A 0,8 36 200 11 500 46 0,1 17,9		

и МРТ-2, в которых режущим инструментом является абразивный круг. Для торцовки труб $D_{\rm H}$ до 320 мм и снятия фасок под сварку применяются машинки ТОТ-32-2, МФ-32 и ОЭС-806, приводом этих машинок являются электросверлильные машинки ИЭ-1017А. Масса машинок с приводом не превосходит 18 кг.

Для сборки труб $D_{\rm H}=133\div560$ мм под сварку примеияются центровочные хомуты. Для центровки труб $D_{\rm H}=420\div1020$ мм ис-

пользуются центраторы.

Для райберовки отверстий в полумуфтах роторов турбин и генераторов применяются механические райберы MPT-46M, MPT-55-58 у которых режущим инструментом является развертка и механичес-

Таблица 3.9. Техническая характеристика машинок для райберовки отверстий

	Марка машинки						
Нанменование	MPT-46M	MPT-55-58	PM70-Tr	РМ45-ЦН			
Диаметр обрабатывае- мых отверстий, мм Скорость резания, м/мин	46—50 16,0	55—58 18,8	47-73	38-70			
Привод Масса, кг	C-478 76	C-478 80	23,6 АП-33А 27	27,2 ИЭ-1017А 25			

Примечание, Масса машинок типа МРТ указана с приводом и комплектом сменных разверток.

Таблица 3.10. Техническая характеристика машинок для фрезерования гнезд под колпаковые гайки

		Марка	изшинки	
Наименование	Ц-160-4	Ц-140-4	Ц-120-6	Ц-100-4
Днаметр шпильки разъема турбины, мм Днаметр фрезеруемой плоскости, мм Диаметр фрезы, мм Скорость резания, м/мин Машииное время обработки за один проход, мин Масса машинки с приводом, кг	M160×4 250 43; 42; 41 21,6 11,3 29,3	M140×4 220 38; 37; 36 19 9,8 25,2	M201×6 192 35; 34; 33 17,5 8,2 23,3	M100×4 160 29; 27,5 26 13,9 7,8

кий райбер РМ70-ТГ с резцом в качестве режущего инструмента. Для райберовки отверстий в полумуфтах циркуляционных насосов применяется механический райбер РМ45-ЦН. Техническая характеристика машинок для райберовки отверстий в полумуфтах приведена в табл. 3.9.

Для обработки поверхности под колпачковые гайки шпилек горизонтальных разъемов турбин применяются приспособления Ц-160, Ц-140, Ц-120 и Ц-100. Приспособления переносные снабжены фрезами и различаются между собой лишь размерами отдельных конструктивных элементов. Техническая характеристика машинок приведена в табл. 3.10.

РАЗДЕЛ ЧЕТВЕРТЫЙ

ОБОРУДОВАНИЕ ДЛЯ СВАРОЧНЫХ РАБОТ

4.1. ОБОРУДОВАНИЕ ДЛЯ ГАЗОСВАРОЧНЫХ РАБОТ

Снабжение работ горючим газом осуществляется от стационарных или передвижных газогенераторных установок, цистерн сжиженного газа, от трубопроводов природного газа или от баллонов.

Удельные расходы газов для производства сварочных работ приведены в табл. 4.1. Технические характеристики стальных баллонов

для газов приведены в табл. 4.2.

Для обеспечения сварочных работ кислородом применяются кислородные газифицированные станции КГН-30 и 2КГН-30 стационарного типа производительностью соответственно 30 и 60 м³/ч кислорода и автомобильные газификационные установки АГУ (табл. 4.3), в которых жидкий кислород газифицируется и направляется на производство при давлении 1,5 МПа (15 кгс/см²). Обеспечение кислородом отдаленных объектов осуществляется баллонами вместимостью 40 л.

В табл. 4.4—4.8 приведены характеристики резаков для ручной кислородной реаки, горелки для ручной газопламенной сварки, пайки и нагрева металла и редуктора.

4.2. ОБОРУДОВАНИЕ ДЛЯ ЭЛЕКТРОДУГОВОЙ СВАРКИ И ТЕРМООБРАБОТКИ

В табл. 4.9—4.14 даны технические характеристики сварочных трансформаторов, преобразователей и выпрямителей, наиболее часто используемых при производстве сварочных работ и термообработке.

В табл. 4.15 даны характеристики электрододержателей пассатижного типа для ручной электродуговой сварки.

Таблица 4.1. Удельные расходы газов для сварки и резки металла

		асход газа иа аж 1 т	Расход газа
Газ	тепломехани- ческого обо- рудования	металлокон- струкций	на 1 м ⁸ кисло- рода
Кислород, м ³ Пропаи-бутан: газообразный, м ³ жидкий, л Природный газ, м ³ Ацетилен, м ³	3,0 12,0 10,0 5,0	3,0 1,0 4,0 3,0 1,5	0,3 1,2 1,0 0,5

Таблица 4.2. Техническая характеристика стальных

табл	ица	4.2. Техни	ческая харак	еристика (СТАЛЬВЫХ
Наименование	Тип	Предельное ра- бочее давление, МПа (кгс/см²)	Испытательное давление, МПа (кгс/см²)	Состояние газа	Количество газа, м
Кислородиый бал- лон	Λ	15 (150)	22,5 (225)	Сжатый	6000
Ацетиленовый бал- лон	В	1,6 (16)	3 (30)	Раство- ренный	5520
Баллон для арго- на	A	15 (150)	22,5 (225)	Сжатый	6000
Баллон для азота	A	15 (150)	22,5 (225)		6000
Баллон для водо- рода	A	15 (150)	22,5 (225)	,	6000
Баллон для угле- кислоты	Б	7,5 (75)	9,5 (95)	Жидкий	25 жид- кого (12 600 л газа)
Баллон для про- пан-бутана	Е	1,6 (16)	2 (20)	Сжижен- иый	27 кг жидкого (13 000— 14 000 л газа)

Таблица 4.3. Техническая характеристика передвижных кислородных установок

кислороді	ных установо	к	
		Марка ус	тановки
Нанменование		АГУ-8Қ	АГУ-8М
Объем жидкого кислорода, л В пересчете на газообразный кис. Средняя производительность пр ини баллонов, м ³ /ч Максимальное давление кисло (кгс/см ²) Масса при заполненных резервуа рителе, г Марка автомобиля	н наполне- рода, МПа	6000 4500 425 22 (220) 23,0 KPA3-257	2000 1500 425 22 (220) 9,6 ЗИЛ-130
баллонов для газов			1
ем.	~	-000 Tett	13a,

	Жидкостная ем- кость, л	Цвет окраски	Надпись	Цвет надписи	Размеры: высо- та х дияметр х х толщина стен- кн, мм	Масса без газа, кг
_	40	Голубой	«Кислород»	Черный	1390× ×219×8	67
	40	Белый	«Ацетилен»	Красный	1390× ×219×7	52
	40	Чериый с белым	«Аргон»	Черный	1390× ×219×8	67— 70
	40	Черный	«Азот»	Желтый с поперечной коричневой полоской	1390× ×219×8	67—70
	40	Темно-зеле- ный	«Водород»	Красный	1390× ×219×8	67— 70
	40	Черный	«Углекисло- та» или СО ₂ сварочный	Желтый	1390× ×219×8	67— 70
	50,5	Красный	«Пропан»	Белый	950×300× ×4,5	34

Таблица 4.4. Резаки для ручной кислородной резки

	ГОСТ, ОСТ, № чертежа, TV	Ty 26-05-231-74	TY 26-05-228-73	TY 26-05-488-78	TY 26-05-487-78	Ty 26-05-449-76	Ty 26-05-318-79	TY 26-05-306-72	Ty 26.05-307-72
	мэготовитель (см. (61.4 добра	5AM3			EAM3			5AM3	
зки	Масса, кг	0,541	0,611	1,4	1,4	8,8	1,57	2,5	2,5
тастиродной резики для ручной кислородной резки	Габариты, мм	262×	282×43	80×550	80×550	470× ×1000×	×195 160× ×580×70	150× ×1350×	×150× ×1350× ×170
OH REC.	Расход керосина, л/м	-	١	l		I	25 290	1	1
איייע אייש א	Расход ацетилена, м ³ /ч	2,5-40 0,6-1,2	2,5-40 0,6-1,2	2,5-42 0,6-1,2	0,6-1,2	2,5—7,0	J	0,9—1,0	0,9—1,0
T.T. FC3ah	м ₂ \d _Б эсхой кисчобойэ [,]	2,5-40	2,5-40	2,542	2,5-42	43,75— 114,5	5,4-36	18—75	18—75
0.11114.0	Давление ацетилена, МПа (кгс/см²)		0,00,0		0,02	0,00 0,00 0,00 0,00	1	0,01	0,02
-	Дзвление кислородз, МПз (кгс/см²)	0,3-0,5	0,3-0,6	0,3-1,2 (3-12)	0	0,5-	(5-7,5) 0,4-1,1 (4-11)	$\begin{vmatrix} 0, 8-1, 2 \\ (8-12) \end{vmatrix}$	(8-12)
	Номер мундштука	1-3	1—3	1_3	1-3	1—5	15	1-3	1–3
	Толщина разрезаемо- го металла, мм	2—60	3—70	108	8 g	%,0 ,0,0 ,0,0	10 200	15— 50	50
	узbкя одоbλиовчини	PFM-70	PFC-70	Маяк-1-02	Маяк-2-02	P3P-2	PK-71	РПА-2-72	РПК-2-72

Таблица 4,5. Горелки для ручной газопламенной сварки, пайки и нагрева металла

	гост. ост. М чертежа, ТУ	Ty 26-05-486-78 TY 26-05-486-78 TY 26-05-489-78	Ty 26-05-458-77 Ty 26-05-465-77 Ty 26-05-466-77	TV 51-02-136-78 TV 26-05-450-76 TV 26-05-450-76
	Изготогонтель (61.4 .г.дет .мс)	БАМЗ	БАМЗ	БАМЗ
	Масса, кг	0,518 0,97 0,83	1,63 0,95 1,4	2,3 2,035 1,63
	ти (атиде); Т	300×120× 420×150× 420×150× 545×155× 545×155×	605×135× ×66 470×160× ×65 480×180× ×70°	275×178× ×120 ×1290× 1290×129× ×95 515×199× ×35 515×199×
	Номер мундшту- ка	3-6	3—7 2—4 2—4	3-7
:	Давление про- пан-бутана, МПа (кгс/см²)	- 0,001 (0,0)	0,02 (0,2) 0,001—0,1 (0,01—1,0) 0,1—0,15 (1,0—1,5)	0,13 (1,3)
	Давление ацсти- лена, МПа (кгс/см²)	0,001 (0,01)	1 1 1	0,01 (0,1) 0,01—0,025 (0,1—0,25)
	Давленве кисло- рода, МПа (игс/см²)	0,15-0,3 (1,5-3,0) 0,15-0,3 (1,5-3,0) 0,1-0,4 (1-4)	0,2-0,4 (2-4) 0,5-0,6 (5-6) 0,5-0,6 (5-6)	$\begin{array}{c} 0.5 - 0.7 \\ (5 - 7) \\ 0.4 (4.0) \\ 0.2 - 0.5 \\ (2 - 5) \end{array}$
	Толщина свари- ваемого металла, мм	0,2 0,5 30,0 7,0 7,0	1 1 1	2,5-10
	вяния Марка оборудо-	F2-02 F3-02 F3Y-3	ГЗУ-4 ГВП-5 ГВ-1	6206-000 FAO-2-72 FAJI-2-68

ГОСТ, ОСТ. № чер-тежа, ТУ TV 26-05-196-74 Ty 26-05-196-74 IV 26-05-196-74 TV 26-05-290-70 IV 26-05-196-74 IV 26-05-196-74 IV 26-05-196-74 Ty 26-05-196-74 **EAM3 FAM3** Изготовитель (см. табл. 4.16) газовые баллонные ВНИИавто-ВНИИавтогенмаш генмаш Разработчик рабочее дакле-ние, МПа (кгс/см²) 0,1(1)Редукторы-расходомеры 0,1(3) 0,1(1) 0,1(1) 0,1(1) 0,1(1) 0,1(1) Миниальное 0,39 (3,9) 0,54 (5,4) 1,5 (15) 1,5 (15) 1,5 (15) 1,5 (15) рабочее давле-ние, МПа (кгс/см²) 1,5 (15) 0,4(4) **Максимальное** 15 (150) давление на вхо-(кгс/см²) 15 (150) 15 (150) 15 (150) 20 (200) 20 (200) 20 (200) 10 (100) 4.6. **Максимальное** Таблица 150 (9,0) 40 (2,4) 30 (1,8) (5,4)30 (1,8) 50 (3,0) 10 (0, 6) 70 (4,2) расход газа, м⁸/ч (л/мин) **Жаксимальный** 8 Углекислый газ Редуцируемый газ Водород Аргон Аргон Гелий Asor Asor AP-150 AP-10 AP-40 y-30 **L-7**0 A-90 A-30 B-50 RNHEA Марка оборудо-

102

Таблица 4.7. Редукторы газовые баллонные

ДКП-1-65 Кислород 50 1, БКО-25-1 25 20 (200) 0, ДКД-8-65 Кислород 25 20 (200) 0, ДКД-15-65 40 40 4, ДАП-1-65 Ацетилен 5 2,5 (25) 0, ДПП-1-65 Пропан-бутан 5 2,5 (25) 0, СЗ-1404-ФМ Воздух 60 15 (150) 0,8	Редуцируемый газ	Максимальный	pacxoд газа, м³/ч	Максимальное входе, МПа (кгс/см²)	Максимальное рабочее давле- ние, МПа (кгс/см²)	МПа (кгс/см²) Сочее давление, Минимальное ра-	Разработчик	Изготовитель (см. табл. 4.16)	гост, ост, М чер- тежа, ТУ
од 25 20 (200) 60 60 2,5 (25) ен 5 2,5 (25) 3,0 (30) -бутан 5 2,5 (25) 60 15 (150)			.03		1,2 (12)	0,1(1)			Ty 26-05-463-76
од 25 20 (200) 60 40 2.5 (25) ен 5 3.0 (30) -бутан 5 2,5 (25) 60 15 (150)		c./I	22		0,8(8)	0,1(1)			TY 26-05-499-80
60 40 ен 5 2,5 (25) 3,0 (30) -бутан 5 2,5 (25) 60 15 (150)	Кислород		ĸ	20 (200)	0,8(8)	0,05 (0,5)	ВНИИавто-	EAM3	Ty 26-05-235-70
ен 5 2,5 (25) 3,0 (30) -бутан 5 2,5 (25) 60 15 (150)			 26		1,5 (15)	0,1(1)			TY 26-05-235-70
ен 5 2,5 (25) 3,0 (30) -бутан 5 2,5 (25) 60 15 (150)			10		4,0 (40)	1,5 (15)			TY 26-05-485-78
-6утан 5 2,5 (25)	,			2,5 (25)	0 19 (1.9)	0 01 00 10			TV 26-05-463-76
-бутан 5 2,5 (25) 60 15 (150)	- Ацетилен		•	3,0 (30)	(2,1)	(1,10) (0,10)			Ty 26-05-235-70
-бутан 5 2,5 (25) 60 15 (150)		_	-				ВНИИавто-		
60 15 (150)	Пропан-бут	ан		2,5 (25)	0,3(3,0)	0,01(0,1)	генмаш	DAM3	TY 26-05-463-76
	Воздух	—	2	15 (150)	0,8(8)	0,2(2)			Ty 26-05-463-76
20 ДВП-1-65 Водород 80 20 (200) 1,3	Водород			20 (200)	1,5 (15)	0,1(1)			TY 26-05-463-76

Таблица 4.8. Редукторы газовые рамповые

		2 T I I I I I I I I I I I I I I I I I I		TO. I CAYATOPIN I USOBING PUMITOBBIC	to pamilobbic		
Марка обору- дован ия	Редуцируемый газ	МаксимальныЯ расход газа, м³/ч	Максимальное входе, МПа (кгс/см²)	Максимальное рабочее, МПа (кгс/см²)	Минимальное ра- бочее давление, МПа (кгс/см²)	drathaotopen (81.4 . r.dst . m.)	ГОСТ, ОСТ, № чер- тежа, ТУ (см. табл. 4.16)
ДКС-66 ДКС-200		10	1,6 (16)	0,5 (5) 1,2 (12)	0,01 (0,1)	ŗ	TY 26-05-236-73 TY 26-05-474-77
ДКР-250 ДКР-500	Кислород	250 500	20 (200)	1,6 (16)	0,3(3)	DAMS	FOCT 6268-78 FOCT 6268-78
ДАС-66 ДАС-20 ДАР-1-64	Ацетилен	300	0, 12 (1,2) 0,12 (1,2) 3 (30)	0,1(1) 0,1(1) 0,1(1)	0,01 (0,1) 0,01 (0,1) 0,02 (0,2)	т СМ	TV 26-05-236-73 TV 26-05-474-74 FOCT 13861-80
ДПС-66 ДПС-15	Пропан-бутан	15.	0,3(3)	0,15(1,5)	0,02 (0,2)	Ch: PG	TV 26-05-236-73 TV 26-05-474-77
ДПР- 1-64 ДМС-66 PC-258-58	Пропан-бутан Метан Воздух	25 35 60	2,5 (25) 0,3 (3) 25 (250)	0,3(3,0) 0,15(1,5) 6,5(65)	0,02 (0,2) 0,02 (0,2) 0	БАМЗ	FOCT 13861-80 TY 26-05-236-73 TY 26-05-188-74

Таблица 4.9. Трансформаторы сварочные для ручной дуговой сварки

т.э. грансформаторы сварочные для ручной дуговой сварки		Габаритные раз- меры, мм см. та 5л. 4.16) ГОСТ, ОСТ, № чер- тежа, ТУ	548×300×530 37 C39CO TV 16-517.973-77 608×345×585 66	716×765×810 200 Искра. Таш- ТУ 16-739.355-83 электромаш	555 × 585 × 818 130 КЭМЗ, Искра ТУ 16-739.254-80 555 × 585 × 848 145 Искра ТУ 16-739.254-80 558 × 600 × 892 175 Ташэлектромаш Искра 555 × 585 × 848 158 Искра	729×600×892 185 Ташэлектромаш ТУ 16-739.254-80 824×600×892 210 979×600×892 200	560×590×850 160 Искра ТУ 16-672.061-84
арочные		Габаритные меры, м	548×300× 608×345×	716×765×	555 × 585 × 555 ×	729×600× 654×600× 824×600× 979×600×	260×590×
оры св		Номинальн: мощность,	11,4	33	27 27 27 27	36 36	12,2
ансформат	Напряжение, В	к ологосох Вд	808	8	62—83 64—83 64—83 64—83	65—75 65—75 65—75 65—75	80
1.3. Ip	Напр	рабочее номниэльно	26,4 30	1	32,6 36 40 36	40 40 40 40	32,6
астина	егулы- вроч- А	Пределы р	60—175 100—300	100—530	60—363 80—463 90—560 80—460	90—560 90—560 90—560 90—560	150—330
8	.БАзкн'	Период наг "	202	09	09 09 09	60000	09
		сварочный Номинальк	160 250	200	315 400 500 400	200	315
	;	Марка о€орудова- ния	ТД-102УХЛ2 ТД-306УХЛ2	ТД-500-4У2	ТДМ-317У2 ТДМ-401У2 ТДМ-503У2 ТДМ-401-1У2 с УСНТ-06	ТДМ-503-1У2 ТДМ-503-2У2 ТДМ-503-3У2 ТДМ-503-4У2	ТДМ-319УХЛ5

Ta	аблица 4	4.10.	Преобразователи и генераторы	ватель	и ге	черато	ры сварочные для ручной дуговой сварки	ручной	і дуговой сва	рки
	-rodsa	% 'ия		Напряже- ние, В	1Же- В	-înoi			см.	
Марка оборудо- вания	Номинальный с ный ток, А	Период нагруз	Пределы регул Вания сварочис Ка, А	рабочее номинальное	холостого хо- да	Номинальизя м ность, кВ·А	Габаритные размеры, ми	Масса, кг) drotngotosh (31.4 .ndet	TOCT, OCT, № чертежа, TV
ПД-305У2	315	09	45—350	32,6	06	17,7	1200×580×845	280	Искра	Ty 16-516.265-82
ПД-502-1У2	200	09	75—500	42	90	30	1010×650×935	480	T39C0	Ty 16-527.281-83
TICO-300-232	315	9	115—315	32	100	15	1069×620×1028	430	B33C0	TV 16-539.199-75
IICF-500-1У3	200		60—500	40	09	35	1050×620×890	460		Ty 16-539.168-75
ГД-304УЗ	315]]	15—350 80—300	32,6 30	100	10,3	680×625×700	260		Ty 16-539.214-79
ГД-502У2	200	9	15—500	40	06		950×500×750	400	T39C0	TV 16-515.083-78
rco-300-572	315	09	100—315	32	001		630×520×625	218	Дагэлект- ромаш	TV 16-739.375-83
ICM-500У2	315 (одно- го поста)	09	50630	22	70		1017×636×585	089	T39C0	Ty 16-539.876-79

Таблипа 4.11. Выпрямители сварочные для ручной дуговой сварки однопостовые

		FOCT, OCT, № чер- reжa, TV	TV 16-739.252-80 TV 16-739.198-79 TV 16-739.270-81 TV 12-47.221-74		Ty 16-739.340-83
		мэ) экэтнаототеМ (61.4 . кдвт	Искра В3ЭСО Т3ЭСО К0ЭЗСАУ	ЭМЗ	T39C0
,		Жасса, кг	125 174 330 450	160 180 240 360 480	220
Delignment of the python Aylobor Carpan Official Carpan		Габаритные раз- меры, мм	730×550×980 785×780×795 810×560×950 840×980×1200	700×520×920 700×520×920 700×520×1195 700×520×1195 700×520×1250	820×850×900
DIC AND	Номинальная мощ- ность, кВ·А		15 24 42 60	40 40 40	14,4
n ceapoan	Напряжение, В	вдох ототоолох	64—71 61—70 80 65	08-09 08-09 08-09 08-09	80
SILVER	Напря	номинальное ра- бочее	28 32 33 33	88888	36
4.11. Dein	-01	из, А пределы регулиро ка, А	30—200 45—315 40—500 150—600	2 – 50 3 – 90 5 – 180 8 – 350 10 – 700	50—450
1 аолица	%	Цернод нагрузки,	8688	999999	09
1 202	-ho	Номинальный сваро	200 315 500 600	40 80 160 315 630	400
		Марка обору дования	B.J20133 B.J30633 B.J502-233 B.C-60033	*BCBY-40 *BCBY-80 *BCBY-160 *BCBY-160 *BCBY-315 *BCBY-630	ВД-401УЗ

Таблица 4.12. Выпрямители для ручной дуговой сварки многопостовые

	гост, ост, № чер- тежа, ТУ	TV 16-739.226-80 TV 16-739.159-78 TV 16-739.184-79	TV 88 VCCP 085.159-77 TV 16-683.010-84
(91.	Изготовитель (см. табл. 4.	Электрик	ОЗ ИЭС нм. Патона Дагэлект- ромаш Электрик
	Масса, кг	420 500 790	2490
	Г абаритные размеры, мм	1050×700×900 1050×700×900 1350×850×1200	1500×1150×1685 5150×2200×2450
A.8	Номинальная мониность, к	88 120 88	317
жe,	холостого хода при па- дающих характеристиках	0001	100
Напряжение, В	ках падающих характеристи- номинальное рабочее при	118	1 1 2 2
Har	номинальное расочее при жестких характеристиках	185	20
Пределы регулирова- ния свароч- ного гока, А	при падающих характе- ристиках	1100	12 - 200
Пре регуля ния с ного т	при жестких характе- ристиках	100-	
	Пернод нагрузки, %	9999	100
олондо ж	Номинальный сварочный то поста, А	315 315 400	315 160 200
	Марка оборудо- вання	ВДМ-1001УЗ ВДМ-1601УЗ ВДУМ-4Х401УЗ	ВМГ-5000У4 ВДУМ-7501У1 УДГ-201УХЛ4

Таблица 4.13. Выпрямители сварочные для полуавтоматической сварки плавящимся электродом в среде запитных газов одногостовые

				в сред	c saudu	THMX FR	в среде защитных газов однопостовые			
	Α,	KN.	-нг	Напряжение.	кение. В	_				
Маркл оборудо- ван в я	сварочный ток Номикальиый	% Пернод нагруз	Пределы регул	рабочее помниальное	xonoctoro xo-	Номнавльная кВ ·	Габаритные раз- меры, мм	Масса, кг	Natotobrtead (cm. taga. 4.16)	ГОСТ, ОСТ, № чер- тежа, ТУ
ВДГ-601УЗ	630	09	100-200	99	ı	69	1250×900×1155	260	B39C0	TV 16-539.977-75
ВДГИ-301У3 ВДГ-303У3	315	09	40—325 50—315	30	09	13	1045×748×953 720×800×950	330	СЭМЗ	TV 16-539.978-75 TV 16-739.328-82
BCЖ-303У3 BC-300У3 BC-500У3	315 315 500	69	50—315 50—315 100—500	10 33 33 33 33	18 48 65 65 65	20 20 50	600×650×900 965×720×560 1150×770×600	200 210 350	КОЭЗСАУ	TV 34-28.10106-80 TV 34-1458.75 TV 34-28.101,56-80
*BCX(-630 y3 BC-300Ay3 BДГИ-302 y3 BДГ-601 y3	600 315 315 630	09 09 09	100—600 50—315 40—325 100—700	0.82 88 88 88 88	85 85 1 55 1	40 20 17,3 69	820×800×1400 650×600×900 720×593×938 1250×900×1156	540 180 250 560	ОЗ ИЭС им. Патона КОЭЗСАУ СЭМЗ ВЗЭСО	TV 34-3099.74 TV 34-28.10155-80 TV 16-435.054-84 TV 16-539.977-75

Таблица 4.14. Выпрямители сварсчные для ручной дуговой сварки, автоматической сварки под слоем флюса и полуавтоматической сварки плавящимся электродом в среде защитных газов

		ГОСТ, ОСТ, № чертежа, ТУ	Ty 16-739.143.78	Ty 16-739.303.82	Ty 16.435.035-84	TY 16-739.114-77 3P-134.00.00.000.TY
	(9I. 4 .n	Изготовитель (см. таб.	Электро- сварка	Электрик	ПО ВЗЭСО	750 Электрик 410 ЗНО
		Масса, кг	370	300	310	750
альные		Габаритные размеры, мм	1400×840× 370 ×1060	800×700× ×920	820×620× ×1100	1400×850× ×1250 1230×620× ×1000
иверс	р, кВ∙А	тоондом ввингвинмоН	40	40	T	135
однопостовые универсальные	ea .	холостого хода при ристиках	75— 80	85	85	100
нопосто	Напряжение, В	рактеристиках при падающих ха- поминальное рабочее	46	20	46	56 10 30
ОДО		теристиках харак- при жестких харак- поминальное рабочее	50	46	20	292
	Пределы ре- гулирования сварочного тока, А	при падающих ха- рактеристиках	60 <u>—</u>	50— 500	50 <u>-</u>	300— 1250 10— 150
	Преде гулирс Сваро тока	при жестких харак- теристиках	100— 500	60 500	60 <u>—</u> 500	300— 1250
		Период иагрузки, %	09	89	09	100
	А , иот й	Номинальный сварочны	200	200	200	315
		Марка оборудо- вания	ВДУ-504-1У3	ВДУ-505У3	ВДУ-506У3	ВДУ-1201УЗ ТИР-300ДМ1

FOCT, OCT, № черте-жа, TV FOCT 14651-78 Электрододержатели пассатижного типа для ручной электродуговой сварки Изготовитель (см. табл. 4.16) K9M3 Масса, кг 0,46 0,55 0,3 0,5 0,7 0,7 Габариты, мм $193 \times 40 \times 92$ 266×36×81 Ø32×250 Ø36×260 Ø40×290 Сечение мед-ного свароч-ного провода, 20 2 l 1 ŀ Диаметр электрода, мм 4,0-10,01,6-4,02,5-6,03,8-8,0 4 - 10 $^{2-6}$ Номинальный сварочный ток при ПН=60 % 4.15. 200 315 315 400 200 1 Таблица Марка оборудования ЭД-310-2У1 ЭД-500-1У 1 ЭД-200-2У1 ЭД-310-3У1 ЭД-400-1У1 ЭД-500-2У1

Таблица 4.16. Расшифровка условных сокращений, названий предприятий-изготовителей, указаниых в таблицах 4.4—4.15

Условное сокращение	Полное наименование предприятия
БАМЗ ОЗ ИЭС им. Е. О. Патона ПЗТЭСО	Барнаульский автогенный машиностроительный завод Опытный завод ИЭС им. Е. О. Патона Псковский завод тяжелого электросварочного оборудования
СЭМЗ СЗЭСО Искра ИЭС им. Е. О. Па- тона	Симферопольский электромашиностроительный завод Сальянский завод электросварочного оборудования Новоуткинский завод электросварочных машин и аппаратов «Искра» Институт электросварки им. Е. О. Патона
КЗЭСО КЭМЗ ЭМЗ Электрик Электров арка Ташэлектромаш	Каховский завод электросварочного оборудования Кокандский электромашиностроительный завод Электромашиностроительный завод (г. Ржев) Ленинградский завод «Электрокарка» Калининградский завод «Электросварка» Ташкентский электромашиностроительный завод «Ташэлектромаш»
тзэсо коэзсау	Тбилисский завод электросварочного оборудования «Электросварка» Киевский опытно-экспериментальный завод средств автоматического управления ВО «Союзэнергоавтоматика»
взэсо Дагэлектромаш ЗНО	Вильнюсский завод электросварочного оборудования Дагестанский электромашиностроительный завод «Дагэлектромаш» Завод нестандартного оборудования (пос. Протвино, Московской обл.)

РАЗДЕЛ ПЯТЫЙ

5.1. УГЛЕРОДИСТЫЕ, НИЗКОЛЕГИРОВАННЫЕ И КАЧЕСТВЕННЫЕ СТАПИ

В табл. 5.1 и 5.2 приведены данные о химическом составе и механических свойствах основных марок стали, используемых при пронзводстве монтажных и ремонтных работ.

Ta	блица	5.1	Химический	COCTAB	стали

		(одержание	элементо	в, %			
Марка стали				P	Sr	С	Ni	Cu
	С	Mn	Si		H	е более		
ВСт3кп	0,14-	0,30 <u></u> 0,60	0,07	0,04	0,05	0,30	0,30	0,30
ВСт3Пс	0,14-	0,40	0,05	0,04	0,05	0,30	0,30	0,30
ВСт3сп	0,14-	0,40	0,12—	0,04	0,05	0,30	0,30	0,30
14Γ2	0,12-	1,20-	0,17—	0,035	0,04	0,30	0,30	0,30
09Γ2	€0,18	1,40—	0,17—	0,035	0,04	0,30	0,30	0,30
10	0,07—	0,35	0,17—	0,035	0,04	0,15	0,25	0,25
15	0,12-	0,35— 0,65	0,17—	0,035	0,04	0,25	0,25	0,25
20	0,17-	0,35	0,17—	0,035	0,04	0,25	0,25	0,25
	0,24	0,65	0,37					

5.2. ПРОКАТ СОРТОВОЙ И ФАСОННЫЙ

В табл. 5.3—5.10 приведен сортамент основных видов фасонного и сортового проката, используемого при производстве монтажных и ремонтных работ.

5.3. РЕЛЬСЫ

Основные размеры и расчетные характеристики крановых и железнодорожных рельсов приведены в табл. 5.11—5.14.

5.4. ТРУБЫ

В табл. 5.15—5.17 приведены расчетные данные основных типов стальных труб.

5.5. МЕТИЗЫ

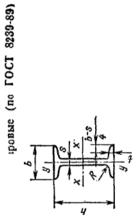
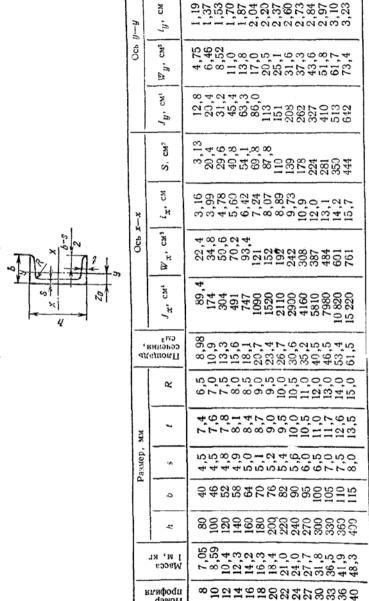

В табл. 5.18—5.23 приведены размеры и характеристики крепежа и метизов.

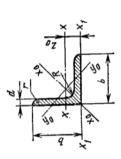
Таблица 5.2. Механические свойства основных марок стали

	(2)	-6 X9M 070 Ri	старени имеско После	ı	3 4	4 8	-	39 (4) 29 (3)
	(Krc·M/CM	При г °С	40	1	11	11	11	11
	Дж/см²	При	-20	I	3	3		39 (4) 29 (3)
Ialin	язкость,	-ишк	от въД мм., мн	l	5—9 10—20	5—9 10—20	11	5—9
иых марок с	Ударная вязкость, Дж/см² (кгс·м/см²)	Вид проката	(сталь)	I	Листовая и	фасонная	11	Листовая
осион		тельное ине, %		26	25	25	27	
ие своиства		Предел текучести, МПа	(KFC/MM ²)	235 (24)	245 (25)	245 (25)	235 (24) 225 (23)	
таолица о.г. механические своиства основных марок стали	-	Временное сопротивление,	MIIa (KCC/MM*)	363—490 (37—50)	372—509 (38—52)	372—539 (38—55)	360—460 (37—47)	
аолип		на про- мм	Полщи ката, п	4—20	5—9	5—9	ВСтЗкп 4—20 21—40	
1		сталн	Марка	18кп	18пс	18сп	ВСтЗкп	
		rocr		FOCT 23570-79			FOCT 380-71	


ଉତ୍	ଉତ୍ର		I 1	
49 (5) 29 (3)	49 (5) 29 (3)	! !	11	111
1 1	1	34 (3,5) 29 (3,0)	34 (3,5) 29 (3)	111
49 (5) 29 (3)	49 (5) 29 (3)	1	11	[] [
5—9	5—9 10—25	11	11	[1]
Универсаль- ная	Сортовая и фасонкая	11	11	111
25		21	21	31 27 25
245 (25) 235 (24)		304 (31)	333 (34) 323 (33)	206 (21) 225 (23) 245 (25)
370—480 (38—49)		441 (45)	460 (47) 450 (46)	333 (34) 372 (38) 411 (42)
BCr3nc 4-20 BCr3cn 21-40		5—9 10—20	5—9 10—20	111
ВСт3пс ВСт3сп		0912	14F2	10 15 20
		FOCT 19282-73		FOCT 1050-74

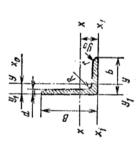
Табли

1 1																
	lу, см	1,22	1,38	1,55	1,70	88,	2,07	2,27	2,37	2,54	5,69	2,83	3,03	3,09	3,23	3,39
Och y-u	₩. cм³	6,49	8,72	5,1	14,5	18,4	23,1	28,6	34 57	41,5	49,9	71,1	86,1	101	123	151
	_{Jy} , см	17,9	27,9	41.9	58,6	82,6	115	157	198	560	337	516	667	808	1043	1356
	S_x , cm ⁸	23.0	33,7	46.8	62,3	81.4	104	131	163	210	268	423	545	708	616	11811
Ocb x-x	<i>i</i> х, см	4,06	4,88	5,73	6,57	7,42	8.28	9,13	6,97	11,2	12,3	14,7	16,2	18,1	6,61	21,8
Ocb	W_{x} , cM^{3}	39,7	58,4	7.18	102	143	184	232	588	371	472	743	953	1231	1589	2035
	Jx, cM	198	320	572	873	1290	1840	2550	3460	5010	7080	13 380	19 062	27 696	39 727	55 962
वप्र	Площа, кинэчээ кмэ	12.0	14.7	17,4	20.2	23.4	26.8	30,6	34.8	40.2	46.5	6.19	72,6	84.7	100.0	118,0
	æ	7.0	7.5	8	8	0.6	9.5	10.01	10.5	11.0	12.0	14.0	15.0	16.0	17.0	18 0
d	**	7.2	7.3	7.5	7.8	8.1	8	8.7	9.5	8.6	10,2	12,3	13.0	14.2	5.5	16,5
Размер	~	4.5	4.8	4.9		2	5.2	5,4	5.6	6.0	6.5	7.5	8	0,6	10,	=
	9	55	64	73	81	8	100	110	115	125	135	145	155	160	170	80
	ų	100	120	140	160	180	200	220	240	270	300	360	400	4.50	200	550
	Macca I M, Kr	9.46	12	13.7	22.0	18.0	210	24.0								95,6
R	Номер Профил	2	12	14	16	2	200	66	94	27	33	36	40	45	200	22


5.4. Швеллеры (по ГОСТ 8240-89) Таблнца

кинфодп номер

Z0 , CM


Таблица 5.5. Сталь прокатная угловая равнополочная (по ГОСТ 8509-86)

		Ze, cM	0,73	0,80	0,89	0,99	1,09
	x1x1	f_{x_1} , cm	1,57	2,20	3,26	4,64 6,24	6,35
oce#	40-Yo	lyo, cM	0,49	0,55	0,63	0,71	9,79 0,78
чины для	_0/i	Jy0, CM	0,34	0,48	0,74	1,06	1,47
Справочные величины для осей	x0-x	, cм	0,95	1,07	1,23	1,39	1,55
Справо	-0x	J_{x_0} , cm	1,29	1,84	2,80	4,06 5,21	5,63
	×	i_x , cm	0,75	0,85	0,97	1,10	1,23
	xx	J_x , cM^4	0,81	1,16	1,77	2,56 3,29	3,55 4,58
ı,	кина	TLTI Ceq cM2	1,43	1,62	1,86	2,10	2,35 3,08
		`	1,2	1,3	1,5	1,5	1,7
p, MM		3,5		4	4,5	4,5	rs
Размер, мм		3 8		3	£ 4	8 4	დ 4
		9	25	28	32	36	40
	, Kr	Mac M I	1,12	1,27	1,46	1,65	1,85
R	фича	MoH oqu	2,5	2,8	3,2	3,6	4

1,21	1,38	1,57	1,74	1,90 1,94 2,02	2,06 2,10 2,15	2,47	2,75 2,83 2,91	3,36 3,45 53,53
9,04	16,6 20,9	26,5	41,5	56,7 68,4 91,9	83,9 98,3 113	169 194	2 65 333 402	516 649 782
0,89	86,0 0,98	1,10	1,25	1,39	1,48 1,48 1,47	1,78	1,98 1,96 1,95	2,49 2,47 2,46
2,12	3,80	69'9	9,52	13,2 15,5 20,0	19,3 22,1 24,8	38,9	60,9 74,1 86,9	122 149 174
1,75	1,94	2,16	2,44	2,72 2,71 2,68	2,90 2,89 2,87	3,49	3,87 3,84 3,81	4,87 4,84 4,82
8,13	14,6	25,4	36,6	50,7 59,6 76,4	73,9 84,6 94,9	150 168	233 284 331	467 571 670
1,39	1,54	1,72	1,94	2,16 2,15 2,13	2,23	2,77	3,07 3,05 3,03	3,87 3,85 3,82
5,13	9,21	16,0	23,1	31,9 37,6 48,2	46,6 53,3 59,8	94,3 106	147 179 209	294 360 422
2,65	3,89	5,41	6,13	8,68 8,15 10,7	8,78 10,1 11,5	12,3 13,9	15,6 19,2 22,8	19,7 24,3 28,9
1,7	1,8	2,0	2,3	2,7	3,0	3,3	4,0	4,6
ro.	5,5		7	∞	6	01	12	14
€ 4	4.73	5	ಬ	ည္မထ	8 7 8	8	100	8 10 12
45	50		63	70	75	6	100	125
2,08	3,05	4,25	4,81	5,38 6,39 8,37	6,89 7,96 9,02	9,64	12,2 15,1 17,9	15,5 19,1 22,7
4,5	ಬ	5,6	6,3	7	7,5	6	10	12,5

5.6. Сталь прокатиля угловая неравнополочная (по ГОСТ 8510-86) Таблипа

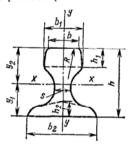
	1-1/1	х ₆ , см	0,49	0,59
	Och yı—yı	ч₀, см Ју1, см¹	0,82	1,58
a oce	1,4-1,	<i>y</i> ₀, cм	1,08	1,32
Справочные величины для осе й	Ocb x ₁ x ₁	J _{XI} , cat	3,26	6,37
очные вел	y-y	J_y , cm , I_y , cM J_{x1} , cm	0,55	0,70
Справ	Ocb y-y	Jy, cm	1,01 0,46	0,93
	×	'x' cM	1,01	1,27
	Ocb #-*	/ж, см'	1,52	3,06
, ви	ченен	Площа см²	3,5 1,2 1,49	1,3 1,89 2,47
			1,2	6,1
W		×	3,5	4
Размер, мм		B	က	ω4
Pa		٥	20	52
α		æ,	32	40
Масса 1 м, кг			1,17	4/2,5 1,48
ь	профил	Нсмер	3,2/2	4/2,5

Таблица 5.7. Сталь горячекатаная круглая (по ГОСТ 2590-88)

Диаметр, мм	Масса I м. кг	Площадь сечения, см²	W, cm ³	r, cM	Диаметр, мм	Macca, l m, kr	Площадь ,сечения, см²	W, cm	r, cM
6 8 10 12 14 15 16 18 20 22 24 25 28	0,222 0,395 0,616 0,888 1,21 1,39 1,58 2,47 2,98 3,55 3,85 4,83	0 283 0,503 0,785 1,131 1,539 1,767 2,011 2,545 3,142 3,801 4,524 4,909 6,158	0,021 0,050 0,098 0,169 0,269 0,331 0,402 0,573 0,785 1,040 1,357 1,534 2,160	0,15 0,20 0,25 0,30 0,35 0,40 0,45 0,50 0,60 0,63 0,70	30 32 36 40 45 48 50 56 60 70 80 90 100	5,55 6,31 7,99 9,87 12,48 14,21 15,42 19,33 22,19 30,21 39,46 49,94 61,65	7,07 8,04 10,18 12,57 15,90 18,10 19,64 24,63 28,27 38,48 50,27 63,62 78,54	2,65 3,22 4,58 6,28 8,95 10,86 12,27 17,24 21,21 33,67 50,27 71,57 98,20	0,75 0,80 0,90 1,00 1,13 1,25 1,40 1,50 1,75 2,00 2,59 2,50

Таблица 5.8. Сталь горячекатаная квадратная (по ГОСТ 2591-88)

Сторона квадрата, мм	Масса 1 м, кг	Площадь сечення, см²	W, cm ³	г, см	Сторона квадрата, см	Масса І м, кг	Площадь сечения, см²	₩, см³	r, cM
10 12 16 20 25	0,785 1,13 2,01 3,14 4,91	1,0 1,44 2,56 4,0 6,25	0,167 0,24 0,426 0,67 1,04	0,29 0,34 0,46 0,57 0,72	30 40 50 60 100	7,06 12,56 19,63 28,26 78,5	9,0 16,0 25,0 36,0	1,50 2,66 4,16 6,0 16,7	0,86 1,15 1,44 1,73 2,89

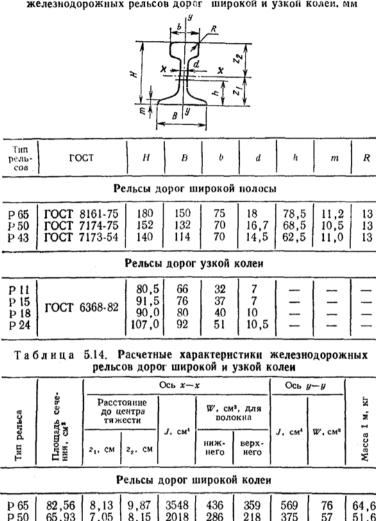

Таблица 5.9. Полоса стальная горячекатаная (по ГОСТ 103-76)

<i>a</i> :-	Масса 1 м полосы, кг, при толщине, мм									
Ширина полосы; мм	4	5	6	7	8	9	10	12	16	20
30 40 45 50 55 60 70 80 90 100 120 150 180	0,94 1,26 1,41 1,57 1,73 1,88 2,20 2,51 2,83 3,14 3,77 4,71 5,65	1,8 1,57 1,77 1,96 2,16 2,36 2,75 3,14 3,53 3,92 4,71 5,89 7,06	1,41 1,88 2,12 2,36 2,59 2,83 3,30 3,77 4,24 4,71 5,65 7,06 8,48	1,65 2,20 2,47 2,75 3,02 3,30 3,85 4,40 4,95 5,50 6,59 8,24 9,89	1,88 2,51 2,83 3,14 3,45 3,77 4,40 5,04 5,65 6,28 7,54 9,42	2,12 2,83 3,18 3,53 3,89 4,24 4,95 5,65 6,36 7,06 8,48 10,6 12,7	2,36 3,14 3,53 3,92 4,32 4,71 5,50 6,28 7,06 7,85 9,42 11,8 14,1	2,83 3,77 4,24 4,71 5,18 5,65 6,59 7,54 8,48 9,42 11,3 14,13 16,96	3,77 5,02 5,65 6,28 6,91 7,54 8,79 10,05 11,3 12,56 15,07 18,84 22,61	4,71 6,28 7,06 7,85 8,64 9,42 10,99 12,56 14,13 15,7 18,84 23,55 28,26

Таблица 5.10. Сталь листовая рифленая (по ГОСТ 8568-77)

Наименование		Ромби	ческая	чечевичная				
Толщина ос-	2,5	3	4	5	2,5	3	4	5
нования, мм Выс о та рифа,	1,0	1,0	1,0	1,5	2,5	2,5	2,5	2,5
мм Масса 1 м², кг	21,6	25,6	33,4	42,3	22,6	26,6	34,4	42,3

Таблица 511. Основные размеры крановых рельсов (по ГОСТ 4121-76), мм



Тип рельса	ь	b_{i}	- b ₂	s	h	h_1	h _a	R
KP 50	50	55	90	20	90	25	20	300
KP 60	60	65,5	105	24	105	27,5	22	350
KP 70	70	76,5	120	28	120	32,5	24	400
KP 80	80	87	130	32	130	35	26	400
KP 100	100	108	150	38	150	40	30	450
KP 120	120	129	170	44	170	45	34	500

Таблица 5.12. Основные расчетные характеристики краиовых рельсов

				· · · · · · · · · · · · · · · · · · ·					
їип рельса	Площадь сече- ния, см²	Расст до це тяжес:		σ, cM¹	^Ј у, см'	$W_1 = \frac{J_X}{\mu_1}, \text{ cm}^3$	$W_2 = \frac{J_X}{U_2}, \text{ cm}^3$	$W = \frac{J_y}{\frac{b}{2}},$ CM^3	Масса 1 м, иг
KP 50 KP 60 KP 70 KP 80 KP 100 KP 120	38,02 50,99 67,30 81,13 113,3 150,4	4,32 4,89 5,39 6.43 7,6 8,43	4,68 5,67 6,07 6,57 7,40 8,57	375,5 654,6 108,2 1547 2865 4924	111,4 195,8 327,1 482,4 940,9 1695	82,76 135,5 182,4 240,6 376,9 584,1	76,4 115,4 178,1 235,5 387,1 574,5	24,76 37,31 54,53 74,2 125,5 199,4	29,8 40,0 52,8 63,7 88,9 118

Таблица 5.13. Основные размеры железнодорожных рельсов дорог широкой и узкой колеи, мм

P 65 P 50 P 43	82,56 65,93 57,0	8,13 7,05 6,90	9,87 8,15 7,10	2018 1489	286 217	218 200	375 260	57 45	54,64 51,63 44,65
-			Рельсь	і дорог	узкой	колеи			
P 11 P 15 P 18 P 24	14,31 19,16 23,07 32,70	3,96 4,5 4,29 5,36	4,09 4,65 4,71 5,34	125 222 240 468	31,7 49,2 56,1 87,2	30,5 47,7 51,0 87,6	15,1 31,5 47,1 80,6	4,58 8,29 10,3 17,5	11, 20 15,0 18,06 25,6

Таблица 5.15. Трубы бесшовные горячедеформированные (по ГОСТ 8732-78)

		on)	1001 010			
Наружный диаметр, мм	Толщина стенки, мм	Масса 1 м, кг	Площадь сечения, см²	J, cm ¹	₩, см³	<i>r</i> , см
25	2,5	1,39	1,77	1,13	0,99	0,80
	3	1,63	2,07	1,28	1,02	0,78
32	2,5 3	1,76 2,15	2,31 2,73	2,54 2,90	1,58 1,82	1,04
38	3	2,59	3,30	5,09	2,67	1,24
	3,5	2,98	3,79	5,70	3,60	1,22
42	3	2,89	3,69	7 ,08	3,86	1,38
	4	3,75	4,8	8,70	4,15	1,35
45	3,5	3,58 4,04	4,56 5,15	9,90 10,96	4,40 4,87	1,47 1,45
50	3	3,48	4,47	12,2	4,89	1,66
	3,5	4,01	5,11	13,90	5,56	1,65
	4	4,54	5,78	15,4	6,16	1,64
	4,5	5,05	6,43	16,8	6,72	1,62
57	3	4,00	5,09	18,6	6,53	1,91
	4	5,23	6,66	23,5	8,25	1,88
	5	6,41	8,17	27,9	9,78	1,85
60	4	5,52	7,04	27,7	9,24	1,99
	5	6,78	8,64	32,9	10,1	1,96
	6	7,99	10,18	37,6	12,5	1,92
76	4	7,10	9,04	58,8	15,5	2,55
	5	8,75	11,15	70,6	18,6	2,52
	6	10,36	13,19	81,4	21,4	2,49
89	4	8,38	10,68	90,6	21,7	3,01
	5	10,36	13,20	117,0	26,3	2,98
	6	12,28	15,65	135,0	30,4	2,95
102	6	9,67 14,21	12,32 18,09	148 209	29,0 41,0	3,47 3,41
108	4	10,26	13,07	177	32,8	3,69
	5	12,70	16,19	215	39,8	3,65
	6	15,09	19,22	251	46,5	3,62
	8	19,73	25,14	316	58,5	3,55

Толщина стенки, мм	Масса І м, кг	Площадь сечения, см²	J, см¹	₩, cм³	<i>г</i> . см
4	12,73	16,21	338	50,8	4,57
6	18,79	23,94	484	72,6	4,50
8	24,66	31,42	616	92,7	4,44
6	22,64	28,83	845	106	5,42
8	29,76	37,96	1085	136	5,35
10	36,75	46,80	1304	164	5,28
6 8	23,97	30,52	1003	119	5,74
	31,57	40,20	1290	153	5,67
8	36,70	46,76	2026	209	6,58
10	45,38	57,78	2452	258	6,52
6	31,52	40,17	2279	208	7,54
8	41,63	53,00	2956	270	7,47
9	46,61	59,38	3280	299	7,44
10	51,54	65,64	3594	328	7,40
8	46,76	59,55	4186	341	8,39
10	57,95	73,81	5104	416	8,32
7	45,92	58,48	5176	379	9,41
8	52,28	66,59	5850	428	9,37
9	58,60	74,63	6509	476	9,34
10	64,86	82,60	7152	523	9,31
8	62,54	79,65	10 012	616	11,22
9	70,14	89,33	11 159	686	11,19
10	77,68	98,94	12 284	755	11,16
12	92,63	117,99	14 468	890	11,09
9	81,68	104,04	17 620	934	13,01
10	90,51	115,24	19 422	1030	12,98
12	108,02	137,58	22 935	1216	12,91
9	92,56	117,88	25 634	1203	14,75
10	102,59	130,66	28 282	1327	14,72
12	1 2,52	156,04	33 460	1570	14,65
9	108,98	138,8	41 841	1673	17,36
10	120,84	153,90	46 211	1848	17,34
12	143,40	183,90	54 787	2191	17,26
9	131,17	167,07	72 943	2431	20,89
	145,50	185,32	80 660	2688	20,86
	Стенки. 4 6 8 6 8 10 6 8 10 6 8 10 7 8 9 10 12 9 10 12 9 10 12 9 10 12	СТЕНКИ. 1	СТЕНКИ. ММ 1 м. кг Сечения. См² 4 12,73 16,21 6 18,79 23,94 8 24,66 31,42 6 22,64 28,83 8 29,76 37,96 10 36,75 46,80 6 23,97 30,52 8 31,57 40,20 8 36,70 46,76 10 45,38 57,78 6 31,52 40,17 8 41,63 53,00 9 46,61 59,38 10 51,54 65,64 8 46,76 59,55 10 57,95 73,81 7 45,92 58,48 8 52,28 66,59 9 58,60 74,63 10 64,86 82,60 8 62,54 79,65 9 70,14 89,33 10 77,68 98,94	СТЕНКИ. ММ 1 М. КГ Сечения. См² J. см² 4 12,73 16,21 338 6 18,79 23,94 484 8 24,66 31,42 616 6 22,64 28,83 845 8 29,76 37,96 1085 10 36,75 46,80 1304 6 23,97 30,52 1003 8 31,57 40,20 1290 8 36,70 46,76 2026 10 45,38 57,78 2452 6 31,52 40,17 2279 8 41,63 53,00 2956 9 46,61 59,38 3280 10 51,54 65,64 3594 8 46,76 59,55 4186 10 57,95 73,81 5104 7 45,92 58,48 5176 8 52,28 66,59 5850	Стенки, мм 1 м. кг сечения, см² J, см² W, см³ 4 12,73 16,21 338 50,8 6 18,79 23,94 484 72,6 8 24,66 31,42 616 92,7 6 22,64 28,83 845 106 8 29,76 37,96 1085 136 10 36,75 46,80 1304 164 6 23,97 30,52 1003 119 8 36,70 46,76 2026 209 10 45,38 57,78 2452 258 6 31,52 40,17 2279 208 8 41,63 53,00 2956 270 9 46,61 59,38 3280 299 10 51,54 65,64 3594 328 8 46,76 59,55 4186 341 10 57,95 73,81 5104 416<

Таблица 5.16. Трубы электросварные прямошовные (по ГОСТ 10704-76)

Наружны? Диаметр, мм	Толщина стенки, мм	Macca 1 M, Kr	Площадь сечення, см²	r, cM	Наружный диаметр, мм	Толщина стенки, мм	Масса 1 м, кг	Площадь сечения, см²	r, cM
42	2,5 3,0	2,44 2,89	3,10 3,68	1,40 1,38	194	5,6 6,0	23,3 27,8	29,7 35,4	6,69 6 65
50	3,0 3,5	3,48 4,01	4,43 5,11	1,66 1,65	219	6,0 8,0	31,5 41,6	40,2 53,0	7,54 7,47
57	3,0 3,5	4,00 4,62	5,09 5,89	1,91 1,90	245	6,0 8,0	35,4 46,7	45,0 59,5	8,45 8,39
60	3,0 4,0	4,22 5,52	5,38 7,03	2,02 1,98	273	6,0 8,0	39,5 52,8	50,3 66,6	9,45 9,38
76	4,0 5,0	7,10 8,75	9,04 11,1	2,55 2,51	325	6,0 8,0	47,2 62,5	60,1 79,6	11,3 11,2
89	4,0 5,0	8,38 10,4	10,7 13,2	3,01 2,97	377	8,0 10,0	72,8 90,5	92,7 115	13,1 13,0
102	4,0 5,0	9,67 11,9	12,3 15,2	3,47 3,44	426	8,0 10,0	82,5 103	105 131	14,8 14,7
108	4,0 5,0	10,3 12,7	13,1 16,2	3,68 3,65	530	8,0 10,0	103 128	131 163	18,5 18,4
133	4,0 5,0	12,7 15,8	16,2 20,1	4,57 4,53	630	8,0 10,0	123 153	156 195	22,0 21,9
159	5,0 6,0	19,0 22,6	24,2 28,8	5,45 5,42	720	8,0 10,0	141 175	179 223	25,2 25,1
168	5,0 6,0	20,1 23,9	25,6 30,5	5,77 5,74	820	8,0 10,0	160 200	204 254	28,7 28,6

Таблица 5.17. Трубы водогазопроводные (по ГОСТ 3262-75)

	MM		Лег	кне			Обыкно	венные	
Условный проход	Наружный днаметр, м	Толщина стенки, мм	Масса 1 м, кг	Площадь сечения, см²	r, cM	Толщина стеики, мм	Масса 1 м, кг	Площадь сечения, см²	г, см
8	13,5	2,0	0,57	0,72	0,41	2,2	0,61	0,78	0,40
10	17,0	2,0	0,74	0,94	0,53	2,2	0,80	1,02	0,52
15	21,3	2,5	1,16	1,48	0,67	2,8	1,28	1,63	0,65
20	26,8	2,5	1,50	1,91	0,86	2,8	1,66	2,11	0,85
25	33,5	2,8	2,12	2,70	1,09	3,2	2,39	3,05	1,07
32	42,3	2,8	2,73	3,47	1,40	3,2	3,09	3,93	1,38
40	48,0	3,0	3,33	4,24	1,59	3,5	3,84	4,89	1,58
50	60,0	3,0	4,22	5,37	2,02	3,5	4,88	6,21	2,00
70	75,5	3,2	5,71	7,27	2,56	4,0	7,05	8,99	2,53
80	88,5	3,5	7,34	9,35	3,01	4,0	8,34	10,62	2,99
90	101,3	3,5	8,44	10,75	3,46	4,0	9,60	12,23	3,44
100	114,0	4,0	10,8	13,82	3,89	4,5	12,2	15,48	3,88
125	140,0	4,0	13,4	17,09	4,81	4,5	15,0	19,6	4,79
150	165,0	4,0	15,9	20,23	5,70	4,5	17,8	22,69	5,68

Таблица 5.18. Размеры болтов с шестигранной головкой (по ГОСТ 7798-70) нормальной точности и повышенной точности (по ГОСТ 7805-70)

				Днам	етр резы	бы, мм		
Наимено	вание	10	12	16	20	24	39	36
Размер «под ключ», мм		17	19	24	30	36	46	55
Высота головки, мм		7	8	10	13	15	19	23
Диаметр описанной	ГОСТ 7798-70	18,7	20,9	26,5	33,3	39,6	50,9	60,8
окружно- сти, мм	FOCT 7805-70	18,9	21,1	26,8	33,6	40,3	51,6	61,7
Площадь поперечного сечения нетто, см ²		-	0,837	1,57	2,45	3,52	5,60	_

Таблица 5.19. Масса болтов с крупным шагом резьбы (ГОСТ 7798-70 и ГОСТ 7805-70)

Длина		Macca 10	00 шт., кг,	при диам	етре болто	в, мм	
болта, мм	10	12	16	20	24	30	36
25	27 82	39,95	75,87	136,4	_	_	_
30	30,66	44,05	83,24	147,9	_	-	_
35	33,88	48,43	90,62	159,4	246 9	_	
40	36,96	52,87	97,99	170,9	263,5	479,1	_
45	40,05	57,31	105,7	182,5	280,1	505,2	-
50	43,13	61,76	113,6	194,0	296,7	531,2	844,8
60	49,30	70,64	129,4	219,1	329,9	583,3	920,1
70	55 47	79,53	145,2	243,8	366,5	635,4	995,3
80	61,64	88,42	161,0	268,1	402,1	691,8	1071
90	67,81	97,29	176,8	293,2	437,6	747,3	1151
100	73,98	106,2	192,6	117,8	473,2	802,8	1231
120	86,32	124,0	224,2	367,2	544,2	913,9	1391
130	92,49	132,8	240,0	391,9	579,8	969,5	1471
150	104,8	150,6	271,6	441,2	650,8	1080	1631
						1	

Таблица 5.20. Гайки шестигранные (по ГОСТ 5915-70) (нормальной точности) н ГОСТ 5927-70 (повышенной точности)

			Диаметр резьбы, мм							
Наимено	Наименование		12	16	20	24	30	36		
Размер «по	17	19	24	30	36	46	55			
Высота, мм		8	10	13	16	19	24	29		
Диаметр	ГОСТ 5927-70	18,9	21,1	26,8	33,6	40,3	51,6	61,7		
окружности, мм	ГОСТ 5915-70	18,7	20,9	26,5	33,3	39,6	50,9	60,8		
Масса 1000 шт., кг		11,37	15,4	33,17	62,6	107,0	224,5	376,9		

Таблица 5.21. Шайбы (по ГОСТ 11371-78)

	Диаметр стержия, мм						
Наименование	10	12	16	20	24	30	36
Диаметр от-	10,5	13,0	17,0	21,0	25,0	31,0	37,0
верстия, мм Наружный ди-	21	24	30	37	.44	56	100
аметр, мм Толщина, мм Масса 1000 шт. шайб, кг	2,0 4,08	2,5 6,27	3,0 11,3	4,0 22,9	4,0 32,3	5,0 67,1	8,0 132

Таблица 5.22. Гвозди строительные

Диаметр,	Длина,	Масса	Диаметр,	Длина,	Масса
мм	мм	1000 шт., кг	мм	мм	1000 шт., кг
2,0	50	1,29	3,0	80	4,44
2,0	60	1,54	3,5	90	6,80
2,5	50	1,93	4,0	100	9,80
2,5	60	2,31	4,0	120	11,77
3,0	70	3,88	5,0	150	22,4

Таблица 5.23. Металлические изделия

Наименование	ГОСТ или технические условия	Характеристика	Macca I M², Kr
Сетка плетеная одинарная	FOCT 5336-80	Сетка № 20 из проволоки Ø 1,6 мм с ячейками 20 мм Сетка № 40 из проволоки Ø 3 мм с ячейками 40 мм	1,96 3,11
Сетка тканая	FOCT 3826-82	Сетка № 10 нз проволоки Ø 1 мм с ячейками 10 мм Ширина сетки 1 и 1,5 м	1,2
Сетка плете- ная с шести- гранными ячей- ками	ЧМТУ 3906-53	Сетка № 20 из проволоки Ø0,5 мм с ячейками 20 мм Сетка № 25 из проволоки Ø 0,6 мм с ячейками 25 мм	0,22

Наименование	ГОСТ или технические условия	Характеристика	Масса І м², кг
Сетка из ка- либрованной проволоки	FOCT 3306-88	Сетка из проволоки Ø 3,5 мм с ячейками 40 мм	3,5
Сетка сварная	FOCT 8478-81	Сетка из проволоки Ø 5 и 5,5 мм с ячейками 100 и 150 мм Марка сеток: 5-10 5,5-10 5-15 5,5-15 Ширина сеток 2,3 и 2,65 м	3,18 3,84 2,18 2,64
Проволока стальная низ- коуглеродная	FOCT 3282-74	Диаметр проволоки, мм: 0,8; 1,0; 1,2; 1,6; 2,0; 3,0; 4,0; 5,0; 6,0 Масса 1 м, г: 3,95; 6,17; 8,88; 15.8; 24,7; 55,5; 98,7; 154,2; 221,9	_

5.6. СПЛАВЫ И ПРОКАТ ЦВЕТНЫХ МЕТАЛЛОВ

Баббиты — оловянные и свинцово-оловянные подшипниковые сплавы, сравнительно мягкие материалы с малым коэффициентом трения скольжения, применяются для заливки вкладышей подшипников быстроходных машин. Химический состав и плотность баббитов приведены в табл. 5.24.

Бронзы — сплавы меди с оловом и меди с алюминием, применяются для изготовления вкладышей тяжело нагруженных тихоходных машин.

Таблица 5.24. Химический состав и плотность баббита (ГОСТ 1320-74)

	Химический состав, %						
Марка баббита	Сурьма	Медь	Кадмий	Мышьяк	Олово	Свинец	Плот- ность, г/см³
Б83 Б16 Б6 БН БТ	14—16 13—15	5,5—6,5 1,5—2,0 2,5—3,0 1,5—2,0 0,7—1,1	- 1,75-2,25 1,25-1,75	0,6—1,0 0,5—0,9 —	82—84 15—17 5—6 9—11 9—11	 6468 7478 6974 7276	7,3 9,29 9,6 9,55 10,1

Медные листы (ГОСТ 495-77) изготовляются мягкими (отожженными) с пределом прочиости при растяжении до 20 кгс/мм² и относительным удлинением до 30 % и твердыми неотожженными с пределом прочности до 30 кгс/мм² и относительным удлинением 3 %.

Листы холодокатаные медные изготовляются толщиной от 0,4

до 10 мм, а горячекатаные от 1 до 25 мм. Плотность 8,9 г/см³.

Прутки медные и латуниые (ГОСТ 1535-71 и ГОСТ 2060-73) применяются для изготовления выколоток и антимагнитного крепежа.

Фольга листовая оловянная и свинцовая, плакированная оловом (ГОСТ 18394-73), изготовляется толщиной от 0,015 до 0,1 мм и применяется для подкладок при сборке тепломеханического оборудования.

Припои медно-цинковые (ГОСТ 19248-73) и оловянно-свинцовые изготовляются в виде чушек, прутков и трубок, заполненных флюсом. примеияются для пайки различных цветных и черных металлов.

Медный порошок применяется в качестве компонента для смазки резьбовых соединений, работающих при высоких (до 500°C) температурах.

5.7. ПРОКЛАДОЧНЫЕ И УПЛОТНИТЕЛЬНЫЕ МАТЕРИАЛЫ

Паронит (ГОСТ 481-80) — листовой материал, изготовляемый из асбеста, каучука и наполнителей и применяемый в виде прокладок различных размеров и конфигураций для уплотнения фланцевых соединений паропроводов и трубопроводов горячей воды. Плотность паронита в пределах 1,5—2 г/см³.

Картон асбестовый (ГОСТ 2580-80) и бумага асбестовая (ГОСТ 23779-79) изготовляются из хризолитового асбеста в листах и рулонах и применяются в качестве огнезащитного, теплоизоляционного

н электроизоляционного материала.

Шнур асбестовый (ГОСТ 1779-83) применяется для уплотнения

температурных швов обмуровки.

Резина листовая техническая (ГОСТ 7338-77) применяется для изготовления уплотняющих прокладок фланцевых соединений трубопроводов холодной воды и др.

Шнур резиновый (ГОСТ 6467-79) применяется для работы в ка-

честве уплотнительной детали.

Войлок технический (ГОСТ 6308-71) и детали из него — сальники, прокладки, фильтры — применяются для задержки смазочных масел в местах трения, для фильтрации масел и в качестве изоляторов.

Набивки сальинковые (ГОСТ 3152-79) применяются для герме-

тизации сальников различных машин.

Графит кристаллический серебристый (ГОСТ 5279-74) применяется для набивки сальников арматуры, затирки обработанных поверхностей, перемещающихся под воздействием температуры деталей, изготовления уплотняющих мастик.

Области применения прокладочных материалов в зависимости от среды и параметров приведены в табл. 5.25.

Таблица 5.25. Прокладочные материалы и области их применения

Транспортируемый		примене- окладок		Тол-
продукт	Условное давление, кгс/см²	Темпера- тура, °С	Матернал прокладок	щина, мм
Вода производ- ственная	До 3	До 40	Резина сплошная групп I, II и III	4
	От 3 до 6	До 60	Резина этих же групп с двумя прокладками	4
	От 6 до 50	До 450	Паронит прокладоч- ный	2
Пар насыщенный и перегретый	До 50	До 450	Паронит прокладоч- иый	2
Коидеисат паровой и горячая вода	До 6	До 80	Картон прокладоч- ный, пропитаиный маслом	3
	То же	От 80 до 120	Резииа группы IV с двумя прокладками	4
	До 64	До 250	Паронит прокладоч- иый	2
Вакуум		_	Картон асбестовый	4
Сжатый воздух, азот, инертный газ	До 6	До 50	Картон прокладоч- ный	3
	До 50	До 120	Паронит прокладоч- ный	2
Горячие газы (азот, водород, углекислый газ), газовые смеси (воздух, полуводяной газ, кокссвый газы	До 3	До 500	Картои асбестовый	4

Транспортируемый		примене- окладок		Тол- щина,
продукт	Условное давление, кгс/см ²	Темпера- тура, °С	Материа л ш рокладок	мм
Газы (азот, водород, углекислый газ) и газовые смеси (воздух, коксовый газ), дымовые газы	До 35	До 425	Паронит прокладоч- ный	2
Рассол прямой и обратный	До 6	До 18	Резина сплошная группы II	4
	До 10	До 30	Паронит прокладоч- ный	2
Бензол, бензии, иефть, нефтепро- дукты, масла, ма- зут, смола	До 10	До 40	Картои прокладоч- ный, пропитанный маслом	3
	До 25	До 200	Паронит прокладоч- ный Резина маслостойкая групп VI, VIa, VII, VIIa, VII6, VIII	2
Соляная кислота		_	Резина сплошная группы II	4
Серная кислота 15% концентра- ции и выше	До 10	До 120	Картон асбестовый, пропитаиный силика- том	
	До 40	До 120	Металлические зуб- чатые прокладки из стали марки 08	5
Минеральные и органические кис- лоты, кроме соля- ной	_		Картон асбестовый, пропитанный силика- том	5

5.8. ЭЛЕКТРИЧЕСКИЕ КАБЕЛИ И ПРОВОДА

Перечень и характеристики основных марок электрических кабелей и проводов для электросварочных работ и подключения оборудования приведены в табл. 5.26.

Таблица 5.26. Электрические кабели и провода

Характернстика	Число жил	Сечение, мм²	Применение
Кабель с медными жилами, с резиновой изоляцией, в двойной резиновой оболочке	1	6—120	Для электроду- говой сварки в качестве свароч- иого провода
Провод с медиыми жилами, гибкий, с резиновой изоляцией, в оплетке	1	0,75—240	То же
Провод с алюминие- вой жилой, с рези- новой изоляцией, в оплетке	1	2,5-240	То же и подвлючение оборудовання к сети 350 В
Кабель переносной с медными жнлами, с резиновой изоля- цией, в резиновой оболочке	1; 2; 3; 4;	0,75—70	Подключение оборудования для сварки и термообработки в сетн
Кабель силовой с медными жилами, с бумажиой изоляцией, в свинцовой оболочке	1—4	2,5—400	Подключение электросборок сварочного оборудования подстанциям
То же с алюминие- выми жилами	1-3	2,5—240	
Провод с медными жилам», гибкий, с резиновой изоляцией	2	0,75—2,5	Для подключения приборов
	Кабель с медными жилами, с резиновой изоляцией, в двойной резиновой оболочке Провод с медиыми жилами, гибкий, с резиновой изоляцией, в оплетке Кабель переносной с медиыми жилами, с резиновой изоляцией, в оплетке Кабель переносной с медными жилами, с обумажиой изоляцией, в резиновой оболочке Кабель силовой с медными жилами, с обумажиой изоляцией, в свинцовой оболочке То же с алюминиевыми жилами Провод с медными жилами	Кабель с медными жилами, с резиновой изоляцией, в двойной резиновой оболочке Провод с медиыми жилами, гибкий, с резиновой изоляцией, в оплетке Провод с алюминиевой жилой, с резиновой изоляцией, в оплетке Кабель переносной с медиыми жилами, с резиновой изоляцией, в резиновой оболочке Кабель силовой с медными жилами, с обумажиой изоляцией, в свинцовой оболочке То же с алюминиевыми жилами Тровод с медными жилами Тровод с медными жилами Тровод с медными жилами Тровод с медными жилами	Характернстика 1

5.9. ПИЛОМАТЕРИАЛЫ

В табл. 5.27—5.29 приведены размеры шпал, досок, брусьев и бревен.

Таблица 5.27. Шпалы (по ГОСТ 78-65)

Обрезные	Необрезные		Щирина п			
Тип		Толщина, мм	верхней нижней		Длина, мм	
IA IIA IIIA	IB IIB IIIB	180 160 150	165 160 150	250 230 230	2750	

Таблица 5.28. Доски и брусья (по ГОСТ 8486-86)

	1				Шири	на, см			
Толщи-	Вид	120	140	160	180	200	220	240	250
					Объем 10	00 м, м ^а			
16 19 25 30 40	Доска	0,19 0,23 0,30 0,36 0,48	0,22 0,27 0,35 0,42 0,56	0,27 0,30 0,40 0,48 0,64	0,29 0,34 0,45 0,54 0,72	0,32 0,38 0,50 0,60 0,80	0,35 0,42 0,55 0,66 0,88	0,46 0,60 0,72 0,96	0,48 0,62 0,76 1,00
50 60 70 100 150 180 200 250	Брус	0,60 0,72 0,84 1,20 1,80 2,16 2,4 3,0	0,70 0,84 0,98 1,40 2,10 2,5 2,8 3,5	0,80 0,96 1,12 1,60 2,40 2,88 3,2 4,0	0 90 1,08 1,26 1,80 2,7 3,24 3,6 4,5	1,00 1,20 1,40 2,00 3,0 3,60 4,0 5,0	1,10 1,32 1,54 2,20 3,3 3,96 4,4 5,5	1,20 1,44 1,68 2,40 3,60 4,32 4,8 6,0	1,25 1,50 1,75 2,50 3,75 4,50 5,00 6,25

Таблица 5.29. Бревна (по ГОСТ 9463-88)

			Дна	метр в в	ерхнем о	отрубе,	СМ		
Длина, м	12	13	14	15	16	18	20	22	24
				(Объем, м	3			
3 4 5 7	0,04 0,05 0,07 0,11	0,045 0,06 0,08 0,13	0,05 0,07 0,10 0,15	0,06 0,08 0,11 0,17	0,07 0,09 0,12 0,19	0,09 0,12 0,16 0,23	0,11 0,15 0,19 0,28	0,13 0,18 0,23 0,34	0,16 0,21 0,27 0,40

5.10. ПРОЧИЕ МАТЕРИАЛЫ

Бензин-растворитель («калоша») (ГОСТ 443-76) получают при перегонке нефти. Применяют как растворитель битумных лакокрасочных материалов, для обезжиривания металлических поверхностей, промывки подшипников качения, шеек валов и других деталей точной обработки от консервирующей смазки.

Керосин осветительный (ГОСТ 4753-68) применяется для испытания на плотность корпусов подшипинков и сварных соединений труб, конденсаторов, коробов, газовоздухопроводов и вспомогатель-

ного оборудования.

Ацетон технический (ГОСТ 2603-79) — бесцветная прозрачная жидкость. Плотность 0,79—0,795 г/см³. Температура кипения 56°С. Применяется для обезжиривания поверхностей и разведения лаков и эмалей.

Глицерин сырой (ГОСТ 6823-77) применяется для включения

в состав специальных смазок резьбы.

Клей резиновый торговый (ГОСТ 2199-78) представляет раствор натурального каучука в беизине БГ-2 (ГОСТ 443-76). Применяется для склейки резиновых изделий и выпускается двух сортов І и ІІ. Связующая сила клея І сорта не менее 5 кгс, ІІ сорта— не менее 4,5 кгс (по миткалю щириной 50 мм).

Кислота ортофосфорная термическая (ГОСТ 10678-76) — бесцветная или со слабо-желтым оттенком жидкость. Применяется для очистки внутрениих поверхностей труб маслопроводов от окалины

и коррозии.

Калий едкий технический (ГОСТ 9285-78) твердый марок A и Б и жидкий марок B и Г, применяется для работы в лабораториях в качестве реактивов для титрования кислот.

Натр едкий технический (сода каустическая) (ГОСТ 2263-79) применяется для щелочения паровых котлов и обессоливающих установок.

Лазурь сухая (ГОСТ 21121-75) — искусственная минеральная краска синего цвета, выпускаемая в виде порошка. По химическому составу представляет ферроцианид железа и калия (иатрий, аммоний). Применяется для шабровочных работ.

Бура техническая (ГОСТ 8429-77) — тетраборат натрия, кристаллизирующийся с 10 частями воды (Na₂B₄O₇·10H₂O). Применя-

ется для пайки деталей медно-цинковыми припоями.

Белила свинцовые густотертые (ГОСТ 12287-77) — масляная краска, состоящая из водной пасты свинцовых белил или ее смеси с наполнителем, затертых на натуральной олифе или растительном масле. Примениется для окраски изделий, эксплуатируемых в атмосферных условиях, и изготовления мастик разъемных соединений корпусов насосов для перекачивания горячей и холодной воды, фланцевых соединений конденсаторов с цилиидрами турбин и муфтовых соединений газовых труб.

Сурик свинцовый (ГОСТ 19151-73) — продукт окисления глета при повышенной температуре. Тяжелый порошок ярко-красно-оранжевого цвета. Выпускается четырех марок: 1, 2, 3 и 4 в виде пасты. Применяются; марки 1 и 2 — для производства аккумуляторов; марка 3 — для уплотияющих мастик, антикоррозионного грунта и в фарфоровой промышленности; марка 4 — для антикоррозионного грунта.

Сурик железный (ГОСТ 8135-74) — естественный минеральный пигмент красио-коричневого цвета. Состоит из окиси железа с при-

месью глинистых веществ и кварца. Применяется для грунтовки и нанесения верхнего слоя при окраске стальных конструкций.

Лак каменноугольный (ГОСТ 1709-75) — раствор каменноугольного пека в ароматических соединениях. Применяется для покрытия чугунных и стальных конструкций и изделий для предохранения их

от коррозии.

Олифа натуральная льняная и конопляная (ГОСТ 7931-76) вырабатывается из льняного или конопляного масла с введением ускорителей высыхания (сиккативов). Применяется для изготовления и разведения густотертых красок, а также в качестве самостоятельного материала для малярных работ и растворителя при изготовлении уплотняющих мастик с применением свинцовых белил, свинцового сурика и графита.

Олифа-оксоль (ГОСТ 190-78) — заменитель натуральной олифы. Изготовляется уплотнением льняного масла с продуванием воздуха в присутствии сиккатива и последующим добавлением растворителя.

Применяется для разведения густотертых красок.

Спирт этиловый ректификационный (ГОСТ 5962-67), получаемый путем брагоректификации спиртовых бражек или ректификации этилового спирта-сырца. Применяется для изготовления щелочного лака, испытания на плотность выводов обмотки ротора генератора и промывки деталей регулирования и других деталей турбин.

Дихлорэтан техиический (ГОСТ 1942-86) — прозрачная бесцветная легкоподвижная жидкость без осадка и взвешенных частиц. Применяется для очистки маслоохладителей от шлама и масла и как

растворитель масел.

Картон строительный (ГОСТ 8740-85) выпускается двух марок; А и Б и применяется в качестве обшивочного слоя. Ширина рулона марки А 135 см, марки Б—129 см. Количество поставляемого картона указывается в квадратных метрах. Масса 1 м²—0,37 кг.

Мел природный комовой и молотый (ГОСТ 1498-64) применяется в качестве вспомогательного материала при испытании на плотность сварных швов газовоздухопроводов, трубопроводов низкого давления больших диаметров и для других целей.

Шпагат увязочный пеньковый (ГОСТ 17308-88) применяется

Ø 4-5 mm.

Рукава резиновые для газовой сварки и резки металлов (ГОСТ 9356-75) оплеточной конструкции применяются для подачи под давлением газа или жидких топлив к приборам для газовой сварки и резки металлов, работающим при температуре от +50 до —35°С.

Рукава изготовляются трех типов: І — для подачи ацетилена и горючего газа при давлении ие более 6 кгс/см², ІІ — для подачи жидкого топлива (бензин, керосин) при давлении ие более 6 кгс/см², ІІІ — для подачи кислорода при давлении не более 15 кгс/см².

РАЗДЕЛ ШЕСТОЙ

ТЕХНИКА БЕЗОПАСНОСТИ

6.1. ОБЩИЕ ПОЛОЖЕНИЯ

Монтаж и ремонт тепломеханического оборудования ТЭС и АЭС связан с большим количеством источников повышениой опасности, в частности: грузоподъемными и транспортными машинами, электрифицированным инструментом и электросварочным оборудованием, едкими и токсическими веществами, взрывоопасными газами и пр.

Обеспечение надлежащих условий охраны труда и техники безопасности осложняется одновременной и зачастую совмещенной работой большого количества специализированных организаций.

За соблюдение правил, норм и инструкций по технике безопасности и производственной санитарии отвечают линейные инженериотехнические работники.

Руководство охраной труда и ответственность за ее состояние возложены на главных инженеров и начальников монтажных и ремонтных организаций.

Ответственность за охрану труда и техники безопасности совмещениых работ по всему монтажному комплексу возложена на руководителей генподрядных организаций. Приведенные ниже нормативно-технические материалы, не исчерпывая всех многогранных вопросов охраны труда, содержат указания по наиболее часто встречающимся вопросам обеспечения безопасных условий работы.

6.2. ПЕРЕЧЕНЬ ОСНОВНЫХ НОРМАТИВНЫХ ДОКУМЕНТОВ ПО ОХРАНЕ ТРУДА И ТЕХНИКЕ БЕЗОПАСНОСТИ

СНиП III-4-80 «Техника безопасности в строительстве» (утверждены Госстроем СССР 9 июня 1980 г.).

Инструктивные материалы по технике безопасности при монтаже оборудования и трубопроводов ТЭС и АЭС (утверждены Минэнерго СССР 9 июля 1980 г.).

Правила устройства и безопасной эксплуатации оборудования атомных электростанций, опытных и исследовательских ядерных реакторов и установок (утверждены Госгортехнадзором СССР 20 апреля 1972 г.).

Правила устройства и безопасной эксплуатации грузоподъемных кранов (утверждены Госгортехнадзором СССР 30 декабря 1969 г.).

Правила техники безопасности при эксплуатации электроустановок (утверждены Минэнерго СССР 3 декабря 1979 г.).

Правила технической эксплуатации электроустановок потребителей и Правила техники безопасиости при эксплуатации электроустановок потребителей (утверждены 18 апреля 1969 г.).

Правила устройства и безопасной эксплуатации сосудов, работающих под давлением (утверждены Госгортехнадзором СССР 19 мая 1970 r.).

Правила техники безопасности и производственной санитарии при производстве ацетилена, кислорода и газопламенной обработке металлов (утверждены ЦК профсоюза рабочих машиностроения 2 апреля 1963 г.).

Правила безопасности в газовом хозяйстве (утверждены Госгор-

технадзором СССР 26 июня 1979 г.).

Инструкция по безопасному ведению работ для машинистов стреловых самоходных кранов (утверждена Госгортехнадзором СССР 21 октября 1966 г.).

Инструкция по безопасному ведению работ для стропальщиков, обслуживающих грузоподъемные краны (утверждена Госгортехнадзором СССР 29 сентября 1966 г.).

6.3. СКЛАДИРОВАНИЕ ОБОРУДОВАНИЯ

Материалы и оборудование необходимо хранить на специально выделенных площадках. Площадки должны быть выровнены и утрамбованы, а в зимнее время очищены от снега и льда. Должны быть приняты меры против самопроизвольного смещения, просадки, осыпания и раскатывания хранимых материалов. При складировании материалов проходы между штабелями принимают шириной не менее 1 м. Ширину проездов выбирают в зависимости от габаритов транспортных средств и погрузо-разгрузочных механизмов, обслуживающих склал.

Грузы, складируемые вблизи железнодорожного или подкранового пути при высоте штабеля до 1,2 м, должны находиться не менее 2 м от головки ближайшего рельса, а при большей высоте — не менее 2,5 м.

Укладка материалов и оборудования при их хранении должна производиться следующими способами:

Крупногабаритное и тяжеловесное оборудование Трубы стальные крупных диаметров в штабелях	В один рид
с прокладками и концевыми упорами высотой	До 3,0 м
Трубы мелких диаметров в стеллажах высотой Черный прокат в штабелях высотой	До 3,0 м До 1,5 м
Кирпич: в пакетах и поддонах	До 2 ярусов
в контейнерах	В один ярус До 1,7 м

Запрещается прислонять (опирать) материалы и изделия к заборам и элементам сооружений.

6.4. ПРОИЗВОДСТВО СОВМЕЩЕННЫХ И ОПАСНЫХ РАБОТ

При организации строительных площадок, размещений участков работ, рабочих мест проходов и проездов следует установить опасные для людей зоны, в пределах которых постоянно действуют или потенциально могут действовать опасные производственные факторы. К зонам постоянно действующих производственных факторов относятся зоны:

вблизи от неизолированных токоведущих частей электроустановок;

- вблизи иеогражденных перепадов на высоте 1,3 м и более;
- в местах перемещения машин и оборудования или частей и рабочих органов;
- в местах, иад которыми происходит перемещение грузов грузоподъемными кранами;
- в местах, где содержатся вредиые вещества в концентрациях выше предельно допустимых или воздействует шум интенсивностью выше предельно допустимой.

Строительно-монтажные работы в зоиах постоянно действующих опасных производственных факторов, как правило, не допускаются, а зоны ограждаются устройствами, предназначенными для предотвращения непреднамеренного доступа людей.

К зонам потенциально действующих опасных производственных факторов относятси: участки территории вблизи строящегося здания;

участки этажей (ярусы) зданий и сооружений в одной захватке, над которыми происходит монтаж (демонтаж) конструкций или оборудования.

При производстве работ в указанных опасных зонах следует осуществлять организационно-технические мероприития, обеспечивающие безопасность работающих.

Границы опасных зон, в пределах которых возможио возникновение опасности в связи с падением предметов, устанавливаются согласно табл. 6.1.

Таблица 6.1. Границы опасной зоны в связи с падением предметов

Высота возможиого падения предмета, м	Вблизи мест перемещения грузов (от горизонтальной проекции траектории максимальных габаритов перемещаемого груза машииами), м	Вблизи строящегося здания или сооружения (от его внешнего периметра), м		
До 20	7	5		
Свыше 20 до 70	10	7		
» 70 до 120	15	10		
» 120 до 200	20	15		
» 200 до 300	25	20		
» 300 до 450	30	25		

Границы опасных зои, в пределах которых действует опасиость поражения электрическим током, устанавливаются согласно табл. 6.2.

Таблица 6.2. Границы опасных зои поражения электрическим током

Напряжение, кВ	Расстояния, ограничивающие опасную зону от иеогражденных неизолироваиных частей электроустановки или от вертикальной плоскости, образующейся проекцией на земли ближайшего провода воздушной линии электропередачи, находящейся под напряжением, м
До 1 От 1 до 20 От 35 до 110 От 150 до 220 330 От 500 до 750 800 (постоянного тока)	1,5 2 4 5 6 9

Границы опасных зон вблизи движущихся частей и рабочих органов машин определяются расстоянием в пределах 5 м, если другие повышенные требования отсутствуют в паспорте или инструкции завода-изготовителя.

При производстве работ вблизи действующих воздушных линий электропередачи опасиая зона равна ширине охранной зоны ВЛ и определяется двумя параллельными вертикальными плоскостями, отстоящими от крайних проводов линии на расстояние, м:

для линий напряжением до 20 кВ — 10;

для линий напряжением до 35 кВ — 15;

для линий иапряжением до 110 кВ - 20;

для линий напряжением до 220 кВ — 25.

Особо опасными считаются такие работы, для выполнения которых кроме обычных мер безопасности необходимы дополнительные меры, разрабатываемые отдельно для каждого конкретного вида работ.

К выполнению строительно-монтажных работ, к которым предъявляются дополнительные требования по безопасности труда, допускаются лица не моложе 18 лет и имеющие профессиональные иавыки, прошедшие обучение безопасным методам и приемам этих работ и получившие соответствующие удостоверения.

Перед началом работ в местах, где имеется или может возникнуть производственная опасность (вне связи с характером выполняемой работы), чеобходимо оформление наряда-допуска.

Перечень работ, на которые необходимо выдавать наряд-допуск должен быть составлен на основании приведенного ниже типового перечня:

строительно-монтажные работы с применением строительных машин в охранных зонах воздушных линий электропередали;

строительно-монтажные работы, выполняемые в колодцах, шурфах или закрытых емкостях;

строительно-моитажные работы, выполняемые на территории действующего предприятия, когда имеется или может возникнуть производственная опасность, исходящая от действующего предприятия;

строительно-монтажные работы, выполняемые на участках, где имеется или может возникнуть производственная опасность, исходящая от других видов работ, выполняемых на смежных участках.

6.5. РАБОТЫ НА ВЫСОТЕ

К работам на высоте относятся работы, выполняемые от 1.3 м и более от земли, пола, основания, перекрытия и т. д.

При работе на высоте рабочие места должны быть ограждены. При невозможности или нецелесообразности устройства ограждений работы должны выполняться с предохранительными поясами.

Работы на высоте более 5 м от земли, перекрытия или рабочего настила при их выполнении непосредственно с монтируемого оборудования, коиструкций и механизмов, когда единственным средством защиты от падения с высоты является предохранительный пояс, считаются верхолазными.

Работы на любой высоте, при которых нельзя использовать леса, подмости и лестницы, должны выполняться рабочими верхолазами.

К самостоятельным верхолазным работам допускаются лица не моложе 18 лет, прошедшие медицинский осмотр, имеющие стаж верхолазных работ не менее одного года и тарифный разряд не ниже третьего.

Предохранительные пояса через каждые 6 мес должны подвергаться испытаниям на статическую нагрузку 400 кг.

6.6. УСТРОЙСТВО ЛЕСОВ И ПОДМОСТЕЙ

Инвентарные леса, подмости и люльки должны быть снабжены паспортами предприятий-изготовителей. Использование неинвентарных лесов допускается в исключительных случаях с разрешения главного инженера организации.

Неинвентарные леса при высоте более 4 м должны сооружаться

по утвержденному проекту.

При расчете лесов принимается равномерно распределенная нагрузка: 250 кгс/м² для каменной кладки и 150 кгс/м² — для монтажных работ. Кроме того, все горизонтальные элементы проверяются на сосредоточенный груз 130 кг.

Ширина настилов на лесах и подмостях должна быть не менее 1 м для монтажных работ. Высота проходов на лесах в свету долж-

на быть не менее 1.8 м.

При высоте лесов (стоечных и подвесных) более 6 м должно быть не менее двух настилов; рабочий (верхний) и защитный. При выполнении работ одновременно с двух настилов, находящихся на

разных ярусах, их число должно быть не менее трех.

Настилы лесов, подмостей н стремянок, расположенных выше 1,3 м от уровня земли или перекрытия, должны быть ограждены перилами высотой не менее 1 м. состоящими из стоек, поручня, одного промежуточного горизонтального элемента и бортовой доски высотой не менее 15 см. Подъем и спуск людей на леса допускается только по лестницам, закрепленным верхним концом к поперечине

Леса и подмости высотой до 4 м допускаются к эксплуатации после присмки их производителем работ, а свыше 4 м -- после технического освидетельствования их комиссией,

Подвесные леса могут быть допущены к эксплуатации только после их испытания статической нагрузкой, превышающей нормативную на 25 %, а подъемные подмости — и динамической нагрузкой, превышающей нормативную на 10 %. По результатам испытания должен быть составлен акт.

Приставные лестницы перед эксплуатацией и через каждые полгода подлежат испытанию статической нагрузкой в 120 кгс, приложенной к одной из ступеней в середние пролета лестинцы, находящейся в эксплуатационном положении.

Общая длина (высота) приставной лестницы должна обеспечивать рабочему возможность производить работу стоя на ступени, находящейся на расстоянии не менее 1 м от верхнего конца лестницы, при этом рабочий должен закрепляться карабином предохранительного пояса к надежным элементам конструкций.

Нижние концы приставных лестниц должны иметь упоры в виде металлических шипов или резиновых наконечников в зависимости от состояния опорной поверхности.

Навесные металлические лестницы высотой более 5 м должны быть ограждены металлическими дугами с вертикальными связями и надежно прикрепленными к конструкции.

6.7. ОСВИДЕТЕЛЬСТВОВАНИЕ И ЭКСПЛУАТАЦИЯ ГРУЗОПОДЪЕМНЫХ МАШИН

Для надзора за состоянием грузоподъемных машин, их эксплуатацией и перемещением грузов должны быть назначены ответственные лица из числа инженерно-технических работников соответствующих служб монтажных организаций.

Вновь установленные грузоподъемные машины, а также съемные грузозахватные приспособления должны подвергаться до пуска в работу полному техническому освидетельствованию, предусматривающему: осмотр, статическое испытание грузом, в 1,25 раза превышающим иоминальную грузоподъемность, и динамическое испытание (только грузоподъемных машин) грузом, в 1,1 превышающим номинальную грузоподъемность.

Грузоподъемиые машины, находящиеся в работе, должиы подвергаться периодическому техническому освидетельствованию:

частичному не реже одного раза в 12 мес;

полному не реже одного раза в три года, а редко используемые не реже одного раза в пять дет.

Внеочередное полное техническое освидетельствование грузоподъемных машин производится после переноса на новое место, режонструкции, ремонта и т. п.

При частичном техническом освидетельствовании статическое и динамическое испытания грузоподъемной машины не производятся,

Съемные грузозахватные приспособления и тара в процессе эксплуатации должны подвергаться осмотру в следующие сроки:

Траверсы		٠					٠					•			через 6 мес
Клещи-захв	аты	, т	apa	a											через 1 мес
Стропы (за	ис	КЛІ	046	еиие	M	рe	едк	o	исг	ЮЛ	ь3	yen	Ш	()	через 10 сут

Запрещается работа грузоподъемных машин (стреловых) под проводами действующих воздушных линий электропередач любого напряжения.

Вблизи линий электропередач работа грузоподъемных машин разрешается при соблюдении минимальных расстояний (по воздуху), см. табл. 6.2, от частей машин в перемещаемых грузах (в любом их положении) до ближайшего провода.

Наименьшее допускаемое расстояние по горизонтали от подошвы откоса выемки до ближайших опор грузоподъемной машины принимается в соответствии с табл. 6.3.

Таблица 6.3. Пределы допустимого приближения грузоподъемных машин к откосам

Глубина выемки, м	Расстояние по горизонтали от основания откоса выемки до ближайшей опоры машины, м Грунт						
	песчаный супесчаный суглинистый		глинистый				
1 2 3 4 5	1,5 3 4 5 6	1,25 2,4 3,5 4,4 5,3	1 2 3,25 4 4,75	1 1,5 1,75 3 3,5			

6.8. ЭЛЕКТРОСВАРОЧНЫЕ РАБОТЫ

К электросварочным работам допускаются лица не моложе 18 лет, имеющие удостоверение на право производства работ.

Длина проводов между питающей сетью и передвижным сварочным агрегатом для ручной дуговой сварки не должна превышать 10 м

Не допускается расположение сварочных проводов ближе 10 м от трубопроводов кислорода, ацетилена, пропан-бутана. Электросварка в замкнутых простраиствах, емкостях, сосудах должна производиться только при наличии наряда-допуска, определяющего безопасные условия производства работ. При этом работы должны выполняться не менее чем двумя рабочими, причем наблюдающий за сварщиком должен иметь квалификационную группу по технике безопасности не ниже первой и находиться снаружи емкости для контроля за безопасным проведением работ сварщиком.

Электросварщик, работающий внутри емкости, должен быть снабжен предохранительным поясом с веревкой, конец которой не

менее 2 м должен быть у наблюдающего,

Электросварочные установки, применяемые для сварки внутри емкостей, должны быть оснащены устройством автоматического отключения напряжения холостого хода или ограничения его до 12 В с выдержкой времени не более 0,5 с.

Должна применяться переносная электролампа напряжением не

более 12 В.

Для удаления газов, образующихся в процессе сварки, должна применяться естественная или искусственная вентиляция, в крайнем случае сварку производить в шланговом противогазе.

При вертикальном расположении емкостей с одним верхним люком для доступа в емкость должны применяться металлические ин-

вентарные лестницы.

Сварочный трансформатор должен находиться впе свариваемой емкости.

ПРИЛОЖЕНИЯ

ПРИЛОЖЕНИЕ 1. ОБЩИЕ ТЕХНИЧЕСКИЕ СВЕДЕНИЯ

П1.1. ЕДИНИЦЫ ФИЗИЧЕСКИХ ВЕЛИЧИН

В табл. П1.1 приведены основные единицы физических величин Международной системы СИ согласно ГОСТ 8.417-81 (СТ СЭВ 1052-78).

В табл. П1.2 приведены некоторые производные единицы, образованные из наименований основных единиц, и производные единицы, имеющие специальные наименования.

В связи с применением в практике внесистемных единиц измерения в табл. П1.3 приведены соотношения между внесистемными и единицами системы СИ.

Таблица П1.1. Основные единицы физических величин системы СИ

Наименовапие	Наименование единицы измерения	Обозначение
Длина Масса Время Сила электрического тока Термодинамическая темпера- тура	метр килограмм секунда ампер кельвин	м с А К

Примечание. Кроме температуры Кельвина (обозначение T) допускается применение температуры Цельсия (обозначение t), определяемой выражением t=T-273,15 К. Температура Кельвина выражается в кельвинах (градусах Кельвина), температура Цельсия— в градусах. Числовое значение температуры дотжно сопровождаться значками К и $^{\circ}$ С. По размеру Кельвин и градус Цельсня равны между собой. Различие состоит лишь в начале отсчета.

Таблица П1.2. Производиые едиинцы физнческих велнчин системы СИ

Наименование	Наименование единицы измерения	Обозначе- ние
Единицы, образованны	не из наименований основных ед	иниц
Площадь Объем, вместимость Скорость Ускорение Плотность Удельный объем	квадратный метр кубический метр метр в секунду метр в секунду в квадрате килограмм на кубический метр кубический метр на кило- грамм	M ² M ³ M/c M/c ² KT/M ³ M ³ /KT

Единицы, имеющие специальные наименования

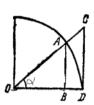
Частота Сила, вес Давление, механическое иа-	Герц Ньютон Паскаль	Гц Н Па
пряжение Энергия, работа, количество	Джоуль	Дж
теплоты Мощность, поток энергии Электрическое напряжение Электрическое сопротив- ление	Ватт Вольт Ом	Вт В Ом

Таблица П1.3. Соотиошения между внесистемными единицами и единицамн системы СИ

Наименование величии	Соотношение между вне- системными единицами и единицами системы СИ	Соотношение между едини- цами системы СИ и вне- системными единицами
Масса Сила, вес Давление, ме- ханическое иа- пряжение		1 kr=0,102 krc·c²/M 1 H=0,102 krc 1 Πa=1,02·10 ⁻⁵ krc/cм² 1 MΠa=10,2 krc/cм² 1 Πa=10 ⁻⁵ бар 1 Πa=7,5·10 ⁻⁷ мм рт. ст. 1 Πa=0,102 мм вод. ст.
Энергия, работа, количество теплоты		1 Дж=0,102 кгс·м 1 Дж=1 Вт·с 1 Дж=2,78·10 ⁻⁷ кВт·ч 1 Дж=3,8·10 ⁻⁷ л.с.·ч 1 Дж=0,24 кэл
Мощность	1 кгс·м/с=9,81 Вт 1 л. с.=0,735 кВт	1 Вт=0,102 кгс·м/с 1 кВт=1,36 л.с.

П1.2. ПОВЕРХНОСТИ И ОБЪЕМЫ ГЕОМЕТРИЧЕСКИХ ТЕЛ

В табл. П1.4 приведены формулы для вычисления поверхностей и объемов геометрических тел. В формулах: R — большой радиус, r — меньший радиус, h — высота, l — образующая.


Таблица П1.4. Поверхности и объемы геометрических тел

Эскиз тела	Боковая поверхиость S	Полиая поверхность Р	Объем <i>V</i>
Цилиндр <i>R</i>	S=2πRh	$P = 2\pi R(l + R)$	V=πR²h
Полый цилиндр (труба)	Внешняя $S_1 = 2\pi Rh$ Внутренняя $S_2 = 2\pi rh$	_	$V=\pi h \ (R^2-r^2)$
Кососрезанный цилиндр	$S=\pi R \times \times (h_1+h)$	_	$V = \pi R^{\frac{3}{2}} \left(\frac{h_1 + h}{2} \right)$
Конус	$S=\pi R l$, где $l=$ $=\sqrt{R^2+h^2}$	P=πRl+πR²	$V = \frac{1}{3} \pi R h$
Усеченный конус	$S=\pi l (R+r)$		$V = \frac{\pi h}{3} (R^2 + r^2 + +Rr)$

Эскиз тела	Боковая поверхность <i>S</i>	Полная поверхиость Р	Объем <i>V</i>
Шар		$P=4\pi R^2$	$V = \frac{4}{3} \pi R^3$
R			
Прямоугольная призма	S=2h (a+b)	P=2 (ab++ah+bh)	V=abh
Обелиск	$S = h(a + a_1 + b + b_1)$	$P = h(a + a_1 + b + b_1) + b_2$	$V = \frac{h}{6} [(2a + a_1) b + (2a_1 + a_2) b]$
a by		$+ab+a_1b_1$	$\begin{array}{c} +a_1) \ b+(2a_1+\\ +a) \ b_1 \end{array}$
Пирамида	S—сумма площадей		$V = \frac{h}{3} \times пло-$
	треугольии- ков		щадь основания

П1.3. ОСНОВНЫЕ ТРИГОНОМЕТРИЧЕСКИЕ ФОРМУЛЫ, РЕШЕНИЕ ТРЕУГОЛЬНИКОВ

В табл. П1.5 приведены тригонометрические функции треугольника, в табл. П1.6 и табл. П1.7 — формулы для определения элементов прямоугольных и косоугольных треугольников, в табл. П1.8 - эначения тригонометрических функций.

$$\sin \alpha = \frac{AB}{OA}$$
; $\cos \alpha = \frac{OB}{OA}$;
 $\tan \alpha = \frac{CD}{OD}$

Зависимость между функциями одного угла:

$$\sin^2 \alpha + \cos^2 \alpha = 1$$
; $\operatorname{tg} \alpha = \frac{\sin \alpha}{\cos \alpha}$; $\operatorname{ctg} \alpha = \frac{1}{\operatorname{tg} \alpha}$

Таблица Пі.6. Определение элементов прямоугольных треугольников

B SO'C	a , b — катеты; c — гипотенуза; $a^2 + b^2 = c^2$; A , B , C —углы
Дано	Формулы нахождения остальных элементов
a, b	$tgA = \frac{a}{b}$; $B = 90^{\circ} - A$; $c = \sqrt{a^2 + b^2}$; $S = \frac{ab}{2}$
a, c	$\sin A = \frac{a}{c}$; $b = \sqrt{c^2 - a^2}$; $B = 90^\circ - A$
А, а	$B = 90^{\circ} - A; b = a \operatorname{ctg} A; c = \frac{a}{\sin A}$
А, с	$B = 90^{\circ} - A; \ a = c \sin A; \ b = c \cos A$

Таблица П1.7. Определение элементов косоугольных треугольников

β _C	Теорема синусов $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$
A 6	Теорема косинусов $a^2 = b^2 + c^2 - 2bc \cos A$; $a = b \cos C + c \cos B$; $b^2 = a^2 + c^2 - 2ac \cos B$; $b = a \cos C + c \cos A$
Дано	Формула нахождения элементов треугольника
a, b, A	$\sin B = \frac{b \sin A}{a}; C = 180 - A - B;$ $c = \frac{b \sin C}{\sin B}$
a, B, c	$A = 180 - B - C; b = \frac{a \sin B}{\sin A}; c = \frac{a \sin C}{\sin A}$
a, b, c	$\cos A = \frac{c^2 - a^2 + b^2}{2bc} \; ; \; \cos B = \frac{a^2 - b^2 + c^2}{2ac} \; ;$ $C = 180 - A - B$

Таблица П1.8. Значения тригонометрических функций

Угол	sin	cos	tg	ctg	Угол
0° 1° 2° 3° 4° 5° 6° 7° 8°	0,000 0,017 0,035 0,052 0,070 0,087 0,105 0,122 0,139 0,156	1,000 1,000 0,999 0,999 0,998 0,996 0,995 0,993 0,990 0,988	0,000 0,017 0,035 0,052 0,070 0,087 0,105 0,123 0,141 0,158	57,29 28,64 19,08 14,30 11,43 9,514 8,144 7,115 6,314	90° 89° 88° 87° 86° 85° 84° 83° 82° 81°
Угол	cos	sin	ctg	tg	Угол

Угол	sin	cos	tg	ctg	Угол
10°	0,174	0,985	0,176	5,671	80°
11°	0,191	0,982	0,194	5,144	79°
12°	0,208	0,978	0,213	4,704	78°
13°	0,225	0,974	0,231	4,331	77°
14°	0,242	0,970	0,249	4,011	76°
15°	0,259	0,966	0,268	3,732	75°
16°	0,276	0,961	0,287	3,487	74°
17	0,292	0,956	0,306	3,271	73°
18°	0,309	0,951	0,325	3,078	7 2°
19°	0,326	0,946	0,334	2,904	71°
20°	0,342	0,940	0,364	2,747	70°
21°	0,358	0,934	0,384	2,605	69°
22°	0,375	0,927	0,404	2,475	68°
23°	0,391	0,921	0,424	2,356	67°
24°	0,407	0,914	0,445	2,246	66°
25°	0,423	0,906	0,466	2,144	65°
26°	0,438	0,899	0,488	2,050	64°
27°	0,454	0,891	0,509	1,962	63°
28°	0,469	0,883	0,532	1,881	62°
29°	0,485	0,875	0,554	1,804	61°
30°	0,500	0,866	0,577	1,732	60°
31°	0,515	0,857	0,601	1,664	59°
32°	0,530	0,848	0,625	1,600	58°
33°	0,545	0,839	0,649	1,540	57°
34°	0,559	0,829	0,675	1,482	56°
35°	0,574	0,819	0,700	1,428	55°
36°	0,588	0,809	0,727	1,376	54°
37°	0,602	0,799	0,754	1,327	53°
38°	0,616	0,788	0,781	1,280	52°
39°	0,629	0,777	0,810	1,235	51°
40° 41° 42° 43° 44° 45°	0,643	0,766	0,839	1,192	50°
	0,656	0,755	0,869	1,150	49°
	0,669	0,743	0,900	1,110	48°
	0,682	0,731	0,933	1,072	47°
	0,695	0,719	0,965	1,035	46°
	0,707	0,707	1,000	1,000	45°
Угол	cos	sin	ctg	ŧg	Угол

ПРИЛОЖЕНИЕ 2. РАСЧЕТЫ НА ПРОЧНОСТЬ ЭЛЕМЕНТОВ КОНСТРУКЦИЙ

П2.1. ОСНОВНЫЕ ФОРМУЛЫ И РАСЧЕТНЫЕ ДАННЫЕ

В табл. П2.1 приведены основные формулы для определения реакции опор, изгибающих моментов и прогибов балок.

В табл. П2.2. П2.3. П2.4 приведены формулы для определения моментов и радиусов инерции и моментов сопротивления сечений различных форм и расчетные данные для наиболее характерных сечений балок.

Основные обозначения в таблицах:

х, у — главные оси сечения;

A — площадь сечения брутто;

 J_x и J_y — моменты инерцин сечения относительно осей x-x и y-y; W_x и W_y — моменты сопротивления сечения относительно осей x-x и y-y;

$$i_x = \sqrt{\frac{J_x}{A}}$$
, $i_y = \sqrt{\frac{J_y}{A}}$

– радиусы инерции сечения:

 A, J_x, J_y, W_x, W_y соответствуют сечениям брутто; $A_n, J_{xn}, J_{yn}, W_{xn}, W_{yn}$ соответствуют сечениям нетто. M_x и M_y — изгибающие моменты отиосительно осей x—x и y—y.

П2.2. МЕТОДИКА РАСЧЕТА ЭЛЕМЕНТОВ КОНСТРУКЦИЙ

Прочность при изгибе в одной из главных плоскостей проверяют по формуле

$$\sigma = \frac{M}{W n_{\min}} < R_y \gamma_c,$$

где о — напряжение при нагибе, кгс/см2; M — изгибающий момент, кгс см; Wn_{\min} — момент сопротивления нетто, см³; R_{ν} — расчетное сопротивление стали растяжению, сжатию, изгибу по пределу текучести, кгс/см2; ус - коэффициент условий работы, принимаемый по

Прочность при изгибе в двух главных плоскостях проверяют по формуле

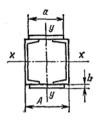
$$\sigma = \frac{M_x}{J_{xn}} y + \frac{M}{J_{yn}} x \leqslant R_y \gamma_c,$$

где х и у - координаты рассматриваемой точки сечения относительно главных осей, см; J_{xn} и J_{yn} — моменты инерции сечения относительно осей соответственно x - x и y - y, см⁴.

Таблица П2.1. Расчетные формулы балок

Тип балки и нагрузки	Опорная реакция	Изгибающий момент	Прогнб
A a p	A = P	М _{макс} = = -Pa	$f_{\text{Make}} = \frac{Pa^3}{3EJ}$
A q	A = qa	$M_{\text{Marc}} = \frac{qa^2}{2}$	$f_{\text{MaKC}} = \frac{qa^4}{8EJ}$
$A \xrightarrow{1/2} p$ B	$A = B = \frac{P}{2}$	$M_{\text{Marc}} = \frac{Pl}{4}$	$f_{\text{Makc}} = \frac{Pl^3}{48EJ}$
A B B	$A = \frac{Pb}{l}$ $B = \frac{Pa}{l}$	$M_{\text{Make}} = \frac{Pab}{l}$	$f_{\text{MAKC}} = \frac{Pbl^2}{27EJ} \times \left(1 - \frac{b^2}{l^2}\right) \times \left(1 - \frac{b^2}{l^2}\right) \times \sqrt{3\left(1 - \frac{b^2}{l^2}\right)}$
7 7	$A = B = \frac{ql}{2}$	$M_{\text{Makc}} = \frac{ql^2}{8}$	$f_{\text{MaKC}} = \frac{5ql^4}{384EJ}$
A B P	$A = -\frac{Pa}{l}$ $B = \frac{P(a+l)}{l}$	$M_b = -Pa$	На конце консоли $f = \frac{Pa^2}{3EJ} (l+a)$
$A = \begin{bmatrix} \alpha_2 \\ \alpha_1 \\ \beta_1 \end{bmatrix} P_2 B$	$B = \frac{1}{l} \times \frac{(P_1 a_1 + \dots + P_2 a_2)}{(P_1 a_2 + \dots + P_2 a_2)}$	$M_{1} = Aa_{1}$ $M_{2} = Aa_{2} P_{1} (a_{2} a_{1})$	
Примедание	E = MOJIVJE VIII	ПУГОСТИ ПЛЯ СТ	али равен 0.205⋅106 МП

Примечание. E — модуль упругости для стали равен 0,205·10° МПа (2,1·10° кгс/см²).


Таблица П2.2. Расчетные формулы сечений различных форм

$l_x = \sqrt{\frac{J_x}{A}}$, cM	<i>p</i> 4	$\frac{\sqrt{a^2-d_1^2}}{4}$	h V 12
$\Psi_{\chi} = \frac{J_{\chi}}{y}$, cm	$\frac{\pi d^3}{32} = 0,0982d^3$	$\frac{n\left(d^4-d_1^4\right)}{32d}$	849 6
J_{x} , cM^{4}	$\frac{\pi d^4}{64} = 0,4908d^4$	$\frac{\pi \left(d^4 - d_1^4\right)}{64}$	bh³ 12
A, cM²	$\frac{\pi d^2}{4} = 0,7854d^2$	$\frac{\pi\left(d^2-d_1^2\right)}{4}$	ąq
Сеченве	$\frac{1}{x}$	d × d	h x h

Продолжение табл. П2.2

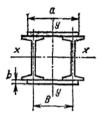

ipoodamenue ruon. 112.2	$a = \sqrt{\frac{J_{\infty}}{A}}$, cM	$\sqrt{\frac{bH^3 - b_1 h^3}{12(bH - b_1 h)}}$	h 18	a V 12	1
di	$W_{x} = \frac{J_{x}}{y}$, cM^{3}	$\frac{h}{6H^3 - b_1 h^3}$	bh² 24	$\frac{a^3\sqrt{2}}{12}$	$\frac{b\left(h^3-h_1^3\right)}{6h}$
	J_{∞} , cm ¹	$\frac{bH^3 - b_1 h^3}{12}$	96 36	12 12	$\frac{b\left(h^3-h_1^3\right)}{12}$
	А, см.	$\mu_l - \mu_l$	bh 2	a ²	b $(h-h_1)$
	Сечение	H X X X X X X X X X X X X X X X X X X X	$h \xrightarrow{x} \frac{x}{y}$	X T X	h x x x y x y y y y y y y y y y y y y y

Таблица П2.3. Расчетиме данные сечений двух швеллеров (по ГОСТ 8240-89)

_	Do			Kr	ė	1	Справо	чные ве	личины д	ля осе	ħ
npo-		змеры	, MM		ж дно х—х					<i>y</i> — <i>y</i>	
Номер филя	В	a	b	Macca 1	Площадь се- чения, см²	J _x , cm	CM ³	t, cm	J _x , cm	W, cm³	i, cm
16	200	170	8	49,70	63,4	3414	387	7,34	3214	321	7,12
20	152	130	8	53,20	67,6	5290	490	8,85	1949	256	5,37
	200	160	8	56,85	72,4	5810	538	8,95	3715	371	7,16
	200	160	10	61,90	78,8	6566	597	9,13	3850	385	6,99
24	180	160	10	73,10	93,2	10 800	830	10,78	3748	416	6,34
	220	180	8	70,60	90,0	10 229	799	10,60	5790	525	7,96
	220	180	10	76,20	97,2	11 425	878	10,83	5993	543	7,78
	260	220	8	75,60	96,4	11 210	876	10,79	6850	668	9,49
	260	220	10	82,50	105	12 670	976	10,97	9042	6 95	9,27
30	200	180	10	91,80	117	20 270	1266	13,14	6158	615	7,25
	250	200	8	88,70	113	19 210	1215	13,04	9785	782	9,30
	250	200	10	95,00	121	21 230	1325	13,24	10 050	804	9,11
	300	250	8	95,00	121	21 106	1315	13,20	15 380	1025	11,26
	300	250	10	102,80	131	23 630	1477	13,44	15 870	1058	00,11

Таблица $\Pi 2.4$. Расчетиме данные сечений из балок двутавровых (по ГОСТ 8239-89)

	l po	змер,		r _Y	ė	Справочные величины для осей					
6 d		iomep,	DIM		CM2		x-x		}	<i>y</i> - <i>y</i>	
Номер	В	a	b	Macca 1 M,	Площадь се- чения, см²	J_{x} , cm ⁴	W _x ,	i _x ,	<i>Jy</i> , см⁴	₩ _y , cm³	i _y . c
20	100	160	10	67,1	85,6	208	655	9,18	2253	225	5,13
24	115	180	10	82,9	105,6	12 545	965	10,9	3668	318	5,89
30	135 190	200 280	10 10	104,4 117	133 149	23 770 27 614	1485 1725		6244 12 726	462 783	6,85 9,24
36	145	250 2 50	10 20	136,5 175,7	173,8 223,8	43 872 62 860	2309 3143	15,89 16,75		700 878	7,64 7,54
36	200 250	300 360	10 12	144,3 165,0	183,8 210,2	47 295 56 65 1	2489 2950	16,04 16,41	17 912 29 707	1038 1504	9,87 11,89
45	160 240	250 360 360	10 10 20	169,7 186,9 243,4	216 238 310	81 350 92 988 134 424	3461 3956 5486	19,40 19,77 20,82	14 840 33 294 41 070	925 1664 2053	8,28 11,82 11,51
55	180	250 250	10 20	218,8 258,2	278 328	149 500 191 500	5240 6405	23,19 24,16	23 770 26 368	1320 1460	9,24 8,96
5 5	220 220	300 360	10 20	226,7 292,6	288 372	157 300 227 264	5520 7700		34 790 45 840	1740 2292	11,0 11,10

Таблица П2.5. Коэффициенты условий работы элементов стальных конструкций

Элементы конструкции	γ_c
1. Сплошные балки и сжатые элементы ферм перекрытий под залами театров, клубов, под трибунами, помещениями магазинов, книгохранилищ, архивов и т. п. при весе перекрытий, равном временной нагрузке или большем	0,9
2. Колонны общественных зданий и опор водона- порных башен	0,95
3. Сжатые основные элементы (кроме опорных) решетки составного таврового сечения из уголков сварных ферм покрытий и перекрытий (например, стропильных и аналогичных им ферм) при гибкости $\lambda \geqslant$ 60	0,8
4. Сплошные балки при расчетах на общую устойчивость при $\phi_6 \! < \! 1$	0,95
5. Затяжки, тяги, оттяжки, подвески, выполиенные из прокатной стали	0,9
6. Элементы стержневых конструкций покрытий и перекрытий:	
 а) сжатые (за исключением замкнутых трубчатых сечений) при расчетах на устойчивость 	0,95
б) растянутые в сварных конструкциях	0,95
в) растянутые, сжатые, а также стыковые накладки в болтовых конструкциях (кроме конструкций на высокопрочных болтах) из стали с пределом текучести до 440 МПа (4500 кгс/см²), несущих статическую нагрузку, при расчетах на прочность	1,05
7. Сплошные составные балки, колонны, а также стыковые накладки из стали с пределом текучести до 440 МПа (4500 кгс/см²), несущие статическую нагрузку и выполненные с помощью болтовых соединений (кроме соединений на высокопрочных болтах), при расчетах на прочность	1,1
8. Сечения прокатных и сварных элементов, а также накладок из стали с пределом текучести до 440 МПа (4500 кгс/см²) в местах стыков, выполненных на болтах (кроме стыков на высокопрочных болтах), несущих статическую нагрузку, при расчетах на прочность:	
а) сплошных балок и колонн	1,1
б) стержневых конструкций покрытий и перекрытий	1,05

прооблиски	
Элементы конструкции	v_c
9. Сжатые элементы решетки пространственных решетчатых конструкций из одиночных равнополочных или неравнополочных (прикрепляемых большой полкой) уголков:	
 а) прикрепляемые к поясам одной полкой сварными швами либо двумя болтами и более, поставленными вдоль уголка: 	
раскосы по рис. П2.1, a	0,9
распорки по рис. Π2.1, δ, в	0,9
раскосы по рис. П2.1, в	0,8
б) прикрепляемые иепосредственно к поясам одиой полкой, одиим болтом, а также прикрепляемые через фасонку независимо от вида соединения	0,75
10. Сжатые элементы из одиночиых уголков, при- крепляемые одной полкой (для неравнополочиых угол- ков только меньшей полкой), за исключением элемен- тов конструкций, указанных в поз. 9 настоящей табли- цы, раскосов по рис. П2.1, б, прикрепляемых иепосред- ственно к поясам сварпыми швами, либо двумя болта- ми, поставленными вдоль уголка и плоских ферм из одиночных уголков	0,75
11. Грузоподъемные приспособлення: мачты, стрелы, шевры, порталы и т. п.	0,9*

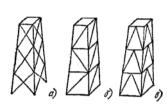
В отдельных особо ответственных случаях при обосновании значения коэффициента могут быть приняты другими.

Примечания: 1. Поз. 11 принята из табл. 10 инструкции ВСН 42-74 Минмонтажспецстроя СССР.

^{2.} Қоэффициенты условий работы $\gamma_c < 1$ при расчете одновременно учитывать не следует.

^{3.} Коэффициенты условий работы, приведенные соответственно в поз. 1 и 6в: 1 и 7; 1 и 8; 2 и 7; 2 и 8а; 3 и 6в, при расчете следует учитывать одновремению.

^{4.} Коэффициенты условий работы, приведенные в поз. 3; 4; 6а. 6; 7; 8; 9 и 10, а также в поз. 5 и 6б (кроме стыковых сварных соединений) при расчете соединений рассматриваемых элементов учитывать не следует.


^{5.} В случаях, не оговоренных в настоящей главе, в формулах следует принимать $\gamma_{_{C}}=1$.

В табл. П2.5 приведены коэффициенты условий работы стальных

коиструкций.

Прочность стенки балки в местах приложения нагрузки к верхнему поясу, а также в опорных сечениях балки, не укрепленных ребрами жесткости, проверяют по формуле

$$\sigma_{eoc} = \frac{F}{tl_{ef}} \ll R_y \, \gamma_c,$$

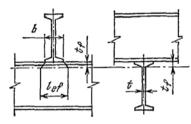


Рис. П2.1. Схемы пространственных решетчатых конструкций из одиночных уголков:

Рис. П2.1а. Схема для определения длины распределения нагрузки на прокатиую балку

а, б, в — с совмещенными в смежных гранях узлами

где F — расчетное значение нагрузки (силы), кгс; l_{ef} — условная длина распределения нагрузки, определяемая в зависимости от условий опирания; для случая опирания цо рис. $\Pi 2.1$, α

$$l_{ef} = b + 2t_f,$$

где t_f — расстояние от наружной грани полки до начала внутреннего закругления стенки (для прокатиой балки).

Устойчивость балок двутаврового сечения, изгибаемых в плоскости стенки, проверяется по формуле

$$\frac{M}{\varphi_0 W} \ll R_y \gamma_c,$$

где M и W — изгибающий момент и момент сопротивления в плоскости наибольшей жесткости; ϕ_6 — коэффициент, приимаемый для прокатных двутавров по табл. $\Pi 2.6$ или вычисляемый по инже приведенным формулам.

Для балок двутаврового сечения с двумя осями симметрии для определения коэффициента ф необходимо вычислить коэффициент ф по формуле

$$\varphi_1 = \psi \frac{J_y}{J_x} \left(\frac{h}{l_{ef}} \right) \frac{E}{R_y} .$$

где зиачения ψ следует принимать по табл. П2.7 в зависимости от характера пагрузки и параметра α , который должен вычисляться по формул

Таблица П2.6. Коэффициенты ϕ_6 для двутавровых балок (по ГОСТ 8239-89)

	T	Farry 6	02 22220	n bound 1	n uno nor	e liby co	орелото	TANUDA N	annyaya		
Номер двутавра		Балки без закрепления в пролете прилож									
дву		к ве	рхнему	поясу			к них	кнему по	ясу		
de D		φ _б η	ри проле	тах, м			φбп	ри проле	етах, м		
Hos	4	6	8	10	12	4	6	8	10	12	
16 20 24 30 36 45 50 55	0,68 0,72 0,73 0,74 0,77 0,83 0,87 0,88	0,50 0,46 0,50 0,50 0,52 0,52 0,53 0,55	0,34 0,36 0,37 0,38 0,39 0,39 0,40 0,40			0,89 0,92 1,0 — — — — — при равиложени		$\begin{array}{cccccccccccccccccccccccccccccccccccc$			
двутавра	ļ	к ве	рхнему г		yone, np			кнему поясу			
də də		φ ₆ при пролетах, м					φ ₆ при пролетах, м				
Номер	4	6	8	10	12	4	6	8	10	12	
20 24 30 36 45 50 55	0,65 0,66 0,67 0,70 0,75 0,81 0,87	0,41 0,44 0,45 0,45 0,46 0,48 0,50	0,30 0,32 0,32 0,34 0,36 0,36 0,37	0,25 0,25 0,26 0,27 0,29 0,30	0,21 0,21 0,22 0,22 0,23 0,24	0,88 0,90 0,93 1,0 —	0,55 0,60 0,69 0,72 0,79 0,84 0,90	0,38 0,42 0,46 0,50 0,54 0,56 0,59	0,30 0,32 0,34 0,36 0,39 0,42 0,45	0,25 0,26 0,27 0,28 0,30 0,32 0,34	

Примечание. Значения ϕ_6 вычислены в соответствии со СНнП II-23-81 для двутавровых балок из стали с пределом текучести 350 МПа (3550 кгс/см²).

Таблица П2.7. Коэффициенты ф для двутавровых балок с двумя осями симметрии

Вид нагрузки	Нагруженный	Формулы для ф при значениях с			
в пролете	пояс	0,1≼α<40	40<α≪400		
Сосредоточенная	Верхний Нижний	$\psi = 1.75 + +0.09\alpha \psi = 5.05 + +0.09\alpha$	$\psi = 3,3 + 0.053\alpha - 4.5 \cdot 10^{-5}\alpha^{2}$ $\psi = 6,6 + 0.053\alpha - 4.5 \cdot 10^{-5}\alpha^{2}$		

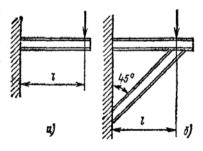
Вид нагрузки	Нагруженный	Формулы для ψ при значениях α			
в пролете	пояс	0,1<α<40	40≪α≪400		
Равномерно распределенная	Верхний Нижний	$ \psi = 1.6 + + 0.08\alpha \psi = 3.8 + + 0.08\alpha $	$\psi = 3.15 + 0.04\alpha2.7 \cdot 10^{-5}\alpha^{2}$ $\psi = 5.35 + 0.04\alpha2.7 \cdot 10^{-5}\alpha^{2}$		

для прокатных двутавров

$$\alpha = 1,54 \frac{J_t}{J_y} \left(\frac{l_{ef}}{h}\right)^2,$$

где h — полная высота сечения; J_t — момент инерции сечения при кручении, принимаемый по табл. $\Pi 2.8$; l_{ef} — расчетиая длина балки,

Таблица П2.8. Моменты инерции при кручении J_t прокатиых двутавров (по ГОСТ 8239-89)


Номер двутавра	J_{t} , cm ⁴	Номер двутавра	J_t , cm s
16	4,46	36	31,4
20	6,92	45	54,7
24	11,1	50	75,4
30	17,4	55	100

равная $l_{ef} = l$ (где l — пролет балки) при отсутствии поперечных связей.

Значение коэффициента ϕ_6 необходимо принимать при $\phi_1 < 0.85$ $\phi_6 = \phi_1$; при $\phi_1 > 0.85$ $\phi_6 = 0.68 + 0.21 \phi_1$, ио не более 1.0.

Прогибы изгибаемых элементов определяются по формулам, приведенным в табл. П2.1, и не должны превышать величии, приведенных в табл. П2.9.

Конструкцию кронштейна и сечение его элементов в зависимости от величины прило-

Рис, П2.2. Кронштейны: a - 6e3 подкосов; $\delta - c$ подкосом

женной нагрузки P и плеча l можно выбрать руководствуясь даиными, приведенными в табл. $\Pi 2.10$ и $\Pi 2.11$.

Таблица П2.9. Предельные прогибы изгибаемых элементов

Элементы конструкций	Относитель- ные прогибы элементов (к пролету !)
Балки и фермы крановых путей под краиы:	
легкого режима работы (включая ручные краны, тельферы и тали)	1/400
среднего режима работы	1/500
тяжелого и весьма тяжелого режима работы	1/600
Балки рабочих площадок производственных зданий при наличин рельсовых путей:	
широколейных	1/600
узколейных	1/400
Балки рабочих площадок производственных зданий при отсутствии рельсовых путей и балки между- этажных перекрытий:	
главные балки	1/400
прочие балки и косоуры лестницы	1/250
стальной настил	1/150
Балки и фермы покрытий и чердачных перекрытий:	
несущие подвесное подъемно-транспортное или технологическое оборудование	1/400
не иесущие подвесное оборудование	1/250
прогоны	1/200
профилированный настил	1/150
Элементы фахверка:	
ригели	1/300
прогоны остекления	1/200

Примечания: 1. Для консолей следует принимать пролет *I*, равный удвоенному выльту консолей %.
2. Прогибы следует определять без учета ослабления сечений отверстия ми для болтов и без учета коэффициентов динамичности.

Таблица $\Pi 2.10$. Допустимая нагрузка на кронштейн без подкоса (рис. $\Pi 2.2, a$)

	Ī		Ha	грузка Г	Р, Т		
l, mm			Hon	ер проф	нля		
	10	12	14	16	20	24	30
Для	швелл	ера (по	гост	8240-	89)	,	1
350 500 750	1,4	2,0 1,45 —	3,0 2,0 1,3	3,9 2,7 1,8	6,2 4,3 2,9	10,2 6,9 4,6	16,4 10,8 7,4

			Ha	грузка	Р, т		
l, mm			Hos	мер проф	риля		
	10	12	14	16	20	24	30

Для двутавра (по ГОСТ 8239-89)

350	=	2,6	3,7	5,0	8,3	11,0	19,0
500		1,6	2,3	3,1	5,2	8,1	13,5
750		1,0	1,5	2,1	3,4	5,4	9,0
750		1,0	1,5	2,1	3,4	0,4	9,0

Примечание. Значения вычислены в соответствии со СНнП II-23-81 для двутавров и швеллеров из стали с пределом текучести 350 МПа (3550 кгс/см²).

Прочиость элементов, подверженных центральному растяжению или сжатию силой N, кгс, проверяют по формуле

$$\frac{N}{A_n} \leqslant R_y \gamma_c,$$

где R_y — расчетное сопротивление стали растяжению, сжатию, изгибу по пределу текучести, кгс/см²; A_n — площадь сечения элемента иетго, см²; γ_c — коэффициент условий работы, принимаемый по табл. П2.5.

Таблица П2.11. Рекомендации для выбора сечения элементов кронштейна с подкосом (рис. П2.2, б)

	Номер про	филя швеллера	по ГОСТ 8240-7	2 прн <i>I</i> , мм
Нагрузка Р. тс	350	500	750	1000
2 5 10 15	10 12 12 16	10 12 14 16	10 12 14 20	12 14 16 20

Примечание. Значення вычислены для швеллеров из стали с пределом текучести 350 МПа (3550 кгс/см²).

Устойчивость центрально-сжатых элементов проверяют по формуле:

$$\frac{N}{A\infty} \ll R_y \gamma_c$$
,

где A — площадь сечения брутто, см²; ϕ — коэффициент продольного изгиба, принимаемый по табл. $\Pi 2 \, 12$ в зависимости от гибкости λ центрально-сжатого элемента:

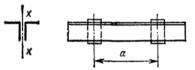
$$\lambda = l_{ef}/i$$
.

Таблица П2.12. Коэффициенты ф продольного изгиба центрально-сжатых элементов

Гибкость Л	Қоэффицненты	ы ф для элемент	гов из стали с ј МПа (кгс/см²)	расчетным сопро	тивлением R_y
73.6	200 (2050)	240 (2450)	280 (2850)	320 (3250)	360 (3650)
10 20 30 40 50 60 70 80 90 110 130 140 150 160 170 180 190 220 20	0,988 0,967 0,939 0,906 0,869 0,827 0,782 0,734 0,665 0,599 0,537 0,479 0,425 0,328 0,290 0,259 0,233 0,210 0,191 0,174 0,160	0,987 0,962 0,931 0,894 0,852 0,805 0,754 0,686 0,612 0,542 0,478 0,419 0,364 0,315 0,276 0,276 0,244 0,218 0,196 0,177 0,161 0,147	0,985 0,959 0,924 0,833 0,836 0,785 0,724 0,641 0,565 0,493 0,427 0,366 0,313 0,272 0,239 0,212 0,189 0,170 0,154 0,140 0,128 0,118	0,984 0,955 0,917 0,873 0,822 0,766 0,687 0,602 0,522 0,448 0,381 0,321 0,276 0,240 0,211 0,187 0,167 0,150 0,136 0,124 0,113 0,104	0,983 0,952 0,911 0,863 0,809 0,749 0,654 0,566 0,483 0,408 0,338 0,287 0,247 0,215 0,167 0,167 0,150 0,135 0,122 0,111 0,102 0,094

Таблица П2.13. Предельные гибкости сжатых элементов λ

Элементы конструкций	Предельная гибкость сжатых элементов
1. Пояса, опорные раскосы и стойки передающие опорные реакции: плоских ферм, структурных конструкций и простраиственных конструкций из труб или парных уголков высотой до 50 м; пространственных конструкций из одиночных уголков, пространственных конструкций из труб и парных уголков высотой свыше 50 м 2. Элементы, кроме указанных в поз. 1 и 7: плоских ферм, сварных пространственных и структурных конструкций из одиночных уголков, пространственных и структурных конструкций из труб и парных уголков;	180—60α 120 210—60α


	i
Элементы конструкций	Предельная гибкость сжатых элементов
пространственных и структурных конструкций	220-40α
из одиночных уголков с болтовыми соединениями 3. Верхние пояса ферм, незакрепленные в про- цессе монтажа (предельную гибкость после заверше-	220
иня монтажа следует принимать по поз. 1) 4. Основные колонны	18060α
5. Второстепенные колонны (стойки фонарей и т.п.), элементы решетки колони, элементы верти-кальных связей между колоннами (ииже подкрановых балок)	210—60α
6. Элементы связей, кроме указанных в поз. 5, а также стержни, служащие для уменьшения расчет- иой длины сжатых стержней, и другие ненагружеи- ные элементы, кроме указанных в поз. 7.	200
7. Сжатые и ненагруженные элементы пространственных коиструкций таврового и крестового сечения, подверженные воздействию ветровых нагрузок, при проверке гибкости в вертикальной плоскости Обозначение, принятое в табл. П2.13:	150
<i>N</i>	

$$\alpha = \frac{N}{\varphi A R_y \gamma_c}$$
 — коэффициент, принимаемый ие менее 0,5.

Здесь l_{of} — расчетная длина элементов, см; l — раднус инерции сечения элементов, см.

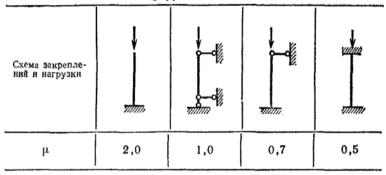
Гибкость сжатых элементов не должна превышать величин, приведениых в табл. П2.13.

Рис. П2.2a. Составиой стержень на плаиках

Составные стержни с прокладками (рис. П2.2а) рассматривают как сплошные:

для сжатых элементов а≤40і;

для растянутых элементов а≤80і.


При этом количество прокладок в сжатом элементе должно быть не менее двух.

Расчетные длины колонн (стоек) или отдельных их участков определяют по формуле

 $l_{ef} = \mu l_c$,

где l_c — длина колониы, стойки, распорки, см; μ — коэффициент расчетной длины, определяемый из табл. П2.14 в зависимости от условий закрепления их концов и вида нагрузки.

Таблица П2.14. Коэффициенты µ для колони постоянного сечения без упругого защемления концов

П2.3. ВЫБОР МАРОК СТАЛИ

Сталь для изготовления конструкций стендов и приспособлений выбирается в зависмости от толщины металла, расчетных сопротивлений и температуры. Необходимые данные для выбора марки стали приведены в табл. П2.15 и П2.16.

В табл. П2.17 приведены климатические данные реле районов страны, которые могут быть необходимы при расчете конструкций и организации производства работ.

П2.4. РИСКИ И ДЕТАЛИ ПРИМЫКАНИЯ К ШВЕЛЛЕРАМ И ДВУТАВРАМ

При изготовлении стеидов, конструкций, приспособлений следует пользоваться приведенными в табл. П2.18—П2.22 данными о рисках прокатных профилей (рис. П2.3) и деталями примыкания к швеллерам и двутаврам (рис. П2.4 и П2.5).

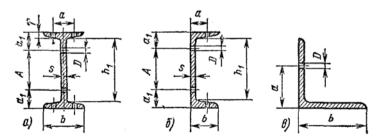


Рис. П2.3. Риски прокатных профилей: а — бальи двутавровые; б — швеллеры; в — уголки

Таблица П2.15. Рекомендации для выбора марки стали

Наименование конструкций	Марка стали, категория	ГОСТ нли ТУ	Толщина, мм	Расчетная темпера- тура не ниже, °С
Траверсы	ВСт3сп5 20	FOCT 38071 FOCT 8731-87	4—20 4—20	-40 -40
Граверсы	09Г2-6 09Г2-6 09Г2С-13	FOCT 19281-73 FOCT 8731-87 FOCT 19281-73	4—20 4—20 4—20	40 40 50
Приспособле- ния для подъ-	ВСт3пс4 ВСт3сп5	FOCT 380-71 FOCT 380-71	4—20 4—20	-30 -40
ема и монтажа оборудования	20 09Γ2-6 09Γ2C-13	FOCT 8731-87 FOCT 19281-73 FOCT 19281-73	4—20 4—20 4—20	40 40 50
Стеиды и опо-	18пс ВСт3кп2	ΓΟCT 23570-79 ΓΟCT 380-71	4—16 4—20	-40 -30
ры для сборки оборудования	ВСт3пс4 ВСт3пс 09Г2-6	FOCT 380-71 FOCT 10706-76 FOCT 19281-73	4—20 4—15 4—20	-40 -40 -50
Леса и пло- щадки, лест- ницы и ограж- дения	ВСт3кп2 ВСт3сп4 ВСт3пс4	ГОСТ 380-71 ГОСТ 380-71 ГОСТ 10706-76	4—20 4—20 4—15	40 50 50
Нерасчетные элементы	ВСт3кп 2	ΓΟCT 380- 7 1	4—20	40

Примечание. За расчетную температуру принимается температура наружного воздуха по наиболее холодной пятидиевке согласно СНиП 01.01-82 или табл. П2.17.

Таблица П2.16. Нормативные и расчетные сопротивления проката стальных конструкций

Марка стали	ГОСТ или ТУ	Вид проката	Толцина проката, мм	Нормативное со- противление по пределу теку- чести, МПа (кгс/мм²)	Расчетное сопро- тивление по пре- делу текучести, МПа (кгс/см²)
ВСт3кп2	ГОСТ 380-71	Лист	4—20	225 (23)	215 (2200)
ВСт3кп2	ГОСТ 380-71	Фасон	4—20	235 (24)	225 (2300)
ВСт3сп	ГОСТ 380-71	Лист	4-20	225 (23)	215 (2200)
ВСт3пс	ГОСТ 380-71		4-20	225 (23)	215 (2200)
ВСт3сп	ГОСТ 380-71	Фасон	4—20	235 (24)	225 (2300)
ВСт3пс5	ГОСТ 380-71		4—20	235 (24)	225 (2300)
ВСт3сп5	ГОСТ 380-71	Лист	4—20	235 (24)	225 (2300)
ВСт3пс5	ГОСТ 380-71		4—20	235 (24)	225 (2300)
ВСт3сп5	FOCT 380-71	Фасон	4—20	245 (25)	235 (2400)
ВСт3сп5	FOCT 380-71		4—20	245 (25)	235 (2400)
09Г2	FOCT 19282-73		4—20	305 (31)	290 (2950)
09Г2	ГОСТ 19281-73	Лист	4—20	305 (31)	290 (2950)
09Г2С	ГОСТ 19282-73		4—9	345 (35)	330 (3350)
09Г2С	ГОСТ 19282-73		10—20	325 (33)	320 (3150)
09Г2С	FOCT 19281-73	Фасон	4-9	345 (35)	330 (3350)
09Г2С	FOCT 19281-73		10-20	325 (33)	310 (3150)
09Г2С	FOCT 19281-73		21-32	305 (31)	290 (2950)
ВСт3кп	FOCT 10705-80	Труба	До 10	225 (23)	215 (2200)
ВСт3пс	FOCT 10705-80		До 10	225 (23)	215 (2200)
ВСт3сп	FOCT 10705-80		До 10	225 (23)	215 (2200)
ВСт3кп	FOCT 10706-76	Труба	4—15	235 (24)	225 (2300)
ВСт3пс4	FOCT 10706-76		4—15	245 (25)	235 (2400)
ВСт3сп4	FOCT 10706-76		4—15	245 (25)	235 (2400)
20	FOCT 8731-87		4—36	235 (24)	225 (2300)

Примечании: 1. За толщину фасонного проката следует принимать

толщину полки.
2. За нормативные сопротивлення приняты минимальные значения предела текучести, приводимые в государственных стандартах или технических условиях. МПа (кгс/мм²).

Таблица П2.17. Расчетные данные температуры, глубины промерзания, снеговой и ветровой нагрузок

inpoint position, enter or an array or and pyron								
	альная	ния	оектирова- °С	ания	покрова	скоростной а высоте		
Наименование пунктов	Абсолютно минимальная температура, °С	средняя нанбо- лее холодной пя- тидневки	средняя наиболее холодных суток	Глубина промерзания грунта, см	Масса снегового покрова земля, кг/м²	Нормативный ско напор ветра на в 10 м, кг/м ³		
Архангельск Белгород Вильнюс Воронеж Воркута	45 37 37 38 52	-32 -23 -23 -25 -41	-36 -28 -25 -30 -45	160 110 90 130 240	150 100 0 100 150	35 35 27 35 35 55		
Волгоград Нижний Новгород Запорожь е Каунас Караганда	-36 -41 -34 -36 -49	-22 -30 -23 -20 -32	-29 -33 -25 -24 -35	110 150 100 80 190	70 150 70 70 100	45 35 45 35 55		
Кострома Киров Кировск Котлас Куйбышев Курск	-46 -45 -41 -51 -43 -38	-30 -31 -28 -33 -27 -24	-36 -35 -34 -39 -36 -29	150 170 170 170 160 110	100 150 200 150 100	27 27 55 35 45 35		
Ленинград Минск Москва Могилев Мурманск	-36 -39 -40 -37 -38	-25 -25 -25 -25 -25 -28	-28 -30 -32 -29 -34	120 90 140 120 150	100 100 100 100 100 150	35 27 27 27 35 55		
Новгород Новосибирск Псков Пермь Петрозаводск Печора	-45 -50 -41 -45 -40 -54	-27 -39 -26 -34 -29 -41	-31 -42 -31 -38 -33 -48	120 220 110 190 130 240	100 100 100 200 150 150	27 45 27 35 35 35 55		
Рига Ростов Рязаиь Саратов Смоленск	-35 -33 -41 -41 -41	-20 -22 -27 -25 -26	-25 -27 -33 -34 -33	90 90 140 150 110	70 50 100 100 100	35 45 35 45 27		
Свердловск Сыктывкар Таллинн Череповец Ухта	-43 -51 -32 -49 -53	-31 -36 -21 -31 -40	-38 -40 -25 -36 -47	190 190 100 140 180	100 150 70 150 150	35 27 35 55 55		

Таблица П2.18. Риски балок двутавровых (по ГОСТ 8239-89) (рис. П2.3, a)

Номер про- филя	1	Размеры полки, мм				Размеры стенки, мм			
	ь	T	a	D _{Make}	A	s	h ₁	<i>a</i> ₁	D _{Make}
16 20 24 30 36 55	81 100 115 135 145 180	7,7 8,3 9,5 9,9 12,1 16,2	45 55 60 70 80 100	13 17 19 23 23 25	80 100 120 170 220 390	5,0 5,2 5,6 6,5 7,5 10,3	125 161 196 251 302 475	40 50 60 65 70 80	15 17 21 23 23 23 25

Таблица П2.19. Риски швеллеров (по ГОСТ 8240-89) (рис. П2.3, б)

Номер профи- ля	P	азмеры г	юлки, в	им		Разме	еры стен	нки, мм		
	ь	<i>T</i>	a	D _{Makc}	A	s	h ₁	a ₁	D _{Make}	
10 12 16 20 24 30	46 52 64 76 90 100	7,1 7,6 8,4 8,6 9,8 10,3	30 30 35 45 50 60	13 17 20 23 26 26	34 40 60 80 110 160	4,5 4,8 5,0 5,2 5,6 6,5	68 86 122 158 192 247	33 40 50 60 65 70	9 13 17 21 25 25	

Таблица П2.20. Риски стали угловой равнополочной (по ГОСТ 8509-86), мм (рис. П2.3, в)

Полка, в	а	D _{make}	Полка, в	а	D _{Makc}
45	25	11	75	45	21
50	30	13	80	45	21
63	35	17	100	55	23
70	40	19	125	70	25

Таблица П2.21. Размеры деталей примыкания к швеллерам (по ГОСТ 8240-89), мм (рнс. П2.4)

Номер	Pa	змеры, в	4M		Тип	1		Ten	1 I I
профи- ля	a	e	r	l ₁	h ₁	1	с	l ₂	h ₂
10	42	6	1,5	86	7	78	4	68	16
12	47	7	1,5	106	7	98	4	88	17
14	53	7	1,5	126	7	116	5	102	18
16	59	7	2	146	7	135	5	120	19
20	72	7	2	185	7,5	172	6	156	21
24	85	8	2	225	7,5	210	7	190	24
30	94	9	2,5	285	8	267	8	246	27

Таблица П2.22. Размеры деталей примыкания к балкам двутавровым (по ГОСТ 8239-89), мм (рис. П2.5)

Номер	P	азмеры,	мм		Ти	ı I		Тип	II
профи- ля	а	e	r	l ₁	h ₁	t	С	l ₂	h ₂
16 20 24 30 36 40 45 55	38 47 55 64 68 73 75 85	4 4,5 4,5 5,5 6,0 6,0 6,5 7,0	2 2 2 2,5 3 3,5 3,5	146 185 224 284 340 380 427 524	7 7,5 7,5 10 10 11,5 13,0	138 175 212 270 326 364 411 506	5 6 6 8 8 10	124 160 196 250 302 340 384 475	17 20 23 25 29 33 35 38

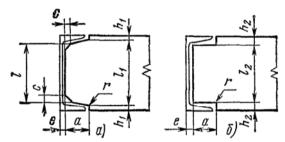


Рис. П2.4. Профили деталей, примыкающих к швеллерам: a - тип I; 6 - тип II

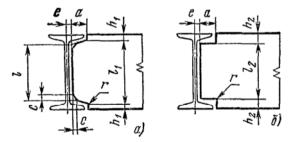


Рис. П2.5. Профили деталей, примыкающих к двутаврам: $a - \tau$ ип I; $6 - \tau$ ип II

П2.5. РАСЧЕТ СВАРНЫХ СОЕДИНЕНИЙ

В соответствии с характером работы сварные соединения рассчитывают на растяжение, срез и изгиб по формулам, приведенным в табл. П2.23.

Расчетные сопротивления $R_{\omega}f$ металла швов сварных соединений с угловыми швами принимают по табл. П2.24. Вместо расчетов несущей способности угловых сварных швов допускается использование данных табл. П2.25.

Таблица П2.23. Формулы для расчета сварных соединений на растяжение, срез и изгиб

Тип шва и нагрузка	Схема	Расчетная формула
Растяжение прямого шва встык	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	$\frac{N}{t l_{\rm III}} \leqslant R_{\omega y} \gamma c$
Изгиб и срез шва	M M M Q M	По соответствующим формулам для целого сечения с заменой R_{y} на $R_{\omega^{y}}$
Срез углового шва	N L'' N N N N N N N N N N N N N N N N N	$\frac{N}{\beta_{f}k_{f}l_{\mathbf{m}}} \ll R\omega_{f}\gamma\omega_{f}\gamma_{c};$ $l_{\mathbf{m}} = 2l_{\mathbf{m}}' + l_{\mathbf{m}}'' - 30$
Изгиб угло- вого шва	L., 1 } M	$\frac{6M}{\beta_f k_f l_{\rm m}^2} < R_{\omega f} \gamma_{\omega f} \gamma_c$
Изгиб и срез углового шва	1 Q M	$\sqrt{\left(\frac{6M}{\beta_f k_f l_{\text{ul}}^2}\right)^2 + \left(\frac{Q}{\beta_f k_f l_{\text{ul}}}\right)^2} < R\omega_f \gamma \omega_f \gamma_c$
Распределение швов у пера и обушка	(I-n) l _u	$k \stackrel{!}{=} (1-k) \ k=0.70$ $k \stackrel{!}{=} (1-k) \ k=0.75$

O бозначения: l_{m} — расчетная длина сварного шва, равная полной длине, уменьшенной на 10 мм;

 k_f — катет сварного шва; t — наименьшая толщина соединяемых элементов; $v_{\omega f}$ — коэффициент условий работы шва, равный I во всех случаях, кроме коиструкций возводнмых в районах с расчетной температурой $>-50\,^{\circ}\text{C}$, для которых $\nu_{\omega f}=0.85$ для металла шва с норматняным сопротивлением Roun =410 МПа (4200 кгс/см2);

 β_f — коэффициент, принимаемый в зависимости от вида сварки; для ручной сварки β_f =0.7; γ_c — коэффициент условий работы; R_{wf} — расчетное сопротивление угло-

вых швов срезу (условному) по металлу шва; $R_{\omega y}$ — расчетное сопротивление стыковых сварных соединений растяжению и изгибу по пределу текучести, равное 0,85 R_{y} .

Таблица П2.24. Нормативные и расчетные сопротивления металла швов сварных соединений с угловыми швами

Сварочн	ые материалы		
Тип электрода по ГОСТ 9467-75	Марка проболоки	<i>Rwun</i> , МПа (кгс/см²)	Rwf, MПа (кгс/см²)
942, 942A	Св-08, Св-08А	410 (4200)	180 (1850)
∋46, ∋46A	Св-08ГА	450 (4600)	200 (2050)
950, 950A	Св-10ГА, Св-08Г2С	490 (5000)	215 (2200)

Таблица П2.25. Предельные усилия на угловые швы, тс

Расчетная	Ĭ		Размерь	ы катета ц	іва, мм		
длина шва. мм	4	5	6	8	10	12	14
40	1,55	1,94	2,33	3,10	3,88	4,66	5,44
50	1,94	2,43	2,91	3,88	4,85	5,82	6,80
60	2,33	2,91	3,49	4,66	5,82	6,99	8,16
70	2,72	3,40	4,07	5,44	6,80	8,16	9,52
08	3,11	3,88	4,65	6,21	7,77	9,32	10,88
90	3,50	4,37	5,24	6,99	8,74	10,49	12,24
100	3,88	4,85	5,82	7,77	9,71	11,65	13,60
110	4,27	5,34	6,40	8,55	10,68	12,82	14,95
120	4,66	5,83	6,98	9,32	11,65	13,98	16,32
130	5,05	6,31	7,56	10,1	12,62	15,15	17,67
140	5,44	6,80	8,15	10,88	13,59	16,32	19,03
150	5,83	7,28	8,73	11,65	14,56	17,48	20,39
160	6,22	7,77	9,31	12,43	15,54	18,65	21,76
170	6,60	8,25	9,89	13,21	16,50	19,81	23,11
180	7,00	8,74	10,48	13,98	17,48	20,98	24,47
190	7,38	9,22	11,06	14,76	18,45	22,14	25,83
200	7,77	9,71	11,64	15,54	19,42	23,31	27,19

Примечание. Электроды типа 942 в конструкциях из стали с пределом текучести до 350 МПа (3550 кгс/см²).

FOCT 5264-80-Y2 FOCT 5264-80-V3 в разрезе Обозначение шва на чертеже Ручная дуговая сварка ГОСТ 5264-80 FOCT 5264-80-32 FOCT 5264-80-23 П2.26. Швы угловых соединений на виде Без скоса кромок Размер конструк-тивных элементов кромок, мм b = 0.00m=0.0.5 s0+7 0+2 s>0,7 s₁ Таблица Обоз-наченве 22 У3 Двусторонний Выполненный шов Односторон-иий Конструктивный элемент подгото-вительных кромок

 $m=0\div0,5s$

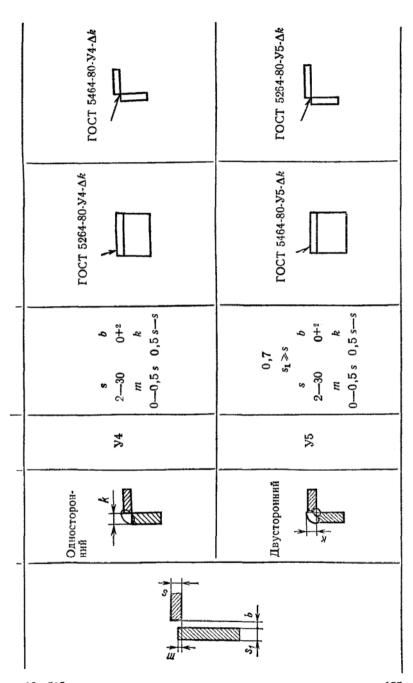


Таблица П2.27. Швы тавровых соединений

		_			
			Ручная дугова	Ручная дуговая сварка ГОСТ 5264-80	
олемент подготовленных	Выполненный шов	-6090	Размер конструктивных	Обозначение шва на чертеже	а на чертеже
Kpumok		наче-	элементов кромок, мм	на виде	в разрезе
		Ğ	Без скоса кромок		
	Односторонний		s b k	FOCT 5264-80-T1- \(\Lambda k \)	ΓΟCT 5264-80- T1-Δ <i>l</i> ε
	<u> </u>	Ţ	3-4,5 4+2		1
es H	¥		5—6 0+2 5+2		_
	\$ CONTRACTOR		7—9 6—2]	
-	Двусторонний		10—15 7±2	FOCT 5264-80-T3-	FOCT 5464-80-
	*		Размер относится к не- расчетным швам. Для		T3- Δk
िङ	H	T.3	2 2		/
			ектировании		1
•		Co ck	Со скосом одной кромки		
S	Односторонний			FOCT 5264-80-T6	FOCT 5264-80-
1 50°45			<i>c=p</i>		10
		16	4—6 1±1		_
0			8—26 2±²		= [
-				_	

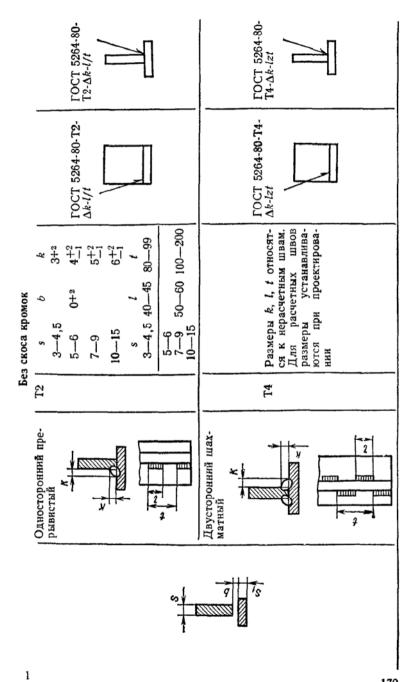


Таблица П2.28. Швы соединений внахлестку

08	Осозначение шва на чертеже	в разрезе		ΓΟCT 5264-80-H1-Δ <i>k</i>
Ручная дуговая сварка ГОСТ 5264-80	Осозначение 1	на виде	0К	TOCT 5264-80-H1-Ak
Ручна		Размеры конструктивных элементов кромок, мм	Без скоса кромок	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
		обозна эннэр		H
	Выполвенный шов			Односторонний
	Конструктивный элемент кромок			S

FOCT 5264-80-H2-Ak
ΓΟCT 5264-80-H2-Δ <i>k</i>
s b $2-5$ $0+1$ $2-5$ $0+1$ $2-6$ $0+2$ $6-60$ $0+2$ $k=k_1=s+b$ Размеры l и t устанавливаются при проектировании
Н2
Двусторонний

FQCT 5264-80-C2 **FOCT 5264-80-C5** FOCT 5264-80-C8 в разрезе Обозначение на чертеже TOCT 5264-80-C5 **IOCT** 5264-80-C8 FOCT 5264-80-C2 Ручная дуговая сварка ГОСТ 5264-80 на виде П2.29. Швы стыковых соединений Размер конструктивных элементов кромок, ми $1^{+1,0}_{-0,5}$ $1 \pm 1,0$ 0+0,5 Со скосом одной кромки q = 01+1 $\frac{2+1}{2}$ Без скоса кромок $\alpha = 50^{\circ}$ 1-1,5 8-26 S==S $s = s_1$ Обозначение Таблица 8 \Im છ Односторонний Двусторонний Выполненный HOB элемент подготовленых кромок Конструктивный 5

Расчетная длина углового сварного шва должна быть не менее $4k_f$ и не менее 40 мм. Катеты угловых сварных швов k_f должны быть не более 1,2 меньшей из толщин свариваемых элементов.

Катеты угловых сварных швов следует принимать по расчету, но не менее следующих данных:

Условные обозначення швов сварных соединений, а также размеры конструктивных элементов, выполненных ручной дуговой сваркой в конструкциях из углеродистой и низколегированной стали, приведены в табл. П2.26—П2.29.

П2.6. РАСЧЕТ БОЛТОВЫХ СОЕДИНЕНИЙ

Расчетное усилие N_{δ} , которое может быть воспринято одним болтом, следует определять по формулам: на растяжение

$$N_b = R_{bt} A_{bh}$$
;

на срез

$$N_b = R_{bs} \gamma_b n_s A;$$

на смятие

$$N_b = R_{bp} \gamma_b d\Sigma t$$

где R_{bi} — расчетное сопротивление растяжению болтов, кгс/см²; R_{bs} — расчетное сопротивление срезу болтов, кгс/см²; R_{bp} — расчетное сопротивление смятию болтовых соединений, кгс/см².

Расчетные сопротивления растяжению, срезу и смятию болтов принимают по табл. $\Pi 2.30$ и $\Pi 2.31$. A_{bn} — площадь сечения болта нетто, см², принимаемая из табл. $\Pi 2.33$; A — расчетная площадь сечения стержня болта, см² ($A = \pi d^2/4$); d — наружный диаметр стержня болта, см; n_s — число расчетных срезов одного болта, шт.; Σt — нанменьшая суммарная толщина элементов, сминаемых в одном направлении, см; γ_b — коэффициент условий работы соединения, принимаемый по табл. $\Pi 2.32$. Для одноболтовых соединений следует учитывать коэффициент условий работы γ_c .

Количество n болтов в соединении при действии расчетной силы N (рис. $\Pi 2.6$) следует определять по формуле

$$n \gg N/\gamma_{\rm c} N_{\rm min}$$
,

где N_{\min} — меньшее из значений расчетного усилия для одного болта, вычисленных по формулам на растяжение, на срез и на смятне; γ_c — коэффициент условий работы, принимаемый по табл. $\Pi 2.5$.

Таблица П2.30. Расчетные сопротивления срезу и растяжению болтов, МПа (кгс/см2)

	roe re-	Класс болтов						
Напряженное состояние	Условное обозначе- ние	4,6	5,6	5,8	6,6	8,8		
Срез	R_{bs}	150 (1500)	190 (1900)	200 (2000)	230 (2300)	320 (3 2 00)		
Растяжение	R_{bt}	175 (1750)	210 (2100)	200 (2000)	250 (2500)	400 (4000)		

Примечание. В таблице указаны значения расчетных сопротивлений для одноболтовых соединений.

Таблица П2.31. Расчетное сопротивление смятию элементов, соединяемых болтами, МПа (кгс/см2)

	Элементы, соединяемые болтами			
Временное сопротивление стали элементов, MIIa (кгс/мм²)	повышенной точности	нормальной и грубой точностн		
345 (35)	445 (4500)	405 (4100)		
355 (36)	465 (4700)	420 (4250)		
365 (37)	485 (4900)	440 (4450)		
370 (38)	495 (5100)	450 (4600)		
390 (40)	535 (5500)	485 (5000)		
430 (44)	625 (6400)	565 (5800)		
440 (45)	650 (6650)	585 (6000)		
460 (47)	695 (7150)	625 (6400)		
470 (48)	720 (7350)	645 (6600)		
490 (50)	770 (7850)	690 (7050)		

Таблица П2.32. Коэффиценты условий работы соединения

Характеристика соединений	v_b
1. Многоболтовое в расчетах на срез и смятие при болтах; повышенной точности грубой и нормальной точности 2. Болтовое в элементах конструкций из стали с пределом текучести до 380 МПа (3900 кгс/см²) в расчете на смятие при расстояниях: а—вдоль усилия от края элемента до центра ближайшего отверстия; b—между центрами отверстий (в одноболтовом соединении при а=1,5d, в многоболтовом при а=1,5d, b=2d)	1,0 0,9 0,85

Примсчания: 1. Коэффициенты, установленные в поз. 1 и 2, следует учитывать одновременно.
2. При значениях расстояний a и b, промежуточных между указаниыми в поз. 2 и в табл. П2.34, коэффициент γ_b следует определять линейной интерполяцией.

Таблица П2.33. Предельные усилия на болт

12 16 20 24 30 с площадью поперечного сечения (нетто), см * 0,837 1,57 2,45 3,52 5,60
е с площадью поперечного сечения (нетто), см *
0,837 1,57 2,45 3,52 5,60
He 1,46 2,74 4,28 6,16 9,80 1,75 3,30 5,14 7,39 11,76 2,09 3,92 6,12 8,80 14,0
1,70 3,01 4,71 6,78 10,6 2,15 3,80 5,96 8,58 13,4 4,92 6,56 8,20 9,84 12,30
1,30 2,30 3,60 5,19 8,1 1,64 2,92 4,56 6,56 10,26 2,76 4,92 7,68 11,06 17,26 3,76 5,02 6,27 7,52 9,4
HIME 3,35 6,28 9,80 14,08 22,4 3,07 5,46 8,54 12,29 19,2 - 6,12 7,65 9,18 11,47
* *

^{*} При толщине сминаемого элемента 1 см в конструкциях из стали ${\bf c}$ пределом текучести до 350 МПа (3550 ${\rm krc/cm^2})$.

При расчете болтовых соединений допускается пользоваться данными, приведенными в табл. П2.33.

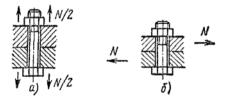


Рис. П2.6. Болт:

а — нагруж эньгй продольной силой; б — нагруженный полеречной силой

Болты следует размещать согласно данным табл. П2.34. Болты нормальной и грубой точностн в многоболтовых соединениях следует применять для конструкций, изготавливаемых из стали с пределом текучести до 380 МПа (3900 кгс/см²).

П2.7. РАСЧЕТ ДЕРЕВЯННЫХ КОНСТРУКЦИЙ

Расчет центрально-сжатых элементов деревянных конструкций постоянного сечения производится по формулам: на прочность

$$\frac{N}{F_{\rm HT}} \leqslant R_c$$
;

на устойчивость

$$\frac{N}{\varphi F_{\text{pacy}}} \leqslant R_c,$$

где R_c — расчетное сопротивление древесины сжатию вдоль волокон, МПа (кгс/см²); N — расчетиая продольная сила, кгс; $F_{\rm HT}$ — площадь сечення элемента нетто, см²; $F_{\text{расч}}$ — расчетная площадь поперечного сечения, принимаемая при отсутствии ослаблений $F_{\text{расч}}$ — $F_{\text{ор}}$; ф — коэффициент продольного изгиба, определяется по формулам:
 при гибкости элемента λ≤70

$$\varphi = 1 - 0.8 \left(\frac{\lambda}{100}\right)^2,$$

при гибкости элемента х≥70

$$\varphi = 3000/\lambda^2$$
.

или определяется по табл. П2.35.

Гибкость λ элементов цельного сечения определяют по формуле

$$\lambda = l_0/r$$

где l_0 — расчетная длина элемента, см; r — радиус инерции сечения элемента, см, определяется

$$r = \sqrt{J_{\rm 6p}/F_{\rm 6p}},$$

где J_{6p} — момент инерции сечения брутто, см⁴.

Таблица П2.34. Размещение болтов

Характеристика расстояния	Ра сс тояние
1. Расстояння между центрами болтов в дюбом направлении: минимальное максимальное в крайних рядах при отсутствии окаймляющих уголков при растяжении и сжатии максимальное в средних рядах, а также в крайних рядах при наличии окаймляющих уголков: при растяжении при растяжении при сжатии 2. Расстояния от центра болта до края элемента: минимальное вдоль усилия то же поперек усилия при обрезных кромках	2,5 d 8 d нли 12 t 16 d нли 24 t 12 d нли 18 t 2 d 1,5 d

Таблица П2.35. Зиачения коэффициента продольного изгиба ф в зависимости от гибкости элементов

λ	φ	λ	Φ	λ	Φ
10 20 30 40 50 60 70	0,99 0,97 0,93 0,87 0,80 0,71 0,61	80 90 100 110 120 130 140	0,47 0,37 0,30 0,25 0,21 0,17 0,15	150 160 170 180 190 200	0,13 0,11 0,10 0,09 0,08 0,07

Таблица П2.36. Предельная гибкость элементов конструкций

Наименование элемента	Гибкость
Сжатие пояса, опорные раскосы и опорные стойки ферм, колонны	120
Прочие сжатые элементы ферм и других сквозных конструкций	150
Сжатые элементы связей	200
Растянутые пояса ферм в вертикальной плоскости	150
Прочие растянутые элементы ферм и других сквоз- ных конструкций	200

Таблица П2.37. Расчетные сопротивления древесины (сосны и ели)

Напряженное состояние и характеристика элементов	Обозна- чение	Расчетные сопротив- ления, МПа (кгс/см²) для сортов древесины		
		1	2	3
Изгиб, сжатие и смятие вдоль воло- кон элементов прямоугольного сече- ния (за исключением указанных в подпунктах б, в) высотой до 50 см	R_{μ}, R_{c}, R_{cM}	14 140	13 130	8,5 85

Напряженное состояние и характеристика эдементов	Обозна- чение	Расчетные сопротив- лення, МПа (кгс/см²)			
		1	2	3	
Изгиб, сжатне и смятие вдоль воло- кон элементов прямоугольного сече- иия шириной свыше 11 до 13 см при высоте сечения свыше 11 до 50 см	R_{μ}, R_{c}, R_{cM}	15 150	14 140	100	
Изгнб, сжатие и смятие вдоль воло- кои элементов прямоугольного сече- ния шириной свыше 13 см при высо- те сечения свыше 13 до 50 см	R_u, R_c, R_{cm}	16 160	15 150	11 110	
Изгиб, сжатие и смятие вдоль воло- кон элементов из круглых лесомате- риалов без врезок в расчетном сече- нии	R_{μ}, R_{c}, R_{cm}	-	160 160	100	
Растяжение вдоль волокон для неклеенных элементов	$R_{\mathbf{p}}$	100	7 70	_	
Сжатие и смятие по всей площади поперек волокон	$R_c \cdot 90$, $R_{cm} \cdot 90$	1,8 18	1,8	1,8	
Смятие поперек волокон местное в опорных частях конструкций, лобовых врубках и узловых примыканиях элементов	<i>R_c</i> _M ⋅90	3 30	3 30	3 30	

Расчетную длину элементов l_0 следует определять умножением его свободной длины l из коэффициент μ_0 :

$$l_0 = l\mu_0$$

коэффициент μ_0 принимается при шарнирно закрепленных концах — 1; при одном шарнирно закрепленном и другом защемленном конце — 0,8; при одном защемленном и другом свободно нагруженном

Расчетную длину пересекающихся элементов, соединенных между собой в месте лересечения, следует принимать равной: при проверке устойчивости в плоскости конструкции — расстоннию от центра узла до точки пересечения элементов; при проверке устойчивости из плоскости конструкции: в случае пересечения сжатого элемента с растянутым равной по величине силой — наибольшей длине сжатого элемента, измеряемой от центра узла до точки пересечения элементов.

Расчет элементов из круглых лесоматериалов на устойчивость следует производить по сечению, расположенному в середине расчетной длины элемента, а на прочность — по сечению с максимальным изгибающим моментом.

Предельные гибкости сжатых элементов и расчетные сопротив-

ления древесины приведены в табл. П2.36 и П2.37.

Расчет изгибаемых элементов на прочность производят по формуле

 $\frac{M}{W_{\text{pac}\,q}} \leqslant R_{\text{H}}$,

где M — расчетный изгибающий момент; $R_{\rm H}$ — расчетное сопротивление изгибу; $W_{\rm расч}$ — расчетный момент сопротивления поперечного сечения.

Для цельных элементов Wрасч= Wнт.

П2.8. РАСЧЕТНЫЕ ДАННЫЕ ГРУНТОВ

Приведенные в табл. П2.38 и П2.39 данные о допускаемом и нормативном давлениях на основания из насыпных и песчаных грунтов используются при расчетах стендов, временных опорных конструкций, самоходных грузоподъемных механизмов и пр.

Таблица П2.38. Допускаемое давление на основания из насыпных грунтов

Характер насыпей и вид грунтов	Допускаемсе давление, МПа (кгс/см²)
Планомерно возведенные насыпки из грунтов: песчаных глинистых Отвалы (без уплотнения площади): из песчаных грунтов, шлаков Отвалы с уплотнением площади оснований: из песчаных грунтов из глинистых грунтов, отходов строительного производства	0,25 (2,5) 0,2 (2,0) 0,18 (1,8) 0,25 (2,5) 0,18 (1,8)

Таблица П2.39. Нормативные давления $R^{\rm B}$ на основании из песчаных грунтов, МПа (кгс/см²)

Вид груита	Плотиый грунт	Грунт средией плотности			
Пески гравелистые и крупные независимо от их влажности	0,45 (4,5)	0,35 (3,5)			
Пески средней крупности независнмо от их влажности	0,35 (3,5)	0,25 (2,5)			
Пески мелкие:	0,3 (3)	0,2(2)			
маловлажные очень влажные Пески пылеватые маловлажные	0,25 (2,5) 0,25 (2,5)	0,15 (1,5) 0,2 (2)			

СПИСОК ЛИТЕРАТУРЫ

- 1. Справочник монтажника тепловых и атомных электростанций/Под ред. В. П. Банника и Д. Я. Винницкого. М.: Энергоиздат, 1981.
- 2. Справочник по ремонту котлов и вспомогательного котельного оборудования/Под общ. ред. В. Н. Шастина, М.: Энергоиздат.
- 3. Винницкий Д. Я. Организация монтажа оборудования тепловых электростанций. М: Энергия, 1980.

4. Гончаров С. П. Монтаж парогенераторных установок тепловых электростанций. М.: Энергия, 1978.

5. Хромченко Ф. А. Сварка оборудования электростанций. М.:

Энергия, 1977.

6. Гинзбург-Шик Л. Д. Такелажные работы. М.: Энергия, 1973. 7. Гинзбург-Шик Л. Д. Такелажные работы при монтаже оборудования электростанций. М.: Энергия, 1970.

8. Уланов Н. И. Средства механизацин при монтаже оборудова-

ния тепловых электростанций. М.: Энергия, 1978.

9. Уланов Н. И. Малая механизация монтажных работ. М.: Энергия, 1975.

10. Матвеев В. В. Примеры расчета такелажной оснастки. Л.:

Стройиздат, 1978.

11. Абалаков Б. В., Банник В. П., Резников Б. И. Монтаж паровых турбин и вспомогательного оборудования. М.: Энергия, 1966.

12. Зыкин А. П., Жилин В. Н. Такелажные работы при ремонте котлоагрегатов. М. Энергия, 1976.

13. Жилин В. Н., Семенов В. М. Ремонт парогенераторов. М.:

Энергия, 1976.

14. Вольский В. В. Монтаж дымовых труб новых конструкций.

М.: Энергия, 1980.

15. Белоцерковец В. В. Механизация электромонтажных работ. М.: Энергия, 1977.

16. Техиические условия погрузки и крепления грузов. М .: Транспорт, 1969.

17. Готлиб Е. А. Организация сварочных работ на монтаже теп-

ловых электростанций. М.: Энергия, 1971.

18. Готлиб Е. А. Электросварщик оборудования атомных элект-

ростанций. М.: Энергия, 1978.

19. Гинзбург-Шик Л. Д., Зарипов М. З. Техника безопасиости при моитаже тепломеханического оборудования электростанций (в вопросах и ответах). М.: Энергия, 1980.

20. Шемиот В. В., Бордюков А. П. Организация производства работ по моитажу оборудования электростанции. М.: Энергия, 1978.

21. Гинзбург-Шик Л. Д., Зарипов М. З. Справочное пособие по технике безопасности. М.: Энергоиздат, 1982.

22. Никитин Н. В. и др. Краткий справочник монтажника и ремонтника. М.: Энергоатомиздат, 1983.

23. Хромченко Ф. А. Сварочное пособие электросварщика. М.: Энергоатомиздат, 1989.

СОДЕРЖАНИЕ

Предисловие	3
РАЗДЕЛ ПЕРВЫИ. Проект производства работ	5
1.1. Общая часть	5 5
1.2. Состав и содержание проекта производства работ .	5
РАЗДЕЛ ВТОРОЙ. Оборудование и механизмы для произ-	
водства такелажных работ	6
	6
2.1. Қанаты	12
2.3. Скобы такелажные, рым-болты, талрепы	22
0.4	24
2.4. Блоки и полиспасты	
2.5. Лебедки, тали и кошки	32
2.6. Домкраты	41
2.7. Мачты, стрелы, якори	45
2.8. Самоходные стреловые краны	53
2.9. Башенные краны	53
2.10. Козловые и полукозловые краны	53
2.11. Мостовые краны	53
2.12. Транспортные средства	84
РАЗДЕЛ ТРЕТИИ. Механизированный инструмент и приспо-	
собления для производства слесарных и сборочных работ	91
	_
3.1. Механизированный инструмент общего назначения	91
3.2. Мехаиизированный инструмент и приспособления для	0=
специальных работ	95
РАЗДЕЛ ЧЕТВЕРТЫЙ. Оборудование для сварочных работ	97
4.1. Оборудование для газосварочных работ	97
4.2. Оборудование для электродуговой сварки и термо-	0,
обработки	97
· · · · · · · · · · · · · · · · · · ·	31
РАЗДЕЛ ПЯТЫЙ. Материалы, применяемые для монтажных	
и ремонтных работ	113
5.1. Углеродистые, низколегированные и качественные	
стали	113
5.2. Прокат сортовой и фасонный	113
5.3. Рельсы	113
5.4. Трубы	113
5.5. Мегизы	113
5.6. Сплавы и прокат цветных металлов	131
5.7. Прокладочные и уплотнительные материалы	132
5.9 Этектрические кабели и пророда	
5.8. Электрические кабели и провода	135

	Пилома: Прочие			:	:	:	:	:		:	:		36 37
	и шесто	_		безо	пас	ност	и					. 13	38
	Общие по								on	•	•		38
1	Перечень не труда	и техни	ке без	опасн	юсті	1.						. 13	39
6.3.	Складиро	вание (оборуд	ован	ия								10
6.4.	Производ	ство с	овмещ	енны	х и	OIL	асны	х р	або	T			40
	Работы н												12
	Устройст											-	43
6.7.	Освидете.					луа	гаци	я г	узс	поп	цъем		
	ных маши							•	•	•	•		13
	Электросч												14
	ение 1 . О						Я		•	•	•		16
$\Pi 1.1$. Единиц	ы физі	ически	х вел	тичи	H	. •	•	•		•		16
	. Поверхі												17
111.3	В. Основи							мул	ы,	реш	ени	e	•^
	треугол	ьников				•					•	•	19
	ение 2. Р									тру	кци		53
	. Основні									•	•		53
	. Методи									-	•		53 58
	Выбор									•	•	•	90
112.4	. Риски и		-				шве.	ллер	ам	И	дву	/-	68
770.5	таврам					•	•	•	•	•	•		
	. Расчет						•	•	•	•	•	. 17	
	. Расчет							•	•	•	•		
	. Расчет					кция	1	•	•	•	•	. 18	
	. Расчетн		ные г	руито	В	•	•	•	•	•	•	. 18	
Список.	литератур	ы.		•	•	•	•	• ,	•	•	•	. 19	U

Справочное издание

НИКОЛАЙ ВАСИЛЬЕВИЧ НИКИТИН ЮРИЙ ФЕДОРОВИЧ ГАРШИН САМУИЛ ХОНОВИЧ МЕЛЛЕР

Краткий справочник монтажника и ремонтника

Зав. редакцией И. В. Волобуева
Редактор издательства А. А. Кузнецов
Художественный редактор В. А. Гозак-Хозак
Технический редактор О. Д. Кузнецова
Корректор З. Б. Драновская
ИБ № 2762

Сдано в набор 19.02.90. Подписано в печать 18.10.90. Формат 84×108^{1} ₃₂. Бумага типографская № 2. Гаринтура литературная. Печать высокая. Усл. печ. л. 10.08. Усл. кр.-отт. 10.4. Уч.-изд. л. 10,24. Тираж 90 000 экз. Заказ № 505. Цена 95 к.

Энергоатомиздат. 113114 Москва, М-114, Шлюзовая наб., 10