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KEYS TO THIS BOOK

We hope that this book will be of interest for engineers, students and
applied mathematicians and we wish to give a few reading directions for
an optimal use of it.

Chapter 1 presents the main pollutants and their characters of miscibility
which justify the foundations of groundwater-pollution studies on miscible-
displacement theories.

Chapter 2 outlines the basic elements of dispersion theory, otherwise
detailed by Fried and Combarnous (1971), and stresses the derivation of the
mathematical representations from laboratory experiments and their limits.

Chapter 3 gives the methodological rules for studying a case of ground-
water pollution quantitatively. It shows how to handle such a problem and
it defines the sequence of operations. To illustrate this methodology, two
type-projects are presented that could be used as models of propositions for
groundwater-pollution studies (especially in the case of pollution from sani-
tary landfills). Chapter 6 describes some typical case histories which explain
how to apply the methodology, while Chapter 4 gives the main field experi-
ments and formulas necessary to collect the various pollution parameters
and Chapter 5 presents some useful numerical models with their finite-
difference discretization.

With Chapter 7, we have tried to widen the subject, showing that ground-
water pollution is part of larger economical problems linked to the manage-
ment of water resources. We show that the methodology specific to
groundwater pollution described in Chapter 3 is an application of more
general methods, supported by mathematical tools and refined mathematical
data-processing methods, which we describe briefly. We then give the basic
concepts of an economical and political approach to water resources and
groundwater-pollution problems.

Although Chapter 8 is a consequence of experimental considerations, it
is highly mathematical and theoretical and has been written to show applied
mathematicians that even ground-to-ground pollution problems offer very
good opportunities of developing their own mathematical research and to
induce them to come into this very applied branch of physics and help it
with their mathematical knowledge.

Chapter 9 develops the numerical-analysis methods and procedures neces-
sary to set a pollution problem numerically and to solve it on a computer. It
stresses the close interrelationships between the physics of the phenomena
and the modelling.

Four Appendices have been added to provide specific information. Appen-
dix I provides basic information on groundwater hydrology, sufficient for a
correct understanding of groundwater and pollution flow. Appendix II
explains the basis of geophysical electrical soundings, which are much-used
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field techniques to detect pollution without disturbing the medium and
with a restricted number of boreholes.

Appendix IIT is a summary of basic algebraic notions, necessary to under-
stand the techniques of Chapter 9: a non-specialist, such as a geologist,
should be able to build a mathematical model with Appendix III and
Chapters 5 and 9.

Appendix IV is a description of the international norms for drinking
water and provides the concentration thresholds used in pollution studies.

An engineer will mostly use Chapters 3, 4, 5, 6 and 9 to obtain a practical
knowledge of and practical solutions for his pollution problems. If this
practical man is responsible for a whole project, Chapter 7 will be of great
help for him.

An applied mathematician, or a research scientist will find interest in
Chapters 2 and 8 which are theoretical or close to the laboratory. Of course
they should read all the other chapters which bring them into the physics of
the phenomena.

This book can be used as a textbook on the understanding and the
quantification of groundwater-pollution problems; we feel that Chapter 8
should then be skipped, except for §8.4.1, which is an introduction to the
philosophy of modelling. At the undergraduate level, Chapter 2 on dispersion
is a basis for laboratory and mathematical work; at the graduate level, the
chapters on methodology (3 and 7) and on field experiments should be
studied.



INTRODUCTION

Pollution has become the ever-increasing monster that threatens our
civilization (what is left of it, at least), the Moloch that will eat us. This is
what the information media say, and perhaps they are right; now again
perhaps they are wrong, or at least too pessimistic. We feel that the real
danger is not pollution but the ignorance of pollution problems. This book
built around the example of groundwater pollution, is an attempt to rational-
ize and to quantify the problem and to show that the danger of pollution
should not be despised, of course, but conversely, it should not be exaggerated.
It emphasizes that pollution problems can be framed in good physico-
mathematical theories and that they have technical and mathematical
solutions. It stresses the fact that usual techniques, mathematical and experi-
mental, developed in other fields, can be successfully applied in most
pollution cases, once the correct sequence of their intervention can be de-
fined. Moreover, it shows that the treatment of pollution falls well within
the usual financial and technical possibilities of any country: it is a question
of will, organization and technical skill much more than a question of money.

This book stresses the importance of mathematical modelling as the
necessary and practical backbone of the proposed methodologies, but also
warns the reader that a model, by definition, is an approximation of reality:
as the efficient use of a tool depends on the worker, so the efficient use of a
model will depend on its user, and probably more on his physical sense than
on his mathematical capabilities. A good mathematician without physical
sense is a very bad modeller, a good physicist or engineer, with a basic
knowledge of mathematics, can be a very good modeller.

In brief, we hope to prove that the solutions to groundwater-pollution
problems can be reached and we provide some means to reach these
solutions. These means are based upon laboratory and field experimental
methods, and mathematical modelling and characterized by constant com-
parisons between the mathematical frames and the physics of the phenomena.
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CHAPTER 1

GENERAL DESCRIPTION OF GROUNDWATER POLLUTION

1.1. DEFINITION OF GROUNDWATER POLLUTION

The theory says that a man can survive with five liters of water per day
only and sometimes less. Yet an average of 40 to 50 liters per day is necessary
for domestic and personal hygiene; more water is required for farming: a
villager needs 100 liters at least; and in industrialized areas 400 to 500 liters
per inhabitant are common requirements. To match this drastic increase in
the demand for water, existing water resources have to be constantly de-
veloped and new sources have to be found; all available sources must be
mobilized and especially groundwater.

Groundwater is generally a very good source of drinking water, because
of the purification properties of the soils; it is also used for irrigation and
spraying, and, where surface water is scarce, for industrial purposes. In many
arid and semi-arid zones, it is the main source of water. An aquifer constitutes
a natural reservoir of usually high-quality water. But although it is more
protected than surface waters, groundwater appears to be subject to pollution,
a phenomenon that can be defined as follows:

Pollution is a modification of the physical, chemical and biological proper-
ties of water, restricting or preventing its use in the various applications where
it normally plays a part.

1.2. ORIGINS OF GROUNDWATER POLLUTION

Groundwater pollution is usually traced back to four main origins: in-
dustrial, domestic, agricultural and environmental pollution, each family
being divided up into continuous and accidental types.

(1) Industrial pollution is carried to the aquifer by:
— used waters which contain chemical compounds and trace elements (such
as metals, for instance) or which are at a rather high temperature. Radio-
active pollution from atomic plants can also be brought in in this way
— rain infiltrating through waste disposals
-— accidents like the breaking of a pipe line

(2) Domestic pollution is carried to the aquifer by:
— rain infiltrating through sanitary landfills
— accidents, like the breaking of septic tanks
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(3) Agricultural pollution is due to irrigation water or rain carrying away
fertilizers, minerals, salts, herbicides and pesticides.

(4) Environmental pollution is mainly due to seawater intrusion in coastal
aquifers.

Remark. Bacteriological pollution mainly originates in domestic wastes
such as fecal excretions and is not the object of a separate study. The factors

TABLE I

List of main possible groundwater pollutants and pollution indicators

Total dissolved solids Free CO, Phosphate (HPOZ™)
C O D(Chemical Oxygen Demand) Bicarbonates (HCO3) Zinc

B O D(Biological Oxygen Demand) Tron (Fe?") Lead

Carbon (organically linked) Total iron (Fe?* and Fe®") Copper
Hydrogen (organically linked) Manganese Arsenic
Nitrogen Sodium Si0,

Detergents Potassium Temperature
Phenols Calcium pH

Oxygen Magnesium Conductibility
Sulfates (SOﬁ_) Total hardness Redox potential
H,S Chloride

Nitrates (NO3) Fluoride

Nitrites (NO3)
Ammonium (NHZ)

that are usually studied in groundwater pollution are listed in Table I. The
occurrence of these elements and compounds in the water does not neces-
sarily mean that it is polluted, and, actually, pollution criteria will depend
on the type of use made of the water: e.g., drinking purposes are a
possibility, but also personal hygiene or recreation (swimming pools, for
instance) or irrigation; in these last cases the hazards are less well known
than the hazards to drinking water and there are no norms or international
regulations for their control. International norms have been recommended
by the World Health Organization (1972) for drinking-water quality only
and these are presented in Appendix IV.

1.3. PHYSICAL CHARACTERISTICS OF GROUNDWATER POLLUTION

Careful observation of Table I and of the tables of admissible pollution
levels and critical masses (Appendix IV) shows that most frequent and most
dangerous forms of groundwater pollution are miscible with the water of
the aquifer; and if they are not miscible, their critical masses are small
enough that they could be considered as tracers of the water and the move-
ment of traced water in water is certainly the best example of a miscible
displacement. Of course, oil pollution is certainly not miscible, but it has
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been shown (Dracos and Schiegg, 1971) that oil reaching an aquifer after
some accident does not move much and that the pollution of wells by
hydrocarbons will be due to soluble parts or light elements behaving like
tracers, the movement of which can be described by a miscible-displacement
theory.

These considerations, which are confirmed by most field experiments,
have led us to base this book on the theory of miscible displacements of two
fluids, characterized by dispersion phenomena. Yet, we take into account
the fact that the behaviour of miscible fluids is sometimes well described
by neglecting mixing effects: it is the case of some large-scale studies and
also of pollution movements through preferential paths, for instance,
especially when pollution amounts are very small but their toxicity rather
high.

In brief, groundwater pollution is mostly governed by dispersion (dis-
persive case), except when its movement, due to the velocity of the water, is
much more important than its mixing with the water of the aquifer (convec-
tive case). Both cases and their links are described.
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CHAPTER 2

THE THEORY OF DISPERSION IN POROUS MEDIA

The theory of dispersion in porous media is the qualitative description
and the quantitative estimate of the behaviour of miscible fluids displacing
one another in a porous medium.

When two miscible fluids are brought into contact, there is a sharp inter-
face at the beginning which vanishes into a transition zone, as the differ-
ences between physical properties (concentrations, for instance) tend to be
leveled with time. This global effect results from the simultaneous action of
several physico-chemical phenomena, such as molecular diffusion and per-
meability contrasts of the porous medium.

The historical development of the theory of dispersion takes place in three
steps:

(1) Laboratory experiments, investigating the displacement of miscible
fluids in porous media.

(2) The derivation of mathematical processes, equations and formulas de-
scribing the laboratory experiments, providing synthetic explanations of their
results and general equations of dispersion phenomena.

(3) The application of dispersion formulas and equations to field problems
and real pollutions.

Laboratory experiments and mathematical interpretations and theory were
_conducted together and are strongly interdependent. The field application of
dispersion theory is rather recent but is quickly gaining momentum as the
urgent needs for pollution behaviour prediction and control increase. The
application of dispersion theory to field studies shows the holes in the theory
when confronted with reality. Thus a fourth step of development now takes
place: the return to laboratory experiments and systematic field testing to
improve the theory. (Fried and Combarnous, 1971.)

2.1. DESCRIPTION OF DISPERSION
2.1.1. A simple example

Let us consider a porous medium saturated with pure water contained in
a cylindrical tube. At time zero, a chemical liquid compound mixed with
water at concentration C,, is injected in the tube. The concentration profile
is a step function at time zero (Fig. 2.1.1). The movement is unidirectional,
the injection rate is constant and we assume that there is no physico-chemical
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interaction, like adsorption for instance, between fluids and solid matrix.
The concentration of the injected chemical compound varies with time; the
concentration profile has the typical aspect of an S-curve (Fig. 2.1.1).

Fig. 2.1.1. Evolution of the transition zone with time.

The transition zone is defined as the zone where the concentration of
injected liquid varies from 0 to C,. The width of the transition zone increases
with time. It is a typical effect of dispersion, the quantification of which
leads to the various equations of dispersion.

2.1.2. Definition of dispersion

Dispersion in fluid flow in porous media is the occurrence and evolution
of a transition zone between two domains of the fluid phase with different
compositions. )

The occurrence and evolution of a transition zone between two moving
miscible fluids may be interpreted as a tendency towards a uniform chemical
composition of the mixture, although we shall see that the mechanisms of
dispersion are rather complex and cannot be described in one sentence.

2.1.3. Mechanisms of dispersion

Dispersion results from the simultaneous action of both a purely mechan-
ical phenomenon and a physicochemical phenomenon.

(a) Mechanical action: the velocity distribution of a fluid flowing through
a porous medium is not uniform. This is due to boundary effects of the solid
matrix, which can be divided up into three types:

(1) the fact that the fluids are viscous usually implies a zero velocity on
the solid surface, thus creating a velocity gradient in the fluid phase as in
capillary tubes (Fig. 2.1.2a);

(2) the variations of pore dimensions create discrepancies between the
maximum velocities along the pore axes (Fig. 2.1.2b);



DESCRIPTION OF DISPERSION 7

(3) the streamlines fluctuate with respect to the mean direction of flow

(Fig. 2.1.2¢)*.
/ % @Mnn flow

— =

(a}

(b)
Fig. 2.1.2. The components of dispersion. Fluid particles: o at time ¢;-at time ¢ + dt

These three types of mechanical action take place simultaneously and
yield the ““mechanical dispersion” (Fig. 2.1.3).

Fig. 2.1.3. General aspect of dispersion.

The observation of these elementary phenomena suggests a geometrical
aspect of dispersion: the existence of two basic effects, the first one in the
direction A of the mean velocity and due to differences between the velocity
components along A, the second one in the plane orthogonal to A due to
differences between the velocity components in that plane. These effects are
respectively called “longitudinal dispersion” and ‘‘lateral dispersion”. We
shall see that these effects are fundamental in the theory of dispersion as
well as in its application to pollution problems.

(b) Physicochemical action: the physicochemical dispersion is molecular
diffusion, which results from the chemical potential gradient. Chemical
potential is correlated to the concentration. Molecular diffusion takes place
even in a fluid at rest.

As in the case of mechanical dispersion, the action of molecular diffusion
may be classified into types. Dividing the fluid into streamtubes, for the
sake of simplicity, we observe two types:

* Fig. 2.1.2¢ is bidimensional for obvious reasons of draughting problems. It should be
understood as a 3-D representation, of course.
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(1) inside a streamtube, the differences of concentration in the tube mean
direction tend to disappear. It is a longitudinal effect (Fig. 2.1.4a);

(2) between two adjacent streamtubes, there is a transfer of mass, in order
also to smooth out the differences in concentrations. It is a lateral effect
(Fig. 2.1.4b and c¢).

Time=t

Time=t+At
Fig. 2.1.4. Diffusion effects in dispersion.

Actually, molecular diffusion is always present in dispersion and is a
most important factor in regularizing mechanical dispersion. It accounts to
a great extent for lateral dispersion and for the analogies between the math-
ematical representations of dispersion and heat transfer.

2.1.4. Characteristic parameters of dispersion

The characteristic parameters of dispersion are divided up into two sets:
parameters the numerical values of which measure dispersion; and parameters
influencing the process of dispersion.

Parameters megsuring dispersion

The quantitative approach to dispersion requires a definition of the scale
or level at which the measurements are made. This concept of scale is most
important in physics and especially in the context of flow through porous
media: it will dominate our course as a fundamental concept of the method-
ologies governing groundwater-pollution studies.

The theory of dispersion is usually based upon the use of three main
levels: a local level; a fluid-volume or pore-volume level; and a macroscopic
level.

Local level. At this level the parameters describe a physical quantity at a
point, i.e. in an “infinitely small”’ volume element, consistent with molec-
ular-physics data. It is the usual level of fluid mechanics where, for instance,
the movement equations of Navier-Stokes hold.
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Fluid-volume level. At this level, the parameters are defined as “means”,
with respect to some averaging process, of the corresponding local param-
eters over a finite volume of fluid. In a porous medium, the concept of
“pore quantities” (such as pore velocity) is based upon this definition and
the average is taken over a set of pores. The definition of an average is
described in each case, especially when non-additive quantities are involved.

Macroscopic level. This level is introduced in the theory of flow through
porous media to help define a continuum equivalent to the set fluid and
solid matrix. The parameters are the “means”, with respect to some averaging
process, of the corresponding local parameters over a finite volume of porous
medium.

Dispersion is measured through three physical quantities (i.e. quantities
which have a direct physical meaning and the numerical values of which can
be obtained directly, at least in theory) and a set of mathematical quantities
(i.e. quantities resulting from a mathematical interpretation of the theory of
dispersion). The physical quantities are: densities, concentrations, and ve-
locities. The mathematical quantities are called the “dispersion coefficients”. *

Densities. The notation p used alone represents the classical density at the
pore-volume or macroscopic levels. At these levels p; is the specific density
of constituent i and p is the specific density of the mixture. We may some-
times use p at a local level, but then this symbol is always coupled to a
symbol of velocity or concentration which defines its scale: for instance pu
is a local motion quantity. We have:

p=2c
!
where ¢; is the concentration defined below.

Concentrations. Several definitions of the microscopic concentration of a
substance A in a mixture M may be used. "

The mass concentration c¢ is the mass m, of the substance A in a small
volume v of mixture, divided by the volume v or:

¢ = mgy/v

It is a useful definition when mixing occurs without volume changes, i.e. the
total volume v of a mixture of two chemical substances with initial volumes

* Notations. Lower-case italic letters are used to describe the microscopic level and
capital italic letters to describe the macroscopic and fluid-volume levels.
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vy and v, is:
v = v+,

The mass fraction c* is the mass m, of A divided by the mass m,, of M
contained in the same volume, or:

c* = m,/m,,

¢* is an intrinsic quantity which does not depend upon the physicochemical
ways of mixing. ¢ and ¢* are related:

¢ = pc*

where p represents the density of the mixture.
The molecular concentration ¢ is the number r, of molecules of A
divided by the volume of mixture v which contains the molecules or:

cy = ngfv

The molecular fraction c}; is the number n, of molecules of A in a volume
of mixture divided by the total number n,, of mixture molecules in the
same volume:

ey = ng/n,

At the fluid-volume level, the same definitions may be used, the reference
fluid volume being large. Hence the mass concentration is C, the mass fraction
C*, the molecular concentration C,, and the molecular fraction Cj;.

Local velocities. The various compounds (i) of the mixture move with
different velocities u;. Two definitions of the average local velocity of the
mixture are mainly used. The mass average velocity u:

u = (Z ciui)/(z ci) = ( Zc:‘ui)/p

where ¢; is the mass concentration of compound (i). The molecular average
velocity uy,:

uy = ( Z Cpiu)/( Z Curi)

¢y; being the molecular concentration of compound (i).
These velocities are referred to stationary coordinate axes. But diffusion
and dispersion are mainly relative phenomena and it may be interesting to
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introduce relative-velocity concepts, indicating the motion of one compound
relative to the motion of the mixture: u; — u is the diffusion or dispersion
velocity of compound (i) with respect to u, and u; — u,, is the diffusion or
dispersion velocity of compound (i) with respect to uy,. These velocities u;,
u, and uy, are the usual local or microscopic velocities in fluid mechanics.

Mean velocities in the fluid phase and at the macroscopic level. In a fluid
volume B of any kind (for instance, the volume of a streamtube or the vol-
ume of several pores), the mean velocities are defined as follows:

The mass average velocity U of the mixture is defined by:

o ()10

The mass average velocity U; of one compound is defined by:

U, = ( JB citt; dx) / ( fB ¢; dx)

U may also be defined by:
U= (ZCU)p

At the macroscopic level, the velocity is the usual Darcy velocity V. When U
is defined for a large number of pores, it is linked to V by the relationship:

U= Vi
where ¢ is the porosity of the medium.

Dispersion and diffusion coefficients. The mathematical model of diffusion
and dispersion phenomena is a partial differential equation, the coefficients
of which (called diffusion or dispersion coefficients) are useful measure
parameters; for instance, they appear in formulas showing the width of the
transition zone.

These coefficients have the physical dimensions L?7!. It can be shown
that these coefficients are usually tensors. We shall use the notations D for
the diffusion tensor (D! for a component of the tensor); and K for the
dispersion tensor (K for the component of the tensor).

Parameters influencing dispersion

The parameters influencing dispersion may be classified into three groups:
(1) parameters describing the porous medium; (2) characteristics of the fluid;
and (3) characteristics of the displacements.
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The porous medium. It influences dispersion by its geometrical structure.
Generally, it is possible to define this structure by theoretical considerations
of differential geometry, introducing the coordinates and the curvature at
each point of the interface solid pore. Such complete knowledge cannot be
reached by experiments, and this implies the introduction of mean param-
eters. Two sets of geometrical characteristics are commonly used
(Scheidegger, 1963).

The first set is made up of the void fraction or porosity ¢ and of per-
meability k& given by Darcy’s law. The medium is taken as a continuum.

The second set is made up of parameters which are an attempt to measure
the following pore characteristics: (1) the specific area which is the ratio
of the interface solid pore in a sample to the volume of the sample; (2) the
grain-size distribution for an unconsolidated medium; (3) the pore-size dis-
tribution, which may be defined in different ways; and (4) the degree of
consolidation.

If chemical actions take place on the interface solid pore, such as adsorp-
tion, it is necessary to take the chemical constituents in the solid matrix
into account.

The fluid phase. As a whole it is characterized by its velocity and its
density, both defined as functions of its chemical composition. It may
happen that the fluids are not quite miscible; then it is necessary to use the
miscibility curve to define whether dispersion takes place or not (Stephen
et al., 1964). In Fig. 2.1.5 two types of miscibility curves are presented for
mixtures of two or three compounds, respectively Fig. 2.1.5a and b.

S .
(] ] C3 68
Non-miscible 172

£

1 C:l' (b)

N

Fig. 2.1.5. Miscibility curves for two (a) and three compounds (b), 8 is the temperature.

As molecular diffusion is an important component of dispersion, as pre-
viously mentioned, the diffusion coefficient D (for a binary mixture) is one
of the parameters of dispersion formulas.

Characteristics of the displacement. Two aspects of displacement influence
dispersion: the velocity distribution and the distance traveled by the tran-
sition zone.
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2.2. CONCEPTUAL REPRESENTATIONS OF DISPERSION

In order to represent mathematically the dispersion of two miscible fluids
in a porous medium, several models have been derived that can be classified
into three categories: geometrical models, statistical geometric models, and
probabilistic models. These various models have been thoroughly described
in Fried and Combarnous (1971) and Bear (1972).

The geometric models were the first, very simple approach of dispersion
problems, and they are not representative. They consist of fixed capillaries
(either one capillary (Taylor, 1953, 1954) or a set of capillaries) which are
connected or independent, where the asymptotic behaviour of two miscible
displacing fluids is studied with molecular diffusion and velocity contrasts
on the cross-section of the capillary. Such models represent specific porous
media and cannot be generalized; they do not display transverse dispersion.

The next step has been the introduction of random capillaries models
(Saffman, 1959, 1960; De Josselin de Jong, 1958): they consist of a network
of straight pores, distributed and oriented at random and connected together.
Their dimensions are of the order of real pore dimensions. One computes the
distribution function of a particle displacement after a given time period,
which yields the values of dispersion.

Straight pores do not represent a general porous medium. Yet, it has been
possible with such models to display the transverse dispersion and compute
its value relatively to longitudinal dispersion.

Statistical geometric models have been considerably improved by Bear and
Bachmat (1967), who very completely describe the dispersion equation cur-
rently used in all practical applications of pollution studies nowadays. For
that reason, we detail their approach (Bear, 1972).

They use the concept of the three regularization levels (§ 2.1.4). Their
model is an assembly of randomly connected channels, of various lengths,
cross-sections and orientations. Each channel, bounded by a solid surface,
defines a streamtube the axis of which is an analytical curve. The total vol-
ume of the junctions is much smaller than the volume of the channels and,
at a junction, the functional relationships between the flow parameters, such
as velocities and pressures, and the parameters of the channel just left are no
longer valid. The liquid is incompressible, Newtonian, with variable density
and viscosity. The flow regime is laminar, convective acceleration is ne-
glected and energy losses in the junctions can be neglected with respect to
the energy losses in the channels.

Computations are conducted in three steps, corresponding to the three
regularization levels: (1) derivation of the equations of mass conservation and
movement for the fluid particles of the channel; (2) averaging of the equations
on a channel section to obtain local equations; and (3) averaging of the local
equations in a representative elementary volume of medium to obtain the
macroscopic equations.
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The representative elementary volume (R.E.V.) at a point is defined with
respect to porosity: it is the smallest volume element containing the point,
such that when several channels are added or subtracted, the global variation
of volume leaves the porosity invariant.

The average a of a quantity ¢ in the representative element volume Avy,
centered at P, is defined by the integral:

)
HAUG(P) I o2

a(P) =

where dv is the element of pore volume, ¢ the porosity; a is assumed to be
twice differentiable almost everywhere. The following equations are then
obtained:

(1) the mass conservation equation:

= - 2.2.1
ot ox! [ ]

d 9 (DT"fa—c_ —,)_Ja(gbAvo)/axl
ox’

—_ Cul

¢Av,
where T4 = (E—l gﬁ(ig) ’
do do \ ds

while Av, is the volume of the R.E.V., ¢ is the Cartesian coordinate of a
point in a channel, ¢ and s respectively are the curvilinear abscissas of a
flowline in a channel and of the channel axis measured from one end of the
channel. D is the molecular diffusion coefficient.

The microscopic mass flux of dispersing fluid due to convection, cu’, is
made up of two parts, cU’' due to convection at the mean velocity in the
R.E.V. and cii’ due to convection with the local velocity fluctuations with
respect to the mean velocity:

cu' = cU' + cii! [2.2.2]

one sets:

= kv 2.2.3
" [2.2.3]

and the computation yields:

Kij o~ W_L_ 1+2£_+4£_ (£2 -
U LU LU \a [2.2.4]



CONCEPTUAL REPRESENTATIONS 15

where L is the mean channel length, a is a characteristic section dimension,
U is the mean-mass pore velocity and D the molecular diffusion coefficient.
The liquid is incompressible. Equations [2.2.1], [2.2.2] and [2.2.3] then
yield:

c b . . dc . 3
— = — (DT + K¥)— — Uc| + K"
ot ox? ox’

dc 09Av, [0x

3% phv, [2.2.5]

the fraction on the right-hand side accounting for the medium heterogeneity.
(2) the continuity equation of the heterogeneous fluid:

op 0 . . 0p 00 . 0p O(pAvg)/ox!
Lo ki gy L) - E gy B SR 2.
ot  ox' [( ) ax’} 0 0x’  ¢pAv, [2.2.6]
where p is the fluid density.
(3) the movement equation:
z__ff_f a_P_{_—?i__B;EQE 2927
ou \oxd P8 ki u ot [2-2.7]

where B is the channel conductance and k7 = ¢BT" is the permeability.
This equation has been obtained by assuming that density and viscosity
depend linearly upon the concentration, that no correlations exist between
pressure and medium and between liquid and medium and that diffusion can
be neglected.

Another approach, purely probabilistic, also yielded a dispersion equation
similar to [2.2.5]; but the physical meaning of the dispersion coefficients as
expressed in [2.2.4] does not appear so clearly in this probabilistic approach.

To make the smallest number of assumptions about the geometry of the
porous medium seems to be a very natural conceptual approach to a general
representation of dispersion. This leads to deriving probabilistic models
(Scheidegger, 1963), based on the idea that although a porous medium is
completely determined, the knowledge we have of this porous medium is
random; and the most general way of modelling such a situation is to rep-
resent the medium by a set of random variables. Scheidegger gives some
conceptual rules for this type of model:

(1) An assumption must be made on the averaging properties of the porous
medium. :

(2) The relationships between the forces acting on the fluid, the properties
of the fluid and the velocity during an elementary time interval must be
given.

(3) The probability laws of each event during elementary time intervals
must be chosen.
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He derives a random-walk model in a homogeneous and isotropic porous
medium. Time is divided up into elementary intervals and an event during
an interval is independent from the same event during another interval. An
ergodic hypothesis is valid: the average of a quantity in the porous me-
dium is equal to the limit of the averages of the same quantity at a given
point of the medium with respect to time for increasing time. The velocity
variations with respect to the mean velocity are random and the flow is
laminar. The dispersing fluid concentration at a point is the probability of
finding a particle of dispersing fluid at that point. It verifies the diffusion
equation:

for a monodimensional flow at a constant velocity. Experimental studies
allow a generalization of this equation:

-g%—k Ugrad ¢ = div (K grad ¢)
where U is the pore velocity and K the dispersion tensor. This equation is
similar to Bear’s equation for a homogeneous medium and a constant flow
velocity.

This dispersion equation can be refined (Fried and Combarnous, 1971) by
analogy to diffusive mass transfer. In the case of a molecular diffusion
phenomenon, the mass transfer depends on the gradients of ¢*, a dimension-
less number expressed in mass per mass. The diffusion equation is:

_ 9(C*/p)
ot

. . [{C*U
div {(Dp®grad C*) — div
0

aC
or: div (Dpegrad C*) —div (CU) = o
Such a form suggests that, in the general case, a good representation of
dispersion phenomena may be obtained by:
div (Kpegrad C*) —div (CU) = 0C/ot [2.2.8]
In the tracer case, this form is equivalent to the usual form as p is constant:

div (K @ grad C) —div (CU) = 0C/at pC* = C
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Equation [2.2.8] should be used when p depends on concentrations, as in
the case of miscible fluids of different densities. It should be noticed that
there exists a correlation between the continuity equation of the fluid phase
and the dispersion equation.

In the diffusion of two compounds 1 and 2, the Onsager reciprocity
relationships infer that the diffusion coefficient of compound 2 in com-
pound 1 is the same as the diffusion coefficient of compound 1 in com-
pound 2. In the same way, it may be induced that the dispersion coefficients
do not depend on the constituents.

Given a mixture of two compounds, the dispersion equations are:

ac;
div (Kpograd C) —div (C;U) = —*(i = 1and 2) [2.2.9]

According to a previous remark, K does not depend on i. Taking into
account the definitions of C and C*, C; +C,=p and C} + C% =1, the
continuity equation may be derived by adding the terms of (2.2.9) for
i=landi=2:

div [Kpegrad (CT + C3)] —div [(C; + C,)U] = o(C, + C,)/ot
or: div (pU) + dp/ot = O

This result implies that the system of only one dispersion equation and
the continuity equation will be sufficient to formulate a dispersion problem
well.

2.3. CRITIQUES OF THE CLASSICAL FOUNDATIONS OF THE DISPER-
SION EQUATION

By various methods, an equation called “‘the general equation of disper-
sion” has been derived. This equation of dispersion is the mathematical
model currently used to represent real cases of dispersion, found in ground-
water pollution.

As the name ‘“model” implies it, this equation is a simulation of the real
phenomenon and as such provides an approximation only of dispersion,
based upon the varicus assumptions developed in the previous paragraph.
The problem is to find out whether the errors in this approximation are
consistent with the errors allowed in the various experimental studies of
dispersion.

We shall see that, with respect to the type and precision of the field
results, as well as to the precision in the in-situ determination of the coef-
ficients of this model, this equation is good and yields results consistent
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with the experimental errors. Yet some discrepancies between theoretical
and experimental results appear at the level of the fine laboratory experiment.
Now we shall display these discrepancies and suggest possible means of
improving the conceptual representation of dispersion phenomena.

2.3.1. Experimental results

A series of experimental laboratory results, obtained by scientists work-
ing independently, is considered as the origin of the questioning of the
validity of the classical dispersion equation. These scientists have noticed
discrepancies between experimental results and theoretical results from the
modelling by means of the classical dispersion equation of their laboratory
experiments. They have shown that more than the current experimental
errors is at the origin of these differences.

Scheidegger (1963) has shown the occurrence of systematic errors (Fig.
2.3.1). He has tried the assumption of computation errors due to boundary
conditions at a finite distance, which did not prove satisfactory.

Time

Fig. 2.3.1. Scheidegger’s computed curve versus experimental results.

He also thought that, in his theory, time steps were not independent and
assumed the existence of an autocorrelation between subsequent time-steps.
In order to take care of the correlations between the directions that a particle
possesses at time ¢t and at time ¢ + 7, he introduced the Lagrangian correla-
tion coefficient R(7) defined as follows in a coordinate system moving with
the mean velocity of flow:

R(r) = [a(t)-a(t + D] /(@)

Scheidegger ended up with a telegraph equation:

%4_ Ua_d/ _ azw (U2 azd/ azw ﬂ)

ot
ot ox dx2 ox? ox ot  ot?

where A and K depend on the dynamic parameters such as pressure drop.
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Unfortunately, this equation yields solutions which do not fit experimental
results (Fig. 2.3.2). There is a sharp cut-off at x' = (K/A)"?t, travelling in the
porous medium at velocity (K/A)'2.

A

' 1
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_t_/

| =
[ ]
)
>

Fig. 2.3.2. Scheidegger’s telegraph equation solution (1963).

Goodknight et al. (1960), Goodknight and Fatt (1963), and Coats and
Smith (1964) have tried to explain these observed differences between theory
and experiment by the occurrence of dead-end pores (Fig. 2.3.3) which are
pores where the fluids are static and mass transfers are only due to molecular

diffusion.
\
Dead-end
@ pores

Fig. 2.3.3. Dead-end pores in a granular medium.

Fatt derives a general diffusion equation, taking into account the exis-
tence of dead-end pores and assuming a uniform distribution of dead-end
pores in the medium, no communications between them and a steady-state
diffusion flow through the necks of dead-end pores. He obtains the system:
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where D is the diffusion coefficient, C, (x,t) is the concentration in dead-end
pores, (0 is the tortuosity of the medium, V), is the volume of flow channels,
V, is the total volume of dead-end pores, V, is the volume of one dead-end
pore, [, and A, are the length and the cross-sectional area of the neck of a
dead-end pore (Fig. 2.3.4). These equations are restricted to a diffusion
process.

Fig. 2.3.4. Neck of a dead-end pore.

In the same way, but generalizing to a dispersion process, Coats and
Smith derive the following macroscopic equation:

div¥ g ¥

dey [2.3.1]
ot e
where f is the fraction of pore volume occupied by the moving fluid. This
means that, without dead-end pores, [2.3.1] is the classical macroscopic
equation (f = 1) and ¢,(x,t) is the concentration in the dead-end pores at
point x and time t.

The equation of diffusion in a dead-end pore should be added to [2.3.1]:

0
Yie,—c) = (1—f)§

v is a transfer coefficient between dead-end pores and other pores. These
equations are easily extended to multidimensional flow and lateral dispersion.

As an explanation of the discrepancies, this theory is not quite satis-
factory as conceptually molecular diffusion is a component of dispersion,
already taken into account in the derivation of the classical equation, which
holds for vanishing velocities when the dispersion coefficients become the
coefficients of diffusion in porous media (cf. § 2.4).

Simpson (1962) and Crane and Gardner (1961) have shown the existence
of discrepancies between theory and experiments for extreme concentration
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values. Simpson assumed then that the concentration distribution does not
fit a normal law, which means that the classical equation (solutions of which
are Gaussian) does not hold. Some experimentalists have recorded such
discrepancies without explaining them (Blanc, 1967; Ben Salah, 1965,
Pfannkuch, 1963) (Fig. 2.3.5).
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" Fig. 2.3.5. Pfannkuch’s computed curve versus experimental results.

Discrepancies between experimental and theoretical results have been re-
corded; in a few cases an interpretation of this phenomenon has been given,
leading to a tentative improvement of the dispersion equation. We give now
general ideas on the origin and treatment of these differences.

2.3.2. Critiques of the concept of continuous medium

Classical mathematical models simultaneously use the three following
notions:

(1) The mean velocity of the set of particles is the real macroscopic ve-
locity or pore velocity. Roughly, the pore velocity is the Darcy’s velocity
divided by the porosity of the medium (the student is referred to Appendix 1
for all hydrologic definitions).

(2) The macroscopic porous medium is continuous, i.e. any infinitesimal
element of a porous medium contains both solid and void.

(3) Concentration is a function twice continuously differentiable every-
where.

These three notions can be contradictory. In mathematical language, the
second notion expresses the fact that the solid space is without interior
point, i.e. the boundary between solid space and void space is everywhere
dense. This implies that the real velocity, which is a-continuous function of
the space variables and is zero on the boundary, is zero everywhere. Thus,
using the mathematical definisions strictly, we see that the pore velocity
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does not make sense, and the first and second notions contradict them-
selves.

In order to remove this difficulty, the continuity of the porous medium is
defined in a less strict way: the infinitesimal element of macroscopic medium
is approached by a finite element of porous-medium volume containing
finite volumes of solid and void: this is the case of Bear’s R.E.V. But then
concentration, which is a measure of the void space, is no longer differentiable
everywhere, because it is discontinuous at the boundary between solid and
void: indeed concentration actually measured during experiments is twice
continuously differentiable at every point of the void space; it is extended
by a constant in the solid and is discontinuous at the boundary (Fig. 2.3.6).

e
O

Solid Void Solid

Fig. 2.3.6. Concentration discontinuities in a porous medium.

This set of contradictions shows what appears to be a major difficulty
in the theory of dispersion: how should the influence of the boundary
between solid space and void space be taken into account?

We wish to emphasize again here that it is a basic question in the study of
porous media: the porous medium is very complex and although, in most
cases, the basic equations (motion, continuity, etc.) are well known in the
pores, their boundary conditions are difficult to establish because of the
high complexity of the boundary. We have said (§2.2) that modelling flow
in a porous medium is to replace a system of well-known equations with
simple conditions on very complex boundaries, by a system of equations
with simple conditions on simple boundaries. We now see that to obtain the
equivalence between the two systems is not a simple problem and probably
still is an interesting field of research.
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The random-walk models do not take the boundary into consideration
and Bear’s model implies that the mean variables (computed in R.E.V.,
which is the approximation of an infinitesimal element of macroscopic me-
dium in the sense we just defined) are twice continuously differentiable ex-
cept at some points, curves and surfaces of the porous medium, which is not
consistent with the assumption that these variables verify second-order partial
differential equations everywhere.

Thus our purpose is to give some hints at possible developments of this
field of research, showing that if the boundary is taken into account, an
equation is derived, which is not the classical dispersion equation. These
indications are given, using a scheme of spatial averaging.

2.3.8. Influence of the boundary (Fried, 1972a)

We call microscopic space the porous medium observed at the granulometric
level (the local level of §2.1.4). The equations of molecular diffusion and
Navier-Stokes hold at this level.

We call macroscopic space the porous medium observed at the macro-
scopic level. At this level, fluid velocities may obey Darcy’s law (Appendix I)
and dispersion makes sense.

An infinitesimal element of macroscopic space is approached by a R.E.V.
in the sense of Bear: we choose a ball of radius r centered at each point x of
the microscopic space; r may be determined from a graph similar to Fig.
2.3.7¢c. Microscopic concentration verifies the convective diffusion equation:

dc
div (D grad ¢) — div (u¢) = 5% [2.3.2]
fr }r porosity
| 1 —
x-F X X+r -1 x x+1 radius of
REV.

(a) ) (e)

Fig. 2.3.7. (a) Example of a C~yx,-function. (b) Bear’s regularizing function.

where D is the diffusion tensor and u the convective velocity of the particles.
For the sake of simplicity, D is taken as constant in the whole medium and
spherical. Concentration ¢ is defined in the void space (zero for instance).
Function (x,t) = ¢(x,t) is then a discontinuous function of x on the bound-
ary S between void space and solid space and the diffusion equation [2.3.2]
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does not hold on this boundary. Being locally integrable, ¢ defines a distri-
bution (Schwartz, 1973); then it is possible to extend the diffusion equation
to the whole space by subtracting superficial distributions with their support
on the boundary S and due to the discontinuities of function c.

Assume S is regular, i.e. differentiable. Applying the Laplace operator to c,
in the sense of distributions, we obtain (Schwartz):

%]
Ac = [Ac] +0V5(S) +_6—;006(s)

where [Ac] is the usual derivative of function ¢ (where it exists), 0, and o,
are respectively the jump of the normal derivative of ¢ and the jump of ¢ at
the boundary S. 3, is a symbol meaning that distribution 0,6, has its
support on S. It may be called the “Dirac measure’ of S.

The diffusion equation, taken now in the sense of distributions and valid
in the whole microscopic space, is written:

3 2
DAc — div (uc) = a—‘; + w8y + - oobcsy [2.3.3]

Call x, a family of functions converging towards the Dirac 6-measure when r
tends to 0. We call macroscopic equation of dispersion the equation obtained
by regularization of [2.3.83] by x. for small r (i.e. by a convolution by ¥x,):

dc 0
Xr* (DAC) _Xr* le (uc) = Xr* a_t + Xr* OVS(S) + Xr* a_VOOS(S) [234]

r is the radius of the ball of center x and according to the definition of the
R.E.V. is a finite quantity different from zero. The macroscopic space is
made up of the x-points of the microscopic space and physical quantities at
these points are the averages, weighted by x,, of the corresponding micro-
scopic quantities in the ball. If we choose x, to be ceo (Fig. 2.3.7a), the
regularized functions are coo.

Remark. Bear’s theory uses a classical average, i.e. a convolution with the
indicator of the R.E.V., which yields a regularized function which is not cee,

The regularized function C of ¢ is called macroscopic concentration and
verifies the equation:

Y

. oC
DAC —div (x,*uc) = ot

0
+ X ¥ 095(3) + X, ¥ 5_ 008(3) [235]
v

Using Bear’s interpretation of the instantaneous microscopic mass flux uc as
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the sum of a mass flux due to the average velocity and of a mass flux due to
the fluctuations of velocity (§ 2.2), and retaining his phenomenological inter-
pretation of the last flux in terms of dispersion coefficients, we obtain the
classical dispersion equation with supplementary terms due to ¢, and o¢,:

.. ac 0
div (D + K¥) grad C — div (UC) = E + x,.*0,6(s) + x,* 5— 006(s) [2.3.6]
v

X,* 0,8(s) is a distribution with support on S and x,* 9/0v[0y6(s)] is the
resultant of a set of doublets of moment densities —o, on the normal to S at
each point of 8. They represent the influence of the boundary.

It seems thus that even if the boundary S between void space and solid
space is physicochemically inert, it has an effect as a set of discontinuity for
some physical guantities: on this set, microscopic equations do not hold
and any regularizing process should take this into account.

2.3.4. Critiques of the concept of spatial averaging

Spatial averaging is a natural regularizing process, but which is not in-
trinsic: the macroscopic quantities depend on the regularizing method.

The determination of the R.E.V. depends, at least, on the precision of
porosity measurements and on the methods of estimation of the homogeneity
scales of the medium. In addition, the covering of the microscopic space by
R.E.V. should be defined, i.e. the choice of the geometries of the R.E.V.
(balls, parallelepipeds, etc.) and how they cover the space (overlapping or
not, for instance).

Remark. Regularization of the diffusion equation by convolution usually
changes the equation. Here is a simple proof. Assume:

d
+2 b+
J

a2
A= z aij(x) J ax]

i7 dxidxct

The diffusion equation is then written:

de
Ac = —
dt

x being a rapidly decreasing Coc function, we state C = x*c and we regularize
Ac = dc/dt by x:

sae = €
XTAC = 4
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Defining the operator L by:
L(x*) = (x*)A —A(x*)
we have:

x*Ae = LC+ AC

and:

dc

— = AC+ LC
dt

If A has constant coefficients, L is zero and we find the diffusion equation.
Otherwise, A + L usually does not yield a diffusion equation. L may be
computed using composition theorems of pseudo-differential operators
(Unterberger and Unterberger, 1970, 1971).

2.3.5. Conclusion

There are systematic discrepancies between the solutions of the classical
dispersion equation and experimental results. Classical processes modelling
dispersion in porous media by a diffusion equation present some weak-
nesses, especially in the way the boundary between void and solid is taken
into account.

The reader, especially when working on fine research problems, is invited
to give some thoughts to the various criticisms that have been developed in
the chapter and also to the hints as to further research which we give here as
a conclusion.

The basis of dispersion theory is a measurement problem. In a porous
medium, concentrations are measured in some way. First, it should be
verified that the physical quantity that is measured (concentration for
instance) does not depend on the experimental method. Theoretical macro-
scopic concentration, for instance, which appears in mathematical models,
should correspond to the experimental concentration; this is not simple, as
we have just seen.

The model of dispersion then could either be: (1) a new global equation,
starting directly from some phenomenological relationships valid at the global
level and considering the local level as a black box: or (2) a refinement of
the classical dispersion equation, trying to identify measured concentration
and mean theoretical concentration of the model.

The various conceptual approaches to dispersion and the criticisms of the
existing models show that the domain of research in the field of dispersion
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is part of the problem of change of scale, which is a very general problem
in physics.

2.4. LABORATORY INVESTIGATIONS OF THE FOUNDATIONS OF
DISPERSION (HOMOGENEQOUS MEDIA)

In order to verify the conceptual representations of dispersion, many
laboratory experiments have been derived. Actually they serve two purposes:
(1) to verify and refine the concepts and theoretical models of dispersion; and
(2) to study the influence on dispersion of the various parameters, such as
the characteristics of the fluids and the properties of the porous medium.

We have already seen how the experiments lead to question the represen-
tativity of the models and to suggest possible refinements (§ 2.3). The second
aspect of laboratory investigations is of prime importance for pollution
studies: its results consist in relationships between dimensionless numbers
which are of direct use in real problems.

Most of these laboratory experiments have been conducted in homogeneous
porous media. Of course field problems involve heterogeneous porous media
(even if, at some scale, we shall see that they may be considered as homo-
geneous) and series of laboratory tests were performed in heterogeneous
porous media of some sort. Although many authors would consider these
tests as part of the description of the foundations of dispersion theory and
within the scope of this paragraph on pollution fundamentals, we feel that
they also represent a transition between the laboratory and the field and as
such they are presented separately in § 2.5. Thus, it should be clear that the
results presented now were obtained with homogeneous soils.

Experiments are realized under some restrictive conditions: (1) the dis-
persion tensor K is reduced to its principal coefficients K; or K;; (2) bound-
ary conditions are usually chosen so that either lateral or longitudinal dis-
persion may be neglected; (3) the flow in the model is uniform and fingering
is prevented; and (4) initial concentration profiles are generally step functions.
The adopted model is the classical dispersion equation:

) c . oC
div (Kp grad — | —div (UC) = -é? [2.4.1]
fe)

The main experimental results have been obtained in the tracer case (for
instance, with a low concentration of NaCl) which allows an easy theoretical
interpretation, as the basic equations have been derived for that case. More-
over, some practical problems are set in the tracer case. But real problems
very often deal with fluids of different densities and viscosities; for instance,
the displacement of crude oil by a miscible gas. Even in a pollution by sea-
water intrusion, the salt content is such that the problem cannot be reduced
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to a tracer problem. In the latter case, there exist laboratory results which
allow some useful interpretations.

In this section we present experimental results, starting by a dimensional
analysis and then studying the determination techniques of the dispersion
coefficients. The results are then given in the tracer case and in the general
case. The last part of the section is devoted to a thorough study of the tech-
nical aspects of the experiments.

2.4.1. Dimensional analysis

Physical reasons show that dispersion depends upon the following param-
eters: viscosities u; and densities p; of both fluids (i =1 or 2), gravity g,
average pore velocity U, diffusion coefficient D, and texture parameters
such as permeability %.

This dimensional analysis is worked out for a simple case answering some
restrictive assumptions:

(1) With the assumption that mixing occurs without volume shrinkage,
the influence of the difference between p; and p, due to the action of gravity,
may be described by one parameter: g(p, — p,) =& Ap.

(2) One coefficient, D, accounts for molecular diffusion. D is moreover
assumed independent of concentration. In a porous medium, molecular dif-
fusion is observed as K,

(3) Dispersion depends only upon the viscosities u; and u, of both fluids
before they mix, i.e., dispersion does not depend upon the function u(C),
the resulting viscosity of the mixture. This assumption is not very accurate,
especially when this function is not monotonic (Fig. 2.4.1).
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Fig. 2.4.1. Viscosity of a mixture as a function of concentration (¢ = 20°C)
Dispersion may be described by a relationship between seven parameters:

K = f(gAp, M1 M2, U,K07 k)
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The Pi-theorem says that this equation may be written as a relationship
between four dimensionless numbers. The study of the equations describing
the phenomenon and the analysis of the experimental results reveal that the
dimensionless numbers, which yield the best description of the phenom-
enon, are:

K/Ko, UR'Kg ui/ta,  (8ApRY*)[(u,Ky) [2.4.2]

where K/K, is a dimensionless dispersion coefficient, Uk'?/K, is a Peclet
number, Wwhich characterizes the influences of velocity, u,/u, is the quan-
titative evaluation of the contrast of viscosities, and (g Apk¥?)/(u.K,) is a
quantitative evaluation of the contrast of densities, which has the same
form as the Rayleigh number used to describe free thermal convection. The
choice of y, is arbitrary, as u, could do as well. For the sake of symmetry,
the viscosity u of the mixture at concentration 0.5 is generally used.

The choice of K, appearing in the dimensionless numbers may amaze the
physicist who is used to studying dispersion problems in terms of K/D.
Actually there are two reasons which justify the choice of K, instead of D.

(1) Molecular diffusion in the fluid phase never appears alone without
being influenced by the solid matrix. At low mean velocities, only K, reflects
the action of molecular diffusion.

(2) For fluid couples, the values of D are difficult to find in the literature
and D is difficult to measure experimentally. The simplest way, often used,
is to measure K for vanishing velocities and to deduce D by the formula:

(K/D)y = Ko/D = 1/(F¢)

where F is the formation factor.

In (2.4.2) k'? accounts for the texture of the medium. It is a simple way
to introduce a characteristic length of the porous medium. For an uncon-
solidated medium made up of spherical beads, a grain diameter d may be
used and sometimes the dimensionless numbers appear as:

K/D, Ud/D, p/us (g Apd®)/(11D) [2.4.3]

In the tracer case only the first two numbers of the sets [2.4.2] or [2.4.3]
are evidently taken into account. The numerical determination of K from the
experiments is based upon analytical or numerical resolution of [2.4.1].
Resolutions of [2.4.1] are presented in §4.1.

2.4.2. Tracer case: longitudinal dispersion

Most of the experimental studies have been performed in unconsolidated
porous media, mainly for technical laboratory purposes. As previously
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mentioned, the experimental results are presented in a dimensionless form
on two types of graphs: K/D versus Pe, (Fig. 2.4.2) and K/(Ud) versus
Pey, (Fig. 2.4.3), where Pey, is the Peclet number of dispersion (Pe, = Ud/D).
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Fig. 2.4.2. Experimental results in the tracer case (longitudinal dispersion)
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Fig. 2.4.3. The various dispersion regimes: a = pure molecular dispersion, b = super-
position regime, ¢ = predominant mechanical dispersion, d = pure mechanical dispersion,
e = dispersion out of Darcy’s domain, Experimental results.

It should be emphasized that it is impossible to draw a unique set of
curves, valid for all types of porous media. For unconsolidated porous media,
all experiments were performed in media made up of convex beads. Such
media may be characterized by a geometrical parameter chosen either in the
pore space or in the solid phase; usually this parameter is the grain size, which
is most easily reached.

The set of experimental results obtained for longitudinal dispersion in
unconsolidated media is the most complete set of quantitative results on
dispersion. It allows a thorough physical analysis of the phenomena and
the derivation of general formulas.

In the study of dispersion in porous media different from spherical bead
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packings, these results are used as the first step. Assuming that the graph
“dispersion coefficient versus mean velocity” has the same structure for all
porous media, the physicist may draw the real graph from a very small
number of experiments (Fig. 2.4.4).

Bead  packings The studied porous media

Ln{K/D) Ln {K/D)

tn(Ud,/D) tn(Pe)

Fig. 2.4.4. Extrapolation of the curve (K/D = Peclet number) for an unknown medium
by use of the large number of results obtained for bead packings.

Of course such an extrapolation is made possible by the use of dimension-
less numbers.

Unconsolidated Porous Media

From the graphs presented in Figs. 2.4.2 and 2.4.3 it may be inferred that
there exist five dispersion regimes.

Regime a: Pure molecular diffusion. This regime occurs when the mean
velocity is small. Molecular diffusion is the unique component of dispersion
and K; /D is then constant. As previously mentioned in Fried and Combarnous
(1971, p. 192), the porous medium slows down the diffusion processes. For
instance, for an homogeneous medium made up of identical spheres, the
ratio K, /D is equal to:

(K./D), = 0.87 [2.4.4]

Regime b: Superposition. The contribution of mechanical dispersion be-
comes appreciable.

Regime c¢: Major mechanical dispersion. The contribution of mechanical
dispersion is predominant. But molecular diffusion cannot be neglected and
reduces the effects of mechanical dispersion. Taking into account the linear
relationship observed between log,, (K. /D) and log,, Pey, a formula may
be derived:

K, /D = (K, /D),+ o(Ud/D)™ [2.4.5]
Regime d: Pure mechanical dispersion. The following relationship holds:

K, = (K,/D),+ pUd [2.4.6]
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Due to the lack of precision of log-log curves, even though the fitting is
fairly good (Fig. 2.4.2), the value of § is 1.8 + 0.4. The influence of molec-
ular diffusion is negligible; (K /D), may be neglected. This type of for-
mula (K; = aU) is also often used in regime c for practical purposes.

Regime e: Mechanical dispersion where the flow regime is out of the
domain of Darcy’s law. We recall that a filtration Reynolds number may be
defined as Ud/v and the domain of validity of Darcy’s law ranges from O to a
critical value about 1—10. It may be emphasized that real turbulence appears
for a Reynolds number greater than 100. For this regime of dispersion, a few
results are available. The change of regime is easily depicted on the graphs
in Figs. 2.4.2 and 2.4.3.

Consolidated porous media

Very few experiments have been performed in the case of consolidated
porous media. It can be foreseen that dispersion will be greater in con-
solidated than in unconsolidated media. As a matter of fact, the pore-size
distribution is wider in consolidated than in unconsolidated media, and thus,
the distribution of velocities is also wider. Different formulas analogous to
[2.4.5] are used, such as:

Legatski and Katz (1966) K, /D = (K. /D), + 0.5[(Und)/D]™ [2.4.7]
Raimondi et al (1959) K, = (K)o +1n'dU [2.4.8]

These formulas have been derived by analogy with an unconsolidated medium,
which is the reason why the pore-size distribution has been represented by
the parameter nd (or n'd). n or ' is a dimensionless constant which varies
with the standard deviation of the distribution of velocity; d has no quan-
titative meaning for a consolidated medium. For an unconsolidated medium
made up of identical spherical beads, n =1, d is the bead diameter, and
[2.4.7] holds. n'd varies much from one medium to another which justifies
the performance of experiments to obtain quantitative results; for instance,
Raimondi et al. (1959) give values of 7n'd as different as 0.001 (uncon-
solidated medium) and 0.2 (consolidated medium) for media with the same
permeabilities.

A series of tests conducted by Klotz and Moser (1974) show how dis-
persion increases with decreasing porosity, i.e. with greater compactness,
the explanation being that growing compactness leads to a greater branching
of the flow paths. K; corresponds more or less to ¢ 3, ¢ being the total
porosity (Fig. 2.4.5).

2.4.8. Tracer case: lateral dispersion

The studies of lateral dispersion are less numerous but more recent than
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Fig. 2.4.5. Longitudinal dispersion coefficient K in relation to distance velocity V, for
different degrees of compactness given by the total porosity of the medium (sand
(0.5 — 1.5mm), d,;, = 0.75) and in relation to the total porosity ¢ for V, = 107" em/s
Water temperature 20°C.

(1)p = 0.418, (2)¢ = 0.399, (3)¢ = 0.368, (4)¢ = 0.336. (Klotz and Moser, 1974).

longitudinal-dispersion studies. The experimental techniques are thus better
and, though fewer in number, results are as valid and as accurate as those
obtained for longitudinal dispersion. The experiments are mostly performed
in unconsolidated media made up of convex beads, for the reasons developed
in §2.4.2,

Unconsolidated porous media

The experiments have been performed for Peclet numbers ranging from
1072 to 10* and have shown the existence of four regimes of dispersion
(Fig. 2.4.6).

Regime a: Pure molecular diffusion, which occurs at low mean velocities.
For an homogeneous medium made up of identical spheres (K;/D), is
roughly equal to 0.7.

Regime b: Superposition, when the influence of mechanical dispersion
can be felt.

Regime c: Mechanical dispersion, when the influence of mechanical dis-
persion becomes predominant. The following formula may then be derived:

Ky/D = (Kp[Do) + c(Ud/D)" [2.4.9]

with o = 0.025 and m = 1.1.
Regime d: Pure mechanical dispersion where [2.4.9] holds with m = 1.
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Fig. 2.4.6. Experimental results in the tracer case. Lateral dispersion — Longitudinal
dispersion — — — —,

Consolidated porous media

To our knowledge, no experiment has been performed in the case of
highly consolidated porous media. Simpson (1962) used a medium very
loosely consolidated and, in this case, consolidation does not influence
dispersion phenomena. This is the reason why his results are shown in
Fig. 2.4.6.

2.4.4. General case: longitudinal dispersion (unconsolidated media)

All the results presented in the preceding sections are very useful in field
studies with tracers and especially with radiotracers. Many practical cases,
such as pollution problems or oil recovery, are set for fluids of different
densities and viscosities. This is the reason why such a case has also been
studied experimentally in laboratories.

Stability of the displacement

The first point and, for our purpose, one of the most important, is to
determine the stability condition of the miscible displacement. Stability
depends upon the density, viscosity, and the velocity U of the fluids. For
given densities and viscosities there exists a critical velocity limiting the
stability domain. The study of the growth conditions of an arbitrary per-
turbation yields a very approximate formula of the critical velocity U, (Marle,
1968):

U, = [kg(p2—p1/[O(2 — 1y)] [2.4.10]

where g is the gravity vector and the subscripts 1 and 2 refer respectively to



INVESTIGATIONS OF THE FOUNDATIONS OF DISPERSION 35

the upper fluid and the lower fluid. In what follows, the z-axis is oriented
upward, and velocities U and U, are algebraic.

There exist two cases depending upon the viscosity ratio: (1) if u,/u, > 1,
the displacement is stable for U > U, and unstable for U < U,; (2) if u,/u,
<1, the displacement is unstable for U> U, and stable for U <U,.

The difference (p, — p;) influences the sign of U,: for instance, the up-
ward vertical displacement (U>0) with u, greater than u; and p, greater
than p,, is always stable (Fig. 2.4.7) because U, is negative.

Upward Downward
always always
stable ) stable 2
o |© |
B>P | <0 > 0 B> P . ©) ‘
it Rt e G 31
fi>f 4>0 V<0 B>
Downward MM | Ay <pm, Upward
always always
unstable unstable
Stabte for U>Ug Stabte for U<V,

Fig. 2.4.7. Stability conditions for a miscible displacement.

When the displacement is unstable, some fingering appears which at a
large scale (larger than the macroscopic scale) may be considered as an
extension of the dispersion phenomenon.

Experimental versus theoretical results

As a second point it should be noted that the general dispersion equation
derived in the tracer case can be used as such even when density and viscosity
contrasts are important. Yet when the initial concentration profile is a step
function, the observed solution deviates from the theoretical error-function
profile slightly more than in the tracer case.

The last point is devoted to the study of the influence of the various
parameters. As shown in §2.4.1 the influence of these parameters may be
described as the influence of three dimensionless quantities. Evidently, the
first one is the Peclet number Ud/D. Two other numbers M and R account
for the influences of viscosity and density:

M = uyJu, R = [gAp(R)*?] (uD).

where u is the viscosity of the mixture at concentration 0.5. The subscript 2
refers to the displacing fluid. Published results up to now treat the case of
unconsolidated media. Experiments have been conducted by setting M or R
constant and by working out several runs with different R or M-values.
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The displacement is vertical either upward (Ben Salah, 1965) or downward
(Tahar, 1968, Klotz and Moser, 1974).

Influence of the viscosity ratio M

A set of experiments has been made by Tahar (1968) with R at about
6700. This value of R may seem high, but often higher values are found in
the field (up to 100,000 in some oil-recovery techniques). The results are
plotted in Figs. 2.4.8 and 2.4.9.

The greater the relative viscosity of the displacing fluid, the smaller the
dispersion coefficient. Moreover, M has no influence in the zone of pure
molecular diffusion. Klotz and Moser (1974) show how dispersion depends
on temperature, through viscosity variations. The dispersion coefficient grows
when viscosity increases as water temperature decreases. K, is approximately
proportional to »%3 (Fig. 2.4.10).
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Fig. 2.4.8. Influence of the viscosity contrast Fig. 2.4.9. Influence of the viscosity con-
for a vertical miscible displacement. (I) M = trast for a vertical miscible displacement
279, (2)M=1, (3)M=0.358, (4) M = (Tahar, 1968).

0.047. (Tahar, 1968.)

Influence of R

In the experiments made by Ben Salah (1965), M was set equal to 0.214.
The results are plotted on Figs. 2.4.11 and 2.4.12. It can be seen that the
greater the density contrast, the smaller the dispersion coefficient. This
effect is felt even in the pure molecular diffusion zone.

2.4.5. General case: lateral dispersion

The results are analogous to those obtained in the case of longitudinal
dispersion. The existence of viscosity and density contrasts decreases the
lateral dispersion coefficient. The density contrast even influences the zone
of pure molecular diffusion.
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Fig. 2.4.10. Longitudinal dispersion coefficient K in relation to distance velocity V, for
different water temperatures T, and in relation to kinematic viscosity v for V, = 10"
cm/s, porous medium sand (0.9 — 1.12mm); d,, = 1.0 mm, compact bedding. {1)T =
45°C, (2) T = 21°C, (3) T = 5°C. (Klotz and Moser, 1974).
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Fig. 2.4.11. Influence of the density contrast Fig. 2.4.12. Influence of a density
for a vertical miscible displacement R = 650; contrast for a vertical miscible dis-
R = 2450; R = 5200; R = 19,600. (Ben placement. {Ben Salah, 1965, Tahar,
Salah, 1965; Tahar, 1968). 1968.)

The effects of density contrasts have been studied in a porous medium
such that the mean velocity direction could be set at various angles with the
horizontal plane (Blanc, 1967).

2.5. LABORATORY INVESTIGATIONS IN HETEROGENEOUS MEDIA

Real problems occur in heterogeneous media. Homogeneous media have
provided simple conditions and allowed a fairly easy separation of the re-
spective influences of various parameters: a good insight into the fundamental
mechanisms was therefore obtained. In a heterogeneous medium, the param-
eters vary together; they interfere and the results could be rather differ-
ent from those expected according to the homogenecus-medium theory.
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Why then waste time in studying perfect academic media, if they are not
consistent in some way with reality? Very luckily (especially for all those
scientists who devoted so much work to these phenomena), there is a link
between theories and practical results. Everyone can breathe easily!

Intuitively, we imagine a process equivalent to the change of scale from
microscopic to macroscopic levels: in the same way as molecular and con-
vective diffusion effects may be averaged to yield dispersion, is it possible
to average dispersion effects to reach some super macroscopic phenomenon
in an equivalent homogeneous medium? In order to answer this question,
we present here some typical experiments.

Remark. This book is not a detective story; before reaching the end of the
paragraph, it is good to know that the answer will be yes!

2.5.1. A stratified medium

The simplest case of a heterogeneous medium is a stratified medium.
Besides, this is a frequent case as a sedimentary formation may often be
considered as stratified, composed of plane strata of different porosities and
permeabilities. For the sake of simplicity, the flow is taken as unidirectional
and parallel to the layers and the density p of the fluid phase is constant.
The equations are then bidimensional, the x-axis being taken along the flow
direction and the y-axis perpendicular to the strata (Fig. 2.5.1).
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Fig. 2.5.1. Coordinate system.

In this simple case, the dispersion tensor is reduced to two components
K; and Kr, longitudinal and transverse coefficients, which depend on y.
p being constant and the flow unidirectional, velocity U does not depend on
x. We moreover assume ¢ to be dependent on y.

The equation and the boundary conditions are:

2

0°C aC
K )ely) o5 +

oC aC
[Kr(yw(y)@} —¢(y) (U-a-;+ ~) =0

2y ot

[2.5.1]
0C/dy = 0 for y =y, and y = vy,

It will be now shown that for large times, i.e. for an asymptotic regime in
the concentration profile, it is possible to replace [2.5.1] by a unidimensional
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equation:

0°C oC oC
Ky —=—Uy—=— 2.5.2
Maxz _Mox ot 12.5.2]

where K, is an equivalent dispersion coefficient and C and U,, are the
average concentration and velocity.

Theoretical works use Aris’ moment method, which is developed hereafter.
Experiments were performed on models made up of two homogeneous strata
of different characteristics and they confirm the theoretical results.

Remark. The idea of replacing a complex problem by an elementary well-
known equivalent problem is very natural and is the base of the philosophy of
the scale change. This is what we do when, in electricity, we replace a set of
resistors by an equivalent resistor.

Aris’ moment method

The solution of [2.5.1] is a concentration distribution C(x, y, t). This so-
lution (Marle et al.,, 1967) may be approached by deriving the moments
C™(y;t) with respect to x of the distribution C(x,y,t). These moments are
defined by:

+ oo

Co,8) = [ anClay,t) dx

Of course a mathematical problem is then raised: do these integrals converge?
Convergence is obtained when C decreases faster than any power of x, which
is the case when C, resulting from an initial step impulse, is a Gaussian func-
tion (Fig. 2.5.2).

c

Time=0

Time=t

X

Fig. 2.5.2. Evolution of a step impulse by dispersion. C is the concentration for a given y.

This condition is not restrictive because new solutions may be obtained
by superposition, [2.5.1] being linear. It is of interest to observe the physical
meaning of the first moments: C? is the total amount of dispersing fluid;
C'V is the x-coordinate of the center of mass; and C® is a characteristic of
the transition zone.
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Let the moments be computed in a reference system in translation with
a constant velocity U defined by:

o= ([ows] 17 o)

In this system the velocity is W = U — U.

Aris computes the various moments of the concentration distribution,
solution of [2.5.1], from a set of moment equations obtained from [2.5.1]
by deriving the moments of various orders of each of its terms:

19 aCcm\ ™
( T )— = —naWC" ™V —n(n — 1)K, C"?

?45_ @ oy ot

[2.5.3]
oC"™/dy = 0 for y =1y, andy =y,

This system is then solved by induction, starting at n = 0. For n = 0,
[2.5.3] yields:

1 a( ac<°>) aco
T

6 oy o ) ot

[2.5.4]
8CP/9y =0 for y =y, and y = y,
Equation [2.5.4] is solved by the method of separation of variables and yields
a countable sequence of solutions of the form:

a(y) exp (— w;t), i =0,1,2,. 0<.. . <wi 1 <w; <.

For n =k, the right-hand side of [2.5.3] is known from the solutions ob-
tained for n <k. Hence the general solution of [2.5.3] for n =k is the sum
of the general solution of the homogeneous equation in C on the left-hand
side (which is identical to [2.5.4]) and a particular solution of the complete
equation. The general solution of the homogeneous equation:

li aC("))_BC(")
¢ oy \ = oy ot

is a series 2,a;(y) exp (— w;t) defined previously.

The particular solution is a superposition of the solutions of [2.5.3] where
the right-hand side is replaced successively by the terms of the series defin-
ing "V and C*"?, computed by induction from C'®, It is easy to obtain
the principal term for ¢t — oo, The different moments are then:
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C(O) = a0+ O(y,t)

CP = ag(y) + 0(y,1t)
C? = 2Kaqt + Q(y) + 0(y,t)
[2.5.5]
(2p)! (2Kt)?

C(2p) = Ql__(___) aO + tp .O(y,t)

2P p!

2p + 1)!(2Kt)?
C(217+1) = (—p_‘—‘—)_(“‘—“')‘ aol,l/(y) +-¢P - O(y’t)

2P p!

where O(y,t) is a function decreasing towards O when t goes to infinity.

Y(y) = — jyyl I%(q%)dy + constant

o(y) = 7 oW dy with o(y,) = @(y,) = 0

— ll Y2 Y SO2 )

E=—"— K, ¢dy + —d 2.5.6
(Y2 — ¥y ( Y L9y fy, K¢ Y [ ]

a = [\ { J, ®=wu —K,)0 ds]

. 1 Y2

F=—"—1 ¢d
Y27 V19"

Equivalent dispersion coefficient

The moments C™ are compared, for large values of ¢, to the moments of a
concentration-distribution solution of a simpler system. A good choice is to
take the equation of unidirectional dispersion in a homogeneous layer, which
yields the equivalent dispersion coefficient. This equation is repeated here:

M 3x? Mox ot/

In the reference system, in translation with velocity Uy, , the moments of the
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solution of this equation are:

c
CV = constant

C? = 2K, t + constant

constant

fl

, [2.5.7]
‘C‘v(zp) — @)!(ZK—MW, 6(0) + tp0(t)
2°p!
— (20 + )I(2K,t)! _
(2p+1) — (1)
(G 57 p1 C'V + t?0(t)
The systems [2.5.5] and [2.5.7] are identical when:
C " ecd
= y
¢(y2_y1) ¥y
— Ya Y2
U, =0 = ¢Udy/[ ¢ dy [2.5.8]
Y1 Yy,
B va v, p?
=K = —— K, ¢dy + —_ dy)
M oy~ (‘[yl ‘ Jyn K;¢

Thus, the asymptotic behavior of a stratified porous medium is identical to
the behavior of an equivalent homogeneous medium defined by [2.5.8]. In
real problems, a good knowledge of the asymptotic behavior of dispersion
phenomena is often required and the previous result is important.

The example of two strata (Marle et al. 1967)
The characteristics of the strata are given in Fig. 2.5.3. Equation and
boundary conditions [2.5.1] are then written:

?2C, a2C, dC, aC,
K, —+K -y, = ==
L1 g2 T1 3y2 ' ox ot
K —3202+K —aZCI—U%—% 2.5.9]
L2 92 T2 9y2 ? ox ot [2.5.

y =y, 0C/oy = 0; y = Yy 0C/oy =0
0, ¢1KT1(aclfa3’) = ¢2KT2(BCZ/’8y)

<
Il

The mean velocity Uy, is defined by:

Uy = (9e U + d2e,Uy) /(012 + dre,)
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Fig. 2.5.3. -Characteristics of the two-strata model: thickness, porosities, permeabilities
and dispersion coefficients.

where U; and U, are the mean velocities in each stratum. Application of
Aris’ method leads to the following result: the asymptotic behavior of the
mean concentration distribution is the solution of the equivalent equation
[2.5.2) where K, is given by:

K. = $1e1Kp ) + K, 4 1 ig3eie
v =
pre1 + drep 3 (912 + $re))°

x[ o1 +—‘—32—} (U, — U,)?

[2.5.10]

d)lKT 1 ¢2KT2

Another interesting result, which characterizes the asymptotic regime, is that
in each streamtube (y,y + dy) the center of mass of the concentration
profile has a fixed position in the moving coordinate system. Also, the
concentration profile on the axis of stratum 2 may be obtained by trans-
lating the concentration profile on the axis of stratum 1.

Laboratory experiments have been performed in two strata with gases
(hydrogen—nitrogen, ethylen—nitrogen) which have high diffusion coef-
ficients (the asymptotic regime is quickly reached). The results appear in
Figs. 2.5.4 and 2.5.5.

(1) There exists an asymptotic regime, as proved by the observation of
two identical concentration profiles in each stratum, the distance between
both profiles being constant (Fig. 2.5.4).

(2) The asymptotic regime is identical to the regime observed in a ho-
mogeneous medium, Classical straight concentration profiles in Galtonian
coordinates (Fig. 2.5.5) are obtained.

Formula {2.5.10] is verified experimentally.
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Fig. 2.5.4. Evolution of the concentration versus time at eight measurement points, in

four sections of the two-strata model (initial step-input concentration and uniform
velocity).
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Fig. 2.5.5. Concentration profiles in the two strata at different times. (1)t = 400s,
(2) { = 700s, (3) t = 1000s, (4) t = 1300s.

2.5.2. A heterogeneous non-stratified medium

Experimental studies have been conducted (Martin, 1971) on blocks of
Fontainebleau sandstone of various lengths with NaCl solutions, and also
nitrogen and CO,. They show that:

(1) An asymptotic regime is reached, equivalent to the asymptotic regime
in homogeneous media. It is reached only if the distance travelled by the
transition zone is large with respect to the dimensions of heterogeneities.

(2) Values of the equivalent dispersion coefficient are larger than values
of a dispersion coefficient in a homogeneous medium (Fig. 2.5.6).
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Fig. 2.5.6. Comparison between the values of the longitudinal-dispersion coefficients
obtained for heterogeneous media (7 and 3) and for homogeneous media (2 and 4) =
two-strata model. (Martin, 1971.)

(3) Formulas identical to [2.4.5] are proposed:
K
K = (B)OD +pUm™D!™

where  is a dispersivity coefficient, depending on the heterogeneities of the
medium.
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Fig. 2.5.7. The dispersion regimes: (a) homogeneous medium; (b) heterogeneous medium.
(Martin, 1971.)
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Remark. For practical purposes, m is usually taken equal to 1.
2.5.8. Conclusion

The theory of dispersion can be extended to general media. The results
obtained for homogeneous media are valid but the domain of numerical
values has changed. Semi-empirical formulas such as [2.4.5] will be retained,
coupled with the various dispersion regimes, remarking that the pure dif-
fusion domain may be somewhat smaller for heterogeneous media than for
homogeneous media (Fig. 2.5.7).

FRIED first proof, Chapter 2, page 42



CHAPTER 3

THE METHODOLOGY OF TECHNICAL STUDIES OF GROUNDWATER
POLLUTION

The methodology of groundwater pollution is based upon the fact that, in
most cases, the pollution is miscible with groundwater or at least behaves like
a tracer and that the spreading of some transition zones cannot be neglected.
We have seen in the previous chapter that the miscible flow of pollutants is
governed by the dispersion theory. Of course, the evolutions of some
pollutants definitely cannot be represented by the theory of dispersion, but
then, as in most practical cases their movements answer Darcy’s law and the
continuity equation, we shall see that they are automatically part of the
general methodology, one aim of which is to distinguish between dispersive
and purely convective phenomena.

The scale of a pollution phenomenon determines the methods used to
cope with it. Thus, the methodology is built to determine this scale and to
provide means of changing it, leading to the use of the various experimental
and mathematical tools necessary to study the pollution phenomenon.

3.1. THE SCALE PROBLEM

The scale problem presents two aspects:

(1) It is sometimes possible to neglect the dispersion effects and to treat
the phenomenon as an immiscible transport of pollution.

For example, imagine a one-dimensional flow at a constant velocity and an
injection of pollution at a constant rate. The spreading of the transition zone
is proportional to the square root of time (§4.1.1), the travelled distance L is
proportional to time, through formula L = ut; thus, the width e of the
transition zone is proportional to L!’? and the relative width e/L is pro-
portional to L!/%/L. When L increases, L'/?/L decreases, which means that,
on long distances, dispersion effects become less and less important compared
to convective effects; a miscible poliution flow can be treated as an immiscible
displacement, i.e. piston flow at the mean aquifer velocity, if the travelled
distances are large with respect to the dimensions of the pollution source.

(2) Laboratory studies and many field experiments yield local results,
such as dispersion coefficients for instance. A real pollution may be rather
extensive and a great amount of experiments, usually costly, will be required
to collect all the necessary characteristic parameters. Significant field param-
eters have to be determined in a rather small number to put the experimental
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costs at a reasonable level, without loosing too much accuracy in the
modelling. Thus a methodology had to be defined to apply the groundwater-
pollution theory, developed in the laboratory within dispersion studies, to
real field problems. It is mostly a change-of-scale problem, which appears
when the laboratory theory of dispersion is applied to field pollution and
also, in the field, when several scales of pollution are simultaneously studied
(a scale of pollution being defined by the total amount of transient pollution,
the strength of the pollution source and the invaded volume of soil).

3.2. THE METHODOLOGY
3.2.1. Decision criteria

When confronted with a groundwater-pollution problem, the people
responsible for its solution will ask several questions:

(1) what is the nature of the pollution:

— is it miscible or not to the water?
— what are its physical and chemical properties?
— what sort of danger does it present?
(2) What is the scale of the pollution:
— what is the total amount of pollution?
— what is the strength of the pollution source?
— what are the dimensions and the geometrical characteristics of the
pollution source?
— what is the invaded volume of s0il?
— what is the duration of the pollution?

Preliminary answers to these questions, even only rough answers, are the
decision criteria necessary to choose the adapted models and investigation
techniques. These answers result from a study of the available data; yet it
may sometimes be hard to decide. For instance, dispersion coefficients are
essentially local (a complete mathematical proof of this feature is given in
Chapter 8); this implies that dispersion phenomena are also local, that the
transition zone increases slowly and that eventually dispersion theory makes
sense only for large times (which explains why most of the laboratory work
on dispersion has been performed for the asymptotic regime, when some
sort of steady state has been reached, as seen in Chapter 2), but conversely,
as we have just shown in § 3.1, that for very large times dispersion becomes
negligible with respect to the dimension of the polluted area. Of course, in
reality the asymptotic regime is usually quickly obtained, which allows easier
decisions about the type of pollution model to be chosen.

A typical problem is the determination of the amount of pollution flowing
through an aquifer to the streams and the mean residence-time of this pol-
lution in the aquifer. This is a regional study; it can be estimated that the



METHODOLOGY 49

width of the transition zone is small with respect to the dimensions of
the studied area and a convective model (i.e. a model of movement without
dispersion) is good. Another problem is the definition of the protection
zone of a pumping well: this is a local problem and dispersion has to be taken
into account. Imagine an accidental pollution: because of dispersion, either
the critical concentration in the well may be reached before the poliution
front (as computed by considering piston flow) goes past, or no critical
concentration will be reached at all in the well because of dilution. In this
last case, a hydrodispersive model (a model taking dispersion and convection
into account) fits well.

In general, the first decision will be to choose the type of structure of the
pollution and its modelling having in mind that most dangerous and frequent
poliutions of an aquifer are miscible with the water of the aquifer but that
immiscible compounds may behave like tracers and also be treated as miscible
substances. Scale factors are most important decision criteria and can be hard
to study. For instance, dispersion will have to be taken into account in the
case of important sources, but also in the case of sources with small dimensions
when a critical concentration has to be found.

3.2.2. The dispersion scheme

We call “dispersion’’ scheme the following set of equations.
(1) dispersion equation:

. c . oc
div [Kp . (grad —)] —div (uc) = —
p ot

(2) continuity equation:

(3) Darcy’s equation:

k
u = ——-(grad p + pg grad z)
i)

(4) State equations of the mixture:

p = flc) u=gl) D= D)

where ¢ is the pollution concentration, D its molecular-diffusion coefficient,
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K the dispersion tensor, k the permeability tensor, p the pressure, t the time,
u the pore velocity, ¢ the porosity, u the dynamic viscosity, p the density of
the mixture. The dispersion scheme is completed by boundary and initial
conditions depending on the problem.

Remark. Temperature does not vary much in an aquifer and is not
accounted for in the state equations.

Mathematically, the dispersion scheme is a non-linear system of partial
differential equations, because the coefficients of the dispersion equation
depend on the solution ¢ of this equation through density and velocity of
the mixture. There is no direct method available to solve the system and
simplifying assumptions have to be introduced to reach a practical method
yielding practical solutions, i.e. solutions which, although correct mathe-
matically, are probably not the most beautiful, but which can be handled
with good accuracy by people responsible for the treatment of a pollution
problem. The simplification of this dispersion scheme is performed according
to an ordered set of rules, which is codified in a sub-methodology called the
practical use of the dispersion scheme.

3.2.3. Practical use of the dispersion scheme

There are two basic ways of applying the dispersion scheme: (1) the
density and the viscosity of the mixture vary with concentration (this is the
general case); and (2) the density and the viscosity of the mixture are con-
stant (this is the tracer case).

Remark. In the case histories presented in Chapter 6, the variation of the
viscosity could always be neglected.

Both cases are presented on flow charts (Figs. 3.2.1 and 3.2.2) which
display their fundamental differences (Fried and Combarnous, 1971).

(1) In the tracer case, the hydrodynamic equations are independent of
the dispersion equation, because, density and viscosity being constant, the
velocity of the mixture does not depend on the pollution concentration.
The dispersion scheme becomes a linear system of partial differential equations
and is solved according to the following procedure. First solve the hydro-
dynamic equations (the Darcy equation and the continuity equation), usually
in terms of heads or pressures with pressure boundary and initial conditions.
The velocity distributions in space and with time are thus obtained for all
time-steps of the experience. Then express the coefficient of the dispersion
equation in terms of the velocities at each time step and compute the con-
centration distributions in space and with time for all time steps from the
dispersion equation and its boundary and initial conditions (Chapter 5).

(2) In the general case, the hydrodynamic and dispersion equations depend
one on the other, because the coefficients of the dispersion equation are
functions of the mixture velocity which itself is a function of the pollution
concentration through viscosity and density. It is not possible to obtain the
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simultaneous solutions of the equations of the dispersion scheme, as required
mathematically, but an approximate procedure has been derived: a distribu-
tion of concentration is known at time ¢; the corresponding distribution of
viscosities and densities is computed; viscosity and density are assumed to
remain constant during the time-step dt, and from the corresponding velocity
distribution, concentrations at time t + dt are computed; of course, within
the same time-step, the procedure is iterated with a convergence test on ¢
(Chapter 5).
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Fig. 3.2.1. Use of the dispersion scheme: the tracer case.

These flow charts require some explanatory remarks.

(1) Theoretically all the dispersion tensor coefficients can be computed
either by direct experiments or from the principal coefficients determined
experimentally, by the tensor change of coordinate formulas. But the general
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Fig. 3.2.2. Use of the dispersion scheme: the general case.

dispersion equation, with rectangular second-order partial derivatives (i.e.
terms like 0/0x0y), is rather difficult to solve numerically; thus it is very
interesting to try to simplify this equation by suppressing the rectangular
derivatives; this is obtained by writing the equation in the principal directions
of the dispersion tensor, introducing the principal dispersion coefficients K,
and K, (blocks 8 on Fig. 3.2.1 and 6 on Fig. 3.2.2).

(2) Greater simplification of the dispersion scheme can be obtained by
decomposing the tridimensional scheme into two bidimensional schemes, each
one being written in the plane of two principal dispersion directions.

(3) There are five dispersion regimes depending on the Peclet dispersion
number. A semi-empirical formula describes the dispersion coefficients:

K/D = o(Ud/DY" + f3

and each regime is characterized by the values of the coefficients o, 3, m
and a domain of the graph (K/D and Ud/D) which is detailed in §2.4.
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In each experiment, a dispersion regime is looked for by the determination
of the Peclet number. The comparison with already published curves
(Figs. 2.4.2 and 2.4.6) yields the values of «, 3, m (blocks 9, 10, 11 of
Fig. 3.2.1 and 10, 11, 22 of Fig. 3.2.2).

Remark. It has been noticed that in most alluvial aquifers, the pollution
occurs in the dynamic dispersion regime and the coefficients K are pro-
portional to the pore velocity. They are written K = U where «, called the
intrinsic-dispersion coefficient, depends on the soil, the permeability contrasts
and the consolidation. In other cases, the formula K = U can often be used
as a sufficient approximation.

Here is a summary of the practical rules that have to be kept in mind for a
dispersion study.

(1) There are two cases: (a) a tracer case where the molecular diffusion
coefficient, the density and the viscosity are constant; the dispersion scheme
is linear, and the hydrodynamic equations do not depend on the dispersion
equation and will be solved first for all time-steps; and (b) a general case
where the system is not linear; the equations are linked and only numerical
methods taking this interdependence into account, such as iterative pro-
cedures, should be used.

(2) The dispersion tensor is diagonalized in the system formed by the
tangent to the mixture flow velocity and the perpendicular to this velocity.

(3) Then the principal coefficients K of the dispersion tensor can be written
as:

K/D = afPe)™ + 8

where all coefficients have been defined in §2.4.2.

(4) Dispersion coefficients and velocities must be known in space and time
to determine the pollution concentration distribution: velocities are derived
from field measurements (direct methods) or hydrological models (piezo-
metric methods) and the dispersion coefficients are derived from field
measurements using existing pollution or tracer methods.

3.2.4. The general methodology

In brief, the general methodology is organized in four stages.

(1) A preliminary study of existing data to estimate the flow and the
possible pollution type (local, global, horizontal, vertical, etc.). These data
usually comprise permeabilities, morphological parameters of the soils,
pollution concentrations.

(2) The formulation of a working assumption from the preliminary study:
a mathematical representation is chosen according to the scale of the domain
and of the pollution; usually it is either a hydroconvective model (immiscible
flow, without dispersion) or a hydrodispersive model. If the chosen model is
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hydroconvective, the pollution problem becomes a classical hydrological
problem, where only groundwater motions have to be determined. If the
chosen model is hydrodispersive, the methodology comprises two more stages:

(3) the use of the dispersion scheme, and

(4) the collection of field parameters. Very often, at this stage there are
two possibilities: either there are pollution sources and models are adjusted
to these environmental tracer-concentration distributions, yielding dispersion
coefficients, or there is no pollution and tracers of some sort must be injected.
The field parameters that have to be determined are usually the velocities
and the dispersion coefficients.

3.3. EXAMPLES: TYPE-PROJECTS

As an illustration of the possible applications of the methodology, we
present type-projects that can be used as a basis for pollution-study contracts.

3.8.1. A study of pollution hazards in a large aquifer feeding an urban
community

Aims of the study

The general aim of the study is to ensure the protection of pumping wells
against the various possible pollutions which occur as:
— injections localized in time and space (accidents)
— injections localized in space but long-lasting (sanitary landfills)
— injections in large areas and long-lasting (fertilizers, for instance).

The objectives will be:

(1) To quickly estimate the probability of pollution flowing accidentally
through a pumping well.

(2) To define the influence of present or unavoidable pollutions in the
wells especially as a function of pumping regimes.

(3) To define pollution-sensitive zones in order to adjust the setting of
new wells.

(4) To derive a large-scale model, as a quantitative support of prediction
and management, ‘

(6) To inform the public by simple visualization of the evolution of
pollution.

The problem
In order to draw up a tentative study programme, the problem must be
correctly defined: at this stage, some choice of the models has to be made
and decision criteria derived from rough preliminary studies.
These preliminary studies consist of inquiries with local authorities to
. gather some knowledge of the type of existing and expected pollution. Also,
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from the statement of objectives, we see.that it is a multi-scale problem.
Most probably then, both convective and dispersive models will be necessary
and the sequence of the options should be included in the programme. In
brief the problem is multi-scale, dispersive on both small and large scales
and convective at large scales.

The programme

The programme is organized in a sequence of steps which reflect the
necessity of carefully separating the various scales and of proceeding from
the local to the regional scale.

The domain is partitioned in zones presenting some geological homogeneity
as displayed by the preliminary studies. Each zone is divided up into experi-
mental areas, comprising one or several wells. To give an order of magnitude,
experiments have been conducted on alluvial aquifers, on experimental areas
of 0.002—3 km?, on zones of 10—50 km? and in domains of 50—300 km? and,
on fissured aquifers, in domains up to 3000 km? (Cf. Chapter 6).

On each experimental area, then, experiments will be performed to collect
hydraulic parameters (such as porosities and permeabilities) and pollution
parameters (such as dispersion coefficients). These parameters will be used
as such in predictive models answering objectives 1 and 2.

Such an experimental area is an elementary block of a larger model
representing the zone. First, compatibility conditions at the boundaries of
the blocks, especially flux conservations, are derived between the experi-
mental-area models, then a mean equivalent model is derived, by computing
new sets of equivalent dispersion coefficients, absorbing block boundary
conditions and using new zonal boundary conditions.

The zonal models will be adjusted on existing pollution and answer
objective 3. The zones are then used as elementary blocks of a model of the
domain, first as a juxtaposition of zonal models with compatibility conditions
at the zonal boundaries, then within a domain-equivalent model with large-
scale equivalent coefficients.

At this stage, dispersion may sometimes be neglected and the domain
model will consist of a convective model, i.e. a balance of matter. Objectives
4 and 5 are then answered.

This programme has been summarized on the flow chart Fig. 3.3.1.

The models

These are bidimensional, for general domains. The complete dispersion
matrix will be used {and not only a diagonal form) in canonical rectangular
axes, with classical change of coordinate formulas to switch from the general
form to the diagonal form and conversely.

The results
The results will be forecasting models, the maps of pollution-sensitive
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Fig. 3.3.1. Type-project: pollution of an aquifer feeding an urban community.

zones (velocity and dispersion coefficient maps) and type-curves of
concentrations.

3.3.2. The setting of sanitary landfills near an urban commurity

The problem

A town is developing rapidly and increasing its reliance on an underlying
unconfined aquifer by setting new grids of pumping wells; at the same time
it has to build two new sanitary landfills near an existing one, not too far
from the wells. The local authorities wish to forecast the pollution coming
from the existing and future landfills and the influence of the various pump-
ing programmes, and the seasonal nature of the surface recharge on its
evolution. It is a highly transient, non-steady problem that can be most
accurately handled by a mathematical model of the pollution.

Even if no accurate information has been provided concerning the com-
position of the wastes, it can be assumed (unless stated otherwise by the
authorities) that they consist chiefly of wastes from urban areas which
generate compounds such as sulfates, sulfites, etc., miscible with the water
of the aquifer and a dispersion model will be suitable to determine the
pollution concentration levels compared to an admissible pollution threshold
in the water of the aquifer.

The programme

It is divided up into three stages, each stage providing a set of usable
results allowing evaluations of the pollution with increasing accuracy, which
allows of considering one stage after the other in the financial planning of
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the operation: this procedure is interesting for urban communities which do
not have to plan large expenses immediately.

Stage 1 is an initial field study, corresponding to the preliminary studies
of the general methodology. It consists of studying the available data in order
to determine the various pollution thresholds, the geological features
(especially the zones where significant vertical permeability contrasts may be
expected), the piezometry and the expected flow lines.

Also, and this is most important, the existing landfill may be considered
as a source of environmental tracers and should be monitored by using
already existing wells and sampling their water for chemical analysis, and by
drilling new multiple-level wells at positions given by the piezometric map.

Stage 2, corresponding to the determination of the pollution-modelling
parameters (velocities, dispersion . coefficients) in the field, consists of
monitoring the existing pollution (by measuring water resistivities with
electrical logging, for instance, if stage 1 shows that pollution changes the
water resistivity), refining the geological knowledge in the proposed sites
(by drilling new wells or by geophysical methods), collecting the necessary
data for the determination of dispersion parameters (by injecting an artificial
miscible pollutant, such as salt water, and recording its spreading, by surface-
resistivity measurements for instance and trying to separate the influence of
the lower and the upper aquifer strata), determining the dispersion coefficients
(by interpreting the field experiments with a numerical model).

Stage 3, corresponding to the derivation and use of a forecasting and
mathematical model, consists of integrating the various results of stages 1 and
2 into hydrologic and dispersion models representing the whole domain
influenced by the landfills.

The results

Stage 1 will yield general knowledge of the behaviour of the pollution on
the proposed landfills (such as the nature of potential pollutions, the possible
average horizontal extension of pollution clouds with time, the possible
average vertical extension of pollution clouds and the determination of the
layers most sensitive and most affected by pollution) and guidelines to the
choice of the forecasting model and its scale (such as the determination of
the behaviour of the pollution in a vertical section, the choice of the field
experiments with tracers to collect dispersion parameters and the determina-
tion of the position and of the number of necessary wells for further experi-
ments to collect dispersion parameters).

Stage 2 will yield numerical values of the dispersion coefficients at the
various sites, numerical values of water velocities in the aquifer and a refined
map of flowlines, a detailed knowledge of the geological features near the
sites, a thorough knowledge of the pollution paths vertically and horizontally
and a set of rules of thumb allowing the forecasting of the pollution for
steady-state conditions and various well distributions.
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Stage 3 will yield a mathematical model, composed of a hydrological
model and of a dispersion model, to manage water quality in the landfill
zone and the determination of a belt of warning stations to continuously
adjust and correct the forecasting tools in case of local variations.



CHAPTER 4

THE EXPERIMENTAL DETERMINATION OF GROUNDWATER
POLLUTION PARAMETERS

Laboratory experiments have shown that the parameters that must be
determined in the field are pore velocities and dispersion coefficients. Of
course, in Chapter 3, it has been shown that other aquifer characteristics
(such as geology and lithology) should be known; their determinations being
classical and well described elsewhere, within the scope of this book we
shall keep to methods that are specific to pollution studies and which were
developed during research on pollution problems (which does not mean that
they should be restricted to pollution studies, of course).

This chapter is divided into two parts:

§4.1 presents formulas that are explicit, i.e., expressed with simple
functions (some authors would call them ‘analytical formulas’). These
formulas represent the solutions of simple, idealized mathematical models
and they are very often used in laboratory studies (§2.4 and 2.5) where
experimental conditions may be chosen to be simple. For non-academic
problems, they are difficult to use because approximations are too large.
Anyway, in some cases, they are of interest either as means of verification
of the magnitude orders or as direct computational tools when natural
conditions can be idealized without too great a loss of accuracy.

§ §4.2 and 4.3 present field methods which usually consist of some experi-
mental devices and a treatment of the results on a mathematical model solved
numerically by computer methods.

The principal characteristic of these field methods is that they vary with
the scale of the problem (§3.1): at each usual scale some experiments
correspond and without completely detailing the techniques, we give enough
material and references to determine pollution parameters in the most usual
pollution problems.

The experimental determination of dispersion coefficients may be sum-
marized in the following flow chart (Fig. 4.0.1).

4.1. EXPLICIT FORMULAS FOR THE ESTIMATE OF DISPERSION
COEFFICIENTS

A dispersion phenomenon is estimated from a variation of concentration
either in space at a given time or at a given point with time. In order to
compute the. coefficients, one uses formulas derived from the analytical
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Fig. 4.0.1. Flow chart

solution of the classical dispersion equation for simple experimental con-
ditions: a unidirectional displacement, at constant velocity, an initial step-

input function. Density and viscbsity are constant.
4.1.1. The longitudinal dispersion coefficient

Continuous injection
Consider the system:

92C aC aC

Lox? Yox et

C(x,0) = 0
C,t) = Cq
C(oo, 1) = 0

The solution of [4.1.17] is:

C 1 " x— Ut + (Ux/K, ) exf x + Ut
— = — |erfe |[———— erfec | ————
c, 2 |7 e TP g 0172

[4.1.1]

[4.1.2]

The second term is very small compared to the first one and may be
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neglected; thus:

c 1 x — Ut I )
E_ B E erfc 2(K t)l/_z =T J x-ue €Xp(—n7)dn
0 L 2K [ 62

C/C, may be written as:

C _ oo
o= @m ]y exp(—n/2)dn
0 @K™

61

[4.1.3]

[4.1.4]

Then, at a given time, x being the variable, the solution is a normal distribu-
tion function 1 — N[(x —m)/o] with expectation m = Ut and standard
deviation ¢ = (2K t)!”2. A classical property of the normal distribution

function N{(x — m)/o] is that:

N(1) = 0.8413~0.84, N(—1) = 0.1587 ~0.16

[4.1.5]

This property is used because it allows an easy computation of the standard
deviation ¢ from the graph of concentrations versus x, and very often the
width of the transition zone is defined as the difference between x at con-

centration 0.84 and x at concentration 0.16 (Fig. 4.1.1).

Aesee

Fig. 4.1.1. The classical error-function concentration profile.

Thus, at a given time, the width e of the transition zone is:

e =20 = Xg.16 Xosa = 22K 1)!"?
and K; is given by:

Ky = (Xo.16 — %0.82)*/(81)

[4.1.6]

[4.1.7]

Measurements are very often performed at a given x (for instance at the
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lower end of the porous medium), and then the evolution of concentration
with time is recorded.
Letting X; = (x — Ut;)/(2Kt;)"'?, relationships [4.1.4] and [4.1.5] yield:

(x — Uto.16)/ (2K to.16)"2 — (x — Uty 0a)/ (2K to.5a)1"% = 2

and K, is given by the formula:

K; = §[(x — Uto.)/(to.16)""? — (x — Uty 84)/(to.84)""*1? [4.1.8]

It often happens that the transition zone is small with respect to the distance
travelled from the upper end of the medium to the measurement point; then
to.16 and t, g4 may be assumed to be roughly equal to t, ;. Thus the relation-
ship becomes:

K, = (8t9.5) ' UXto.8a— to.16)° [4.1.9]

Defining ¢’ as (to.51 — to.16)/(2to.s) and tq 5 as x/U, we derive another useful
form of [4.1.9]:

K, = 30'%xU [4.1.10]

This form may be convenient when, at the lower end of the medium, instead
of time, injected volumes are measured. Injected volumes, per unit sectional
area of porous medium, are related to time by V; = Ut;. Thus, with C as the
concentration at the lower end, the graph C/C, versus the injected volumes
is roughly represented by a normal distribution function with standard
deviation (Vo 34 — Vi.16)/(2V.5).

Crenel-type injection
Consider the system:

ax?  ox ot
C(x,0) = 0
Co, 1) =1 t<t, [4.1.11]
CO,8) = 0 t>t,
C(eo, 1) = 0

It represents the injection of a crenel-type concentration (Fig. 4.1.2).
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oy |

t

0 to
Fig. 4.1.2. Crenel-type input function.

The solution of [4.1.11] is:

x—u(t—t,)
2K (t—t,)
x—ut

C = (2m)7'? exp(—n?/2)dn

V2Kt

From this expression of C, we derive some results which we use to adjust
mathematical models to experimental concentration distributions, as the
crenel-type injection is a classical boundary condition.

We compute C maximum in space at a given time, from the derivative C'
of C with respect to x:

,_ 1 1 {_ [x—u(t—tw}
¢TI L SOR(E=1,) P AK(t — to)

1 {_ (x —ut)z}} ~ o
J2R: P 4Kt N

(x —ut)®  [x—ult—ty)]? t—to
thus: — = log
4Kt 4K(t — to) t

t t—t
and: x2? | — — +u’t, = 2K log 0
t(t — to)
t—t
2K log @ —u%,
and: x? =
__to
Ht — to)

For the asymptotic regime {(when t is large enough), we have:
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x2 =~ 2K(t — to) + ult(t — to) = ult(t — to) + 20w(t — to) [4.1.12]
with K = ou.

Result 1. This formula can be used to compute the mean pore velocity u
when « is known, with the assumption that the variation of the transition
zone can be neglected with respect to the width of this zone. Then x is the
distance between injection and observation wells and ¢,, is the occurrence
time of the maximum and we have:

u = [_'a(tm - tO) + {a2(tm - t0)2 + x2(tm o tO) tm }1/2] /[tm(tm - tO)]

1t should be noticed that u is different from the velocity of the maximum
x/t,,. As ais usually computed by methods requiring a preliminary knowledge
of u, this formula will be used for checking purposes.

Result 2. With the assumptions of an asymptotic regime and small
variations of the transition zone with dispersion, the dispersion coefficient K
is derived as a function of the tracer flow velocity, from [4.1.12]:

K = [x2—u?tym(tm — to)1/[2(¢, — to)] [4.1.13]

where x is the abscissa of the measurement point and t,, the occurrence time
of the maximum. The maximum concentration ¢,, can also be measured,
which yields another relationship between K and u:

x—u(ty —ty)

1 f\/ZK(tm—to)

Cp = ——— exp(—n?%/2)d
/27 Jxutn p(—n"/2)dn

2Kty
K is positive, by physical considerations. Hence:
u <x/[tm(tm - tO)] 12 = Ug

It can be shown (Fried, 1972a) that these three relationships yield one
couple (K, u) and only one, because the function ¢,, (#) is monotonous for
positive K. From this result, an adjustment method has been derived in the
case of a crenel-type boundary condition; the maximum of the concentration
curve will be adjusted, which yields one dispersion coefficient only, with
the following assumptions: (1) the occurrence time of the tracer is large with
respect to the end of the injection time; and (2) the transition zone displays
almost no variation by dispersion at the measurement point.

These results have been extended to radial flow by analogy on numerical
examples.
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Besides, this adjustment is justified because the maximum occurs in the
medium zone of the concentration curve which represents well the dispersion
phenomenon as seen in § 2.3.

Remark. The error on K, from [4.1.13] is:

2

|dK| = Ut,dy + ————
2(tm_t0)2

dt,

as x and t,, are usually measured with precision.
4.1.2. The lateral dispersion coefficient

The classical experimental setting is described in Fried and Combarnous
(1971). The concentration regime is asymptotic, which means that the con-
centration profile in the measurement section is steady for large values of
time; the displacement is unidirectional. Thus the dispersion equation
becomes:

U(3C/dx) = Kr(32C/oy?) . [4.1.14]

Computations are made in the tracer case and in the general case of fluids
with different viscosities and densities. In the first case, the velocity through
a section is constant. To solve the second problem, where velocities vary in
asection, two methods may be used: (1) the “local method’ which takes into
account the velocity distribution, and for each experiment yields a curve of
dispersion coefficients versus local Peclet numbers; and (2) the “global
method” reducing this case to the tracer case by the introduction of a mean
velocity.

This second method yields a good approximation of the solution
(Fig. 4.1.3). Thus, in this section, only the tracer case is described.

The porous medium, which is bidimensional, is assumed to be infinite in
the two principal directions. Equation [4.1.14] is solved for the boundary
conditions:

aCloy = 0 for y = too.
C0,y) = Cy for O0<y<+oo [4.1.15]
C0,y) =0 for —eo<y<0

The solution of [4.1.15] is:

C 1 y

+erf —2 411
Co 2| T 2k xUy [4.1.16]
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Let o be the standard deviation at x = x, defined by:
0 = %[y(xg, C/Cy= 0.84) — y(x4, C/Cy = 0.16)]
From [4.1.16] we derive the formula:

Kr = $0%(U/x,) [4.1.17]

Xq/D

Ho Z
/
s
> .
Ve
s
|91 l?l vd/p
Fig. 4.1.3. Local and global methods (transverse dispersion), — — — = the tracer case,

= local method, e = global method.

4.1.3. Radial flow

The formulas just derived can actually be applied with very restrictive
conditions, such as a unidirectional flow, homogeneous media, step-input
initial functions and a constant velocity. In the field, it is rather difficult to
obtain all these conditions. For some experiments, however, at a consistent
scale of homogeneity, [4.1.1] is a fairly sufficient approximation and then
the formulas of §4.1.1 may be used.

What often happens is that field investigations are conducted from wells
and imply radial flows. A few authors {(Lau et al., 1959; Raimondi et al.,
1959) have tried to derive formulas analogous to the unidirectional flow
formulas, expressing the dispersion equation in cylindrical coordinates:

L2 [ 2 (] 22y - i118]
P L T Y | PR Lt Y [4.1.

where K, is the longitudinal dispersion coefficient, u the pore velocity and p
the density of the mixture.

They assume some dynamic dispersion regime, u and K, being given
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by:
A .
u = - : velocity of a steady-state flow
r
K, = a— : «is the intrinsic dispersion coefficient

g2l A% % [4.1.19]

They then assume that dispersion may be neglected with respect to convection
at some distance from the source, which yields the relationship:

; ,
o __ro [4.1.20]

ol e _Aaoc o [4.1.21]

the solution of which will be:

- 2
c(x, t) = CE" ert K—%—At) /%aﬁ} [4.1.22]

From [4.1.22] a formula may be deduced:
g = (2/3 ar)!’? [4.1.23]

o being the standard deviation of the concentration distribution. When the
well radius ry is other than zero, Lau gives the relationship:

o = [2/8a(r—r3irH)]V? [4.1.24]

From a mathematical point of view, problems arising from the use of a
second-order equation in ¢ are completely different from the problems with
a second-order equation in r (especially with a singularity at the origin) and
mathematicians will strongly object to this change of equations.
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Another philosophy is that as long as a mathematical model is a good
representation of the phenomenon, it may be accepted. When the rather
crude physical approximation [4.1.20] is valid, one may get a very rough
estimate of o by measuring o from experimental curves. But in most cases
and when possible, it seems more prudent to maintain the classical form
[4.1.19] and use direct methods of comparing the experimental solutions
with the numerical solutions of [4.1.19] obtained by computer methods.

4.1.4. Remarks about heterogeneous media

When the asymptotic regime is reached, previous computations hold for
the equivalent homogeneous medium. Formulas [4.1.10] and [4.1.17] can be
used.

When the geology and lithology of the various layers of a stratified porous
medium are known, one could attempt to reach a value of the equivalent
dispersion coefficient using [2.5.8]. Due to uncertainties about the local
dispersion coefficients, this formula only yields rough estimates of K and has
only been used to verify the order of magnitude of the dispersion coefficient.

4.2. FIELD METHODS FOR THE DETERMINATION OF DISPERSION
COEFFICIENTS

Field methods are usually classified into four sets, corresponding to the
four usual scales of pollution problems. These scales are given as a function
of the mean travelled distance:

— a local scale, between 2 and 4 meters

— a global scale 1, between 4 and 20 meters

— a global scale 2, between 20 and 100 meters

— a regional scale, more than 100 meters (usually several kilometers).

4.2.1. Local scale: a single-well pulse technique

Consider a well screened on its whole depth and fully penetrating the
aquifer. It is filled with water traced by a radio-tracer at a constant concentra-
tion over the whole depth. This traced water is pushed by water traced at the
same concentration, then by fresh water. Then it is pumped back into the
injection well. At each level, tracer concentration is recorded with respect to
time and these measurements are interpreted in two ways: (1) concentration
variations at a given level with respect to time and at a given time with respect
to depth yield the relative permeabilities of the strata (Leveque et al., 1971,
1974); and (2) concentration variations at a given level with respect to time
allow a quantitative evaluation of the longitudinal dispersion coefficient at
each level, using the dispersion scheme (§3.2) and mathematical models
(Fried, 1971a; Fried et al., 1972).
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Experimental studies

The radioactive tracer is injected into the aquifer from a screened piezo-
meter. The radioactivity is measured along the whole depth of a screened
pipe. At each point, the activity is a function of: (1) the concentration of
the tracer in the piezometer itself; (2) the volume of the aquifer invaded by
tracer around the point. The cloud of tracer is distorted according to the
hydrodynamic properties of each stratum: it penetrates easily transmissive
layers; its extension is far smaller in semi-pervious strata; and (3) the volumic
radiation emitted by the invaded aquifer: in addition to the tracer concentra-
tion, this radiation depends on the effective porosity and on the density of
the solid matrix.

The characteristics of the probe and the mathematical simulation show
that the effects pointed out in (1) and (3) are widely predominant.

Different radioactive tracers have been tried:
82Br half-life = 86 hours; peak of energy = 0.78—1.47 MeV
131] half-life = 8.05 days; peak of energy = 0.36—0.64 MeV
'Cr half-life = 27.8 days, peak of energy = 0.32 MeV.

1311 or 82Br are the most often used. The required activity is very low, not
exceeding some microcuries. These isotopes are respectively in the form of
sodium bromide and sodium iodide solutions contained in a medical flask.
The solution is taken out from the flask, using two hypodermic needles, by
means of a water flow. The traced water is mixed with about 4 m3 of water
(for a well 30 meters deep) by feed-back pumping. During this mixing, the
carrier is added. The apparatus needed for such a process is very simple and
safe, and especially suitable as a field device.

Such a tracer has some very interesting properties:

— it does not present any danger for the field staff nor for the environment
because of its short half-life and its low activity;

— it has a good detectability;

— it does not modify the water density.

The probe measures activities by a solid-medium scintillation process.
The impulse sent by the probe through the supporting cable is received by an
integrator and a counting scale. A recorder controlled by the downwards
movement of the probe draws the log (Fig. 4.2.1).

Remarks. In some way the probe transforms the signal it receives. Thus
the properties of the probe have to be investigated before the experiment
itself. Two points are important: the power of resolution of the probe and
the size of the volume of influence. Here follows an example of a possible
method.

Investigation of the power of resolution of the probe. Measurements are
done with a loss of information which characterizes the power of resolution
of the probe; a deconvolution process may avoid this effect, assuming:

s(7) = X e —)¢()]
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where s(j) is the activity measured with the apparatus at depth j, e is the
distribution of tracer along the piezometer, ¢ is the kernel function character-
istic of the probe working with a given isotope.

The experimental device consists of a stratified medium with one layer
saturated by the tracer and put at concentration 1. By the numerical decon-
volution process (Emsellem et al., 1971), ¢ is computed (Fig. 4.2.2) for steps
of 5 cm. Then by deconvolution of s by ¢, it is possible to find the distribu-
tion of tracer in an invaded borehole. Fig. 4.2.3 shows the results of a series
of measurements made every 10 cm, concentration 1 being activity 1000. A
log is measured in the field, deconvoluted by ¢ to get e and then e is
numerically convoluted by ¢ to verify the method.

The size of the volume of influence. This investigation has been carried
out on a cubic meter container divided in cylindrical coaxial sectors. It was
possible to inject a radioactive tracer in each sector. We found that a con-
centric cloud around the piezometer was not seen, in the optimum case, at a
greater distance than one meter (Fig. 4.2.4).

The diameter of the piezometer must take into account the diameter of
the probe. It must be screened (> 20%) over the whole length of the inves-
tigated aquifer. The screened pipe is covered with nylon linen the mesh of
which is about 0.5—1 mm large. There must not exist any gravel pack that
would screen the information sent by the injected aquifer and the probe.

The experiment is performed in four steps. The piezometric column is
filled up with traced water by pumping at the head of the borehole and
injecting at its bottom. When the activity of the pumped-out water stays
constant, pumping out is stopped and injection of traced water begins. In
unconfined aquifers, one must make sure that the elevation of the water
table is small to insure safety and to prevent any injection of tracer above
the investigated aquifer. Then untraced water is injected. The fourth step
is pumping back into the injection borehole and the investigation of the
returning radioactive cloud in each stratum.

At each step, the flow rate must be small, to assure that time necessary
to draw a log is short with respect to the evolution of the traced aquifer:
then logs may be considered as instantaneous. Of course as many logs as
possible are made. Examples carried out with 82Br are shown on Figs. 4.2.5
and 4.2.6.

Remark. A qualitative evaluation of permeabilities can be derived from
these results. Two strata may be pointed out, characterized by:

— peaks of activity during the injection

— nodes during injection of non-active water

— the fact that during the pumping, these strata send back more activity
than others.

It is obvious that the transmissivity calculated by a classical pumping test
is due, in greatest part, to these strata. Fig. 4.2.6 shows the evolution of
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Fig. 4.2.3. Deconvolution results (activities versus depth).

**% = field data, coo = deconvolution results (input function), +++ = output function
computed by the convolution of the computed input function with the probe impuise-
response,

activity for various permeable layers during the pumping back. It should be
noted that in most cases the recovery rate of activity is about 85—95%.
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The mathematical models
These are based upon the general dispersion equation:
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Fig. 4.2.6. Activity vs. pumped volume for various permeable layers.

) [ c ) dc
div |Kp* {grad — | —div(uc) = —
( p )] ot
simplified according to the following remarks and assumptions.

The medium is made up of homogeneous, horizontal, indépendent strata.
Only small quantities of radioactive tracer are used, which implies that the
density and viscosity of the mixture do not vary and are equal to those of
fresh water. The coordinate system is chosen to coincide with the principal
axes of the dispersion tensor, which is then put in its diagonal form.

The velocity regime is that of dynamic dispersion and the dispersion
coefficients K can be written as:

K = ajul

where u is the pore velocity and « the intrinsic dispersion coefficient (which
has the dimension of a length).

We intend to measure ¢, the longitudinal-dispersion intrinsic coefficient,
which is equal to the longitudinal intrinsic coefficient for radial flow
(Hoopes and Harleman, 1967a). We assume that horizontal and vertical
transverse dispersion are negligible. The model is then:

5
div (|| grad c) — div (uc) = a—: [4.2.1]
3 13k S ok
e = =
or:  ror T ot

k
w=u,— P arad [4.2.3]
ue

[4.2.2]
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where h is the piezometric head during the injection or the pumping and u,,
the natural aquifer velocity. u is the dyhamic viscosity, ¢ the porosity, k the
permeability coefficient, T' the transmissivity and S the storage coefficient.
Convenient boundary and initial conditions are added. Two cases are con-
sidered: either the aquifer velocity may be neglected with respect to the
imposed velocity or u,, is taken into account.

(1) u,, is neglected: dispersion is purely radial and we use cylindrical
coordinates to write the dispersion equation as:

[4.2.4]

(2) u,, cannot be neglected: the principal directions of the dispersion
tensor are respectively tangential to the streamlines and the equi-potential
lines and [4.2.1] reduces to (§5.2):

uz—a— (oziul —*—) —uzg)£ = i [4.2.5]

in the ¢, Y-coordinates system, where ¢ = constant are equi-potential lines
and where Y = constant are streamlines.

Two methods may be used to determine the dispersion coefficients: a semi-
analytical formula derived from [4.2.4]; and direct simulation and curve
fitting.

Semi-analytical formula. We assume to be in case (1) where u,, is neglected.
We have shown that the steady-state velocity is obtained after a relatively
short lapse of time (a few minutes of injection or pumping), thus we take
the velocity as:

A
u = -
r

with A = Q/2wb¢, where b is the aquifer width, @ the injection rate and ¢ the
porosity. Velocities are oriented outwards from the well (we put a minus sign
for pumping). o is deduced from [4.2.4] as:

oc oc
r—+A—
ot or [4.2.6]
a = A
9%

or?
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dc/at is given by the experiment and [4.2.6] yields:

Cn+z(1)—cn+1(1)+cn+3(1)'_cn+z(1)A

r
2 dt |
o = [4.2.7]
_ 2A Cn+3(1)—Cn+2(1)___cn+2(1)_cn+l (1)
rs—r; rs—7r, ry ™ ry

where ¢, (i) is the concentration at time ¢,, at a point i lying at the distance r;
from the well axis; r, is the well radius.

Formula [4.2.7] has been obtained from a discretization of [4.2.6],
assuming that the transition-zone variation during a relatively short time
step di may be neglected with respect to its width. Then, the tracer moves
without dispersion and, under this assumption, the concentration at the well
at time t + dt¢ is the concentration at time ¢ at a point r, + dr where dr is
given by the formula:

t+dt
dr =J udt

t
Cn+1(3) = cn+3(1)
Cn+1(2) = cpaa(1)

For instance:

cn(z) = cn+1(1)
ry = J4Adt +r?
r, = /2Adt +r?

The smaller dt is, the better is «. If A is precisely known, [4.2.7] provides a
very quick estimate of the order of magnitude of o, with simple computations.

Simulation. A finite-difference form of [4.2.1], [4.2.2] and [4.2.3] is used,
Because of symmetry, these equations are reduced to monodimensional
(in space variables) equations (§ 9.6).

The adopted scheme is totally implicit, with backward differences in the
velocity direction for [4.2.1]. A tridiagonal Gaussian elimination method is
used to solve the linear system of discretized equations directly.

Computed solutions are fitted to experimental solutions by curve fitting.
Fig. 4.2.7 represents concentration variations at the well versus time at a given
level; during this experiment dispersion coefficients were measured every
25 cm (§6).
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Fig. 4.2.7. Concentration variations vs. time at a given depth.
—+— = experimental curve, —— = computed curve for « = 10 cm.

Conclusion

This single-well pulse technique provides a quantitative evaluation of the
longitudinal dispersion coefficient in each stratum, at a scale of 2—4m.
Detection of the most pollutable strata and their modelling for prediction
purposes, are then possible.

It is also interesting to notice that most of the radioactive tracer is
pumped out of the aquifer and if the lifetime of the radioactive elements is
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short, these experiments with radioactive tracers are quite safe and there is
no danger of contamination.,

4.2.2. Global scale 1: multiple-well methods

The principle of these methods is very simple. Traced water injected in
the aquifer is spotted in a set of observation wells; the curves of concentra-
tion versus time are interpreted quantitatively to yield the longitudinal
dispersion coefficient.

Remark. Multiple-well experiments in dispersion have also been conducted
in laboratories (Hoopes and Harleman, 1967a). Of course, the methods of
investigation differ from field experiments, as financial stresses are of prime
importance on the latter: the scale of the financial investments is usually well
adjusted to the scale of the experiment.

The methodology

The methodology consists of the following points. Consider an injection
well and concentric rings of observation wells, centered at the injection well.
All the wells are fully penetrating and screened over their whole depth. A
tracer is put in the injection well, its concentration is homogenized and
traced water is brutally injected into the aquifer. A step-input initial con-
dition is thus realized and the impulse response is analyzed in the observation
wells. The studied function is the tracer concentration versus time at a point
in space.

Traced water has been injected in the aquifer; what becomes of it? There
are two possibilities: either it flows with the proper velocity of the aquifer
or it is pushed at a greater velocity.

In the first case simple models can be used: at a scale of 6—12 meters, the
aquifer velocity does not fluctuate and usually a bidimensional unidirectional
model is adequate. Explicit formulas, such as those presented in § 4.1, may
also be used and sometimes an analytical resolution of the equations. Some
examples will be discussed later in this section. But the duration of such an
experiment is rather long and this will prevent the use of short-lived radio-
active tracers; besides if the tracer is heavy and highly concentrated, gravity
may become a disturbing factor which is to be taken into account.

In the second case, either the imposed tracer velocity is high enough to
neglect the proper velocity of the aquifer or these two velocities have to be
composed. Although it is interesting to be able to neglect the aquifer velocity
(the experiment is rapid and the model is simply radial}, this condition is not
easy to obtain: the imposed velocity is radial and is, thus, more or less
proportional to 1/r (r is the distance from the injection well) and it decreases
rather quickly; a high head is necessary or a high injection rate which is not
always compatible with the experimental conditions.

In both cases, preliminary knowledge of the direction and intensity of
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(a) Forced injection. (b) Injection at the aquifer velocity. (¢} Impulse response at an observa-

tion well.

the aquifer velocity is essential. These data also yield the injection rate and

the optimal setting of the observation wells:

(1) A good knowledge of the velocity field, allows the drilling of the
observation wells on the mean run of the.traced water only, thus decreasing

the number of wells and consequently the costs.

(2) If the aquifer velocity is known, an injection rate can be chosen, so
that the tracer flow be radial. Then it is not necessary to know the direction
of the aquifer velocity and observation wells may be drilled anywhere in the

vicinity of the injection well.
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Remark. At the chosen scale, the aquifer velocity can usually be taken
parallel to a given direction.

Usual simplifying assumptions and mathematical models

Initial tracer concentrations are chosen in such a way that the density and
the viscosity of the mixture remain constant and do not differ from pure-
water density and viscosity. The mean velocity of the mixture is then constant
during the experiment and equal either to the aquifer pore velocity or to the
superposition of the aquifer pore velocity and the radial velocity imposed by
constant flow rate or constant well-head conditions (as has been said, some-
times the aquifer pore velocity may be neglected before the radial velocity).
The velocity of the mixture is therefore either measured or given once and
for all at the beginning of the experiment.

The velocity regime is such that dispersion be dynamic, i.e., the dispersion
coefficients are linear functions of the mixture velocity (§2.4.2):

K; = oqu

Both longitudinal-dispersion intrinsic coefficients «; in radial flow and
uniform unidirectional flow are equal (Hoopes and Harleman, 1967).

The flow is horizontal, transverse vertical and horizontal dispersions can
be neglected with respect to longitudinal dispersion.

First case. The model is monodimensional and unidirectional. A concen-
tration crenel is injected and the dispersion coefficient is derived from [4.1.13].

Second case. When the aquifer pore velocity can be neglected, dispersion
is radial and plane in a homogeneous medium. It is represented by:

19 {pK,ri (3)] L2 ey = [4.2.8]
r or p t

where K, is the longitudinal-dispersion coefficient, u the pore velocity and p
the mixture density. With the simplifying assumptions, [4.2.8] becomes:

ol 3% A oc dc
ad 9% Ade  Oc [4.2.9]
r orr ror ot

with u = A/r and A = Q/27b¢ where @ is the injection rate, b the width of
the aquifer, ¢ the porosity. A concentration is injected and the obtained
impulse response is adjusted on the experimental curve, noticing that the
position of the maximum depends on the flow velocity and its amplitude
depends on dispersion (§4.1.1., crenel-type injection). The model is then:
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oA 9% Adec  dc
r or: r or ot

c(re, t) = ¢ 0<t<T [4.2.10}

c(re,t) = 0 T<t
c(eo,t) = 0

where T is the time when injection ends and rg is the well radius. A is kept
constant during the experiment by injecting pure water at the same rate for
t>1T.

Remark. The steady-state assumption for imposed velocities is correct as the
permanent regime is reached within a few minutes (numerical and expeti-
mental results, Fried, 1972a). When the aquifer pore velocity cannot be
neglected, the mixture velocity is the superposition of a radial velocity
A/r and the uniform velocity u,, of the aquifer (Fig. 4.2.9). The model is then
represented in the streamlines—equipotential line system (§5.2) again by
[4.2.5], using symmetry properties of the velocity field.

G T——
——

—_—

Fig. 4.2.9. Superposition of a radial forced velocity and of the aquifer velocity.

Examples
Here are some examples which illustrate the multiple-well methods.

First case. The experimental setting is defined in Fig. 4.2.10 (Agence
Financiére de Bassin R.M.C., 1971). It is part of the study of the Lyons
aquifer and the geological setting is given in § 6.2.

100 g of I- (as I Na) was instantaneously injected. In order to measure the
mean tracer concentration over the whole depth of the aquifer, a mixing
device, described in Fig. 4.2.11 was set up in the injection well and in some
of the observation wells. Measurements of concentration were made by
chemical analysis of water samples taken from levels —6 m and —12m of
the aquifer by means of sampling bottles. A radioactive tracer (2 mCi of *I)
has also been used and the continuous measurement device is shown in
Fig. 4.2.11. The experiment lasted 160 hours, and concentration measure-
ments in each of the seven observation wells were performed every
2—10 hours.
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Fig. 4.2.10. Experimental setting of a multiple-well experiment (P: injection well; A and
B: observation wells).

Results (concentration of I in ppb versus time) are represented in
Figs. 4.2.12 and 4.2.13, in the injection well and in observation well A2
respectively. Fig. 4.2.14 shows the various concentration maxima observed
in the seven wells. These curves can be interpreted in terms of aquifer
velocity (§4.3) and in terms of mean longitudinal dispersion coefficient. In
the case of this example, the dispersion coefficient o; was computed by
formula (§4.1.1):

. = x2—ult(t — ty) (4.2.11]
L u(t — to) -

where t, is the mean injection time, ¢ the arrival time of the maximum, x the
position of the maximum and u the mean pore velocity. For this particular
experiment, it has been found that o = 425 cm.

Second case. A multiple-well method with pure radial flow was applied in
the study of the pollution of the Rhine aquifer by salts (§ 6). This highly
permeable aquifer is a mixture of sands and gravels. The injection and observa-
tion wells are represented in Fig. 4.2.15. Salt water at a concentration of
10 g/1 was injected during 2 hours at a flow rate of 10 m3/h which was enough
to insure pure radial flow within the first ring of observation wells. The
injection device, at constant flow rate, is illustrated in Fig. 4.2.16; in the
observationswells, the liquid phase was homogenized. Concentrations were
continuously recorded by resistivity measurements and controlled by sampling.
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Fig. 4.2.11. Measurement device for radioactive tracing.

Measurements were carried on for 12 hours after the end of injection. Results
(salt concentration versus time) were analyzed by adjusting a radial dispersion
model ([4.2.10], Fig. 4.2.17) and they yielded «; = 1100 cm.

4.2.3. Global scale 2: a single-well method

The global scale 2 ranges from 20 to 100 meters. Multiple-well methods
described in §4.2.2 can be used at this scale under the following conditions.

(1) Large amounts of tracer must be injected to regularize the dispersion
front. The scale of the injection has to be compatible with the scale of the
studied area, otherwise only preferential paths are traced.

(2) The flow velocity results from the superposition of the natural head
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Fig. 4.2.12. Evolution of the concentration at the injection well vs. time.

of the aquifer and the imposed injection head. Usually, except near the well,
only the natural aquifer velocity has to be considered; the radial flow simpli-
fication is not possible.

(3) The direction of the aquifer velocity must be known with accuracy.
Even then alarge number of observation wells is required, which considerably
raises the costs of experimentation. Of course these conditions can be
realized.

However, another method, specially developed for pollution studies, has
proved very interesting both scientifically and financially and it is presented
here. It is a single-well method with injection of a chemical compound
spotted by tracing the resistivity variations of the aquifer by geophysical
electrical means; recording of the resistivity variations is conducted from the
soil surface, which leaves the medium undisturbed; flow takes place at the
natural aquifer velocity. This experiment yields two sets of results: (1) the
direction and intensity of aquifer velocity (§4.3.2); and (2) the evolution in
time and space of tracer concentrations, in terms of apparent resistivities,
which allows the determination of the dispersion coefficients.
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Fig. 4.2.13. Evolution of the concentration at two levels in the observation well A2.

The experiment

The electrical-measurement techniques are described in Appendix II. The
currently used chemical compound is NaCl, chosen because it has good
electrical properties and is cheap. Of course, other compounds could be
used as well if their prices and properties are competitive with those of
kitchen salt.

Remark. NaCl is used when soil resistivity is rather high; then, a reasonable
amount of NaCl is sufficient to substantially modify the overall resistivity. In
other cases, one could use substances that increase the resistivity: for
instance, in a soil polluted by salt, one could inject fresh water and record
the increase in resistivity. The salt-water injection device is illustrated in
Fig. 4.2.18.

The well waters are recycled to provide better homogenization of the
mixture which is injected along the whole depth of the aquifer. The hazards
of salt sedimentation at the bottom of the well are reduced. The salt is
dissolved at relatively high pressures and is then injected at a constant rate:
due to the salt overburden, a locally radial effect might be observed in the
vicinity of the well; this effect is checked during measurements.



86 EXPERIMENTAL DETERMINATION OF POLLUTION PARAMETERS

C{I-ppb) FLoW DIRECTIONBZ 8,5
o
o
8000 ’—’j
i‘ - LOCATION MAP
|
%
6 000 7 _—
4000
2000
A
8 Al B,
0 ) V: 2 7| J 1

Fig. 4.2.14, Concentration maxima in the various wells — the abscissus has no quantitative

meaning.
im
static level

—

Injection well

= Screened tube
le ———MmMm————

-

Fig. 4.2.15. Experimental setting of the Rhine aquifer multiple-well experiment.

The three following techniques (Appendix II) are used jointly: (1) electrical
soundings (E S); (2) resistivity measurements (rectangle R M), (3) potential
measurements (P M).

Before the injection starts, an electrical sounding, a potential measurement
and a resistivity measurement are performed on the electrode mesh to deter-
mine the initial geoelectrical state of the soil before perturbation.
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Fig. 4.2.16. Injection device of the multiple-well experiment in the Rhine aquifer.
V1 and V2 = water gate, C = counter, BS1 and BS2 = saturated salt water tank (C = C2),
BD = overfall gauged tank, BTP = tank, A = shelter.
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Fig. 4.2.17. Rhine aquifer multiple-well experiment and computed results.

During the injection, resistivity measurements are performed (for instance
five times a day) and also one electrical sounding and one potential measure-
ment, as a check, in the middle and at the end of the injection.

After the injection, potential and resistivity measurements are performed
at points considered useful according to the previous measurements and at a
frequency depending on the detection sensitivity and resistivity and potential
contrasts.
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Fig. 4.2.18. Single-well geoelectrical method: injection device.

Usual simplifying assumptions and model

In such a single-well method, it is assumed that the investigation zone
downstream of the well has the lithologic, geologic and hydrodynamic
characteristics observed at the well. The type of model (in curvilinear or
canonical rectangular coordinates) depends on the geometry of the flow lines.
A usual assumption is that the flow lines are rectilinear in the investigation
zone, except perhaps near the well during a rather short equilibrium phase
with transverse widening of the traced zone; this effect is usually ascribed
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to a radial velocity due to the salt mass overburden at injection. This local
effect can be neglected at some short distance from the well and the up-
stream boundary of the domain will be taken at that distance from the well

(Fig. 4.2.19).

Injection /

well <
\

Fig. 4.2.19. Single-well geoelectrical method: definition of the modelled domain.

Domain

Other usual assumptions (in an alluvial aquifer at least) are the horizontal
stratification of the aquifer, subject to confirmation by geological logs at the
well, and the negligible water transfers between strata. Strata are then
independent and the velocity in a stratum is constant. Gravity effects are
neglected and also the density variations of the mixture.

Remark. It has been shown that these simplifying assumptions are reason-
able in most cases. Of course, if needs be they should be adapted or changed.
For instance, vertical water transfers can be taken into account in a
bidimensional horizontal model by adding field singularities in the equation
(8§9.5.2).

Under these assumptions, the model is a set of bidimensional horizontal
hydrodispersive models; velocities, dispersion coefficients and boundary
conditions vary with the strata (Fig. 4.2.20). Q(i) is the flow rate at the
upstream boundary of stratum i.

o 1 %) o1} Vi)

Q(2) 2 o (2) oxr(2) v{2)

QMn > (n) <y (n)

777777777777 /////f//f//// // /7

Fig. 4.2.20. The multistrata model. @ = pollution flow rate, «; and aq = dispersion
coefficients, V = velocity of the aquifer.

Each model is based upon the dispersion equation:

] K dc + a K ac 0 (uc) de [4.2.12]
- —_— - — | ——(uc) = — .
ax \ “ox/] oy \ "oyl ox ot

written "in classical rectangular coordinates, born by the mean velocity
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direction and its orthogonal direction in the horizontal plane x0y of the
strata. The simulation domain is thus rectangular and semi-infinite, with
its upstream boundary at the well.

The upstream boundary is set at the injection concentration in the salted
zone and at the initial concentration elsewhere. The other boundaries are
maintained at the initial concentration.

The initial and boundary conditions are thus:

C(x9 Yy, 0) = CO(x, y)

C(xa iL: t) = CO(x7 iL)

CO,y,t) = Cp(y,t) —a<y<+a [4.2.13]
CO,y,t) = Co(0,y) |yl>a

CM,y,t) = Co(M,y)

The initial concentration C, can sometimes be taken as constant. The concen-
tration at the well is computed by dilution, from the injected salt flow rate
and the aquifer flow rate in each stratum. Set @salt as the salt injection rate

(dimension MT™!) and Qaquif(j) as the water flow rate through the well in
stratum j (dimension L37T1). We have:

Qaquif (j) = u(j)-dy * h(j)

where u(j) is the aquifer pore velocity in stratum j, dy is the width increment,
h(j) is the height of stratum j. Set @s (j) as the salt flow rate in stratum j. We
then have:

Qs () = Qualt-k0)hG) [T () k()

where k(j) is the permeability of stratum j. The concentration at the well is
then:

C,0) = @s (j)/Qaquif (j)

The concentration is constant over the whole depth of the well and equal
to:

Qsalt / Z Qaquif (§)

The quantitative experimental data resulting from the geophysical experi-
ments are mean values over the whole aquifer depth. To adjust the model, it
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Fig. 4.2.21. The modelled domain and the well position.

is necessary to reach these mean values in some way and there the theory of
composition of porous media described in §2.5.1 can be used, with the
following formulas (notations are defined in §2.5.1):

porosities:
— 1 Ya
¢ = —— ody
¥Ya Yi Yy,
concentrations:
_ 1 [ scd
c = ——= cdy
My2—¥1)
velocities:

a=jfwm/ﬁ%w

dispersion coefficients:

) 5(3’2 yl)(J 2KL¢dy+J" Ky ¢ )

o= [Tow—ddy o) = o(ya) = 0

Yy
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Fig. 4.2.22, Maps of the apparent-resistivity variations (%).Scale 1:400.
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Adjustment of the model on the experimental curves

The model is adjusted on the representative curves of the percentage
variations of apparent resistivity with the assumption of a constant initial
concentration (Fig. 4.2.22).

Let C, be the constant initial concentration and C,; the constant well
concentration, Then [4.2.12] has a solution:

¢ = (c;—co)flx, t) + g

where f(x, t) is an error function of some form. Resistivity variations depend
linearly on relative concentration variations, for weak amplitude variations
(Fig. 4.2.23) which is generally the case (but this has to be cliecked). Thus

Ae _ (ei—efxt) _ AP

C Co P

50

PR ESN Y R T S

0 50 100 Aé: in %

Fig. 4.2.23. Water-resistivity variations (%) vs. NaCl concentration variations (%). T = 13°C.

At the well, the measured variation is:
c17C _ , (Aﬂ) ]
Co P /b

Resistivity-variation maps are equivalent to relative resistivity-variation maps
through the quantities: '

),

and the model directly computes:
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(c1—co)fx, t)/(c1—co) = f(x,1)

The map of f(x, t) is adjusted to the map:

i

L P/p
Concentrations are average values per stratum, Adjustment is performed in
two steps:

(1) Position, width and permeability of each stratum are determined from
geological logs at the well. These values are subject to modifications during
adjustment. It must be noticed that the transmissivity and the depth of the
aquifer are fixed given data. The trial-and-error method for the stratum
characteristics is based upon direct qualitative interpretation of the geo-
physical results. For example, resistivity variations are small with respect to
the injected quantities; this is interpreted as the occurrence of a very
permeable stratum near the bedrock and the trial-and-error takes it into
account. Also, details of the features of the stratum may be supplemented
by other techniques such as electrical logs or radioactive tracing.

(2) A longitudinal-dispersion coefficient and a transverse-dispersion co-
efficient are given per stratum, as multiple or unitary coefficients, the multi-
plication constants resulting from tests and bibliographical studies: for
instance (Fried et al., 1973), a constant equal to 1 for longitudinal dispersion
and inversely proportional to permeabilities for transverse dispersion; this
last result was explained by the fact that when low-permeability zones are
encountered they act as buried dams, which results in a widening of the
polluted zone, a hydrodynamic effect which is part of the mechanism of
transverse dispersion. '

Adjustment is carried out by modifying the unitary coefficients according
to the following flow chart (Fig. 4.2.24).

Remark. Geophysical results are sufficient to adjust the model, because
only variations are used. Real values of the concentrations cannot be
determined by geophysics. A supplementary experiment is needed to verify
the concentration values given by the model which depend on the dilution
assumptions.

Experimental results and their interpretations on an example

Experimental results are presented on the example of the Lyons aquifer
measurement campaign treated in §6.2. Schlumberger-type curves in
Fig. 4.2.25 relate the concentration variations of the groundwater at a given
temperature to its resistivity. The apparent relative resistivity variations are
connected to the relative variations of equivalent concentrations of NaCl
(the resistivities of other chemical constituents of the groundwater do not
change) which are represented in Fig. 4.2.23.
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Fig. 4.2.24. Operation flow chart.

For the first step of the adjustment, the positions of the permeable layers
were obtained by comparing the experimental curve of electrical sounding to
the computed curves corresponding to a series of media obtained by moving
a pervious layer down the aquifer (Fig. 4.2.26). In the example, it was found
that medium 7 suited best. Results appear on Figs. 4.2.27, 4.2.28 and 4.2.29.

The injection lasted 225 hours and more than 40 tons of salt were intro-
duced. The initial-resistivity map (Fig. 4.2.27), realized with a length of
line AB = 90m, shows a zone of higher conductibility parallel to the axis of
the device. Following three electrical soundings, the apparent-resistivity
variations are explained by a resistivity variation of dry alluvia. At the end
of the injection period, modifications due to salt water mainly occurred along
the axis of the electrode device and they can be detected up to profiles 23
and 24: beyond this, resistivities were stable during the operation (Fig. 4.2.27).
The apparent-resistivity variations (Fig. 4.2.28), given in percentages, define
a narrow conductive anomaly: the variations amount to 4—5% near the well
and 2% at 45 m from it, at the limit of the detection threshold. Values
between 1 and 2% yield the axis of flow up to profile 24.

The potential method (Fig. 4.2.29), extending up to profile 14, defines a
conductive axis, corresponding to the axis of the narrow conductive anomaly.
This axis is taken as the x-axis of the model; the y-axis is orthogonal. The
model simulates the situation on Fig. 4.2.28, the velocities being computed
from the same experiment by a method described in § 4.3.
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Some conclusions about this single-well geophysical method
Global scale 2 (20—100 m) is the scale of many classical pollution accidents
and also the scale of protection zones of pumping wells. Two important

10{13 B 0.01 01% Bx‘“;
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Fig. 4.2.25. Resistivity-equivalent NaCl curves for various temperatures.
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Fig. 4.2.26. Geoelectrical equivalent of various layered media.
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Fig. 4.2.29. Potential method results.

factors appear: stratification and transverse dispersion. Of course, for reasons
explained in §2.5, longitudinal dispersion is important also, but it already
plays a role at smaller scales (§4.2.1 and 4.2.2).

A mean dispersion effect on the whole aquifer depth at this scale implies
the use of a much too great amount of tracer which would be expensive and
which also does not correspond to many pollution accidents at that scale.
In the given example, more than 30 tons of salt were already required and a
significant mean experimental dispersion was not obtained; experimental
regularization by molecular diffusion, and vertical transverse dispersion and
mechanical effects does not happen, because injected quantities are still too

small and they flow through the permeable layers. Stratification must be taken
into account.
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The geophysical electrical measurement, however, is an artificial regular-
ization and it is reproduced in the model by a numerical averaging process.
The model simulates the stratified medium, then creates a homogeneous
equivalent medium which is adjusted to the geophysical electrical measure-
ments and then reverts to the stratified medium, which allows to infer local
properties. In itself, such a mathematical process does not yield a unique
solution. Uniqueness is obtained by comparing the model stratification to
geological logs and to geophysical stratified media (Fig. 4.2.26).

This method requires twe mathematical models, a series of geophysical
measurements from a single well and geological logs at the injection wells.
There is no need for any observation well. It is a rather easy and cheap
method, which does not disturb the medium. Of course, as has been said,
salt can be replaced by other electrical tracers.

In conclusion, the proposed methodology is as follows:

(1) Experimental step: geological logs at the injection wells; geophysical
electrical measurements of a convenient tracer by a single-well method
(injection in a well and detection from the soil surface).

(2) Model step: a geophysical stratification model to obtain the positions
and the widths of the strata for the geophysical measurements; a dispersion
stratification model to obtain the dispersion coefficients.

4.2.4. Regional scale: use of environmental tracers

At the regional scale (over 100 m), two types of pollution effects may be
sought: (1) either long-distance effects of small amounts of pollution, or
(2) long-distance effects of large amounts of pollution.

The first type is purely mechanical, because mixing (mechanical mixing
and molecular diffusion, as described in § 2.1) does not occur: the pollution
flows through preferential paths and fingering is a predominant feature.
Dispersion is neglected and the evolution of the pollution can be described
by measuring the velocities of the water along the preferential paths. These
velocities are obtained from the minimum residence time of an injected
tracer recorded in a line of wells at the required observation distance from
the injection well: t being the minimum residence time and x the distance
between the injection and observation well, x/t is taken as the velocity of
the pollution (Fig. 4.2.30).

The second type of pollution is obviously very difficult to simulate with a
pollution created for the sole purpose of measuring dispersion coefficients.
This is the reason why only environmental tracers are considered, with the
condition that they exist in sufficient amounts. We call “environmental
tracer” a substance that exists in the soil before the investigation begins. It
can be natural (a natural radioisotope for instance, or sea-water intrusion),
semi-artificial (as tritium, originally produced by atom-bomb tests) or artificial
(a man-made pollution).



FIELD METHODS TO DETERMINE DISPERSION COEFFICENTS 101

mean flow
D —

o 0 ©

® Injection well

O Observation well

L
-\ %
o O
0O 00O 0O OO0 0 OO0 o0

o 0 O 0O o

L is large

Fig. 4.2.30. Experimental setting for the determination of pollution velocities on a large
scale.

Mostly artificial environmental tracers and sea-water intrusion have been
used up to now. The method is to calibrate a mathematical model on the
concentration curves obtained from field measurements, by adjusting the
dispersion coefficients, and then to use the same model in the predictive
phase to compute new concentration distributions from various boundary
conditions. We give two examples to illustrate the method.

An existing pollution due to industrial wastes

The complete case history, including geological setting and mathematical
models, is described in §6.1. The bidimensional, horizontal, monolayer,
hydrodispersive model in canonical rectangular coordinates (§ 6.1) is adjusted
by a trial-and-error method to the concentration values measured along the
mean flow axis issued from a salt dump. The adjustment is performed by
varying the longitudinal and lateral dispersion coefficients, at a given mean
velocity computed from the measured piezometry in the area. These adjust-
ment operations are repeated for each salt dump which yields a map of dis-
persion coefficients of the whole area.
- An example of computed and measured concentration curves for a given
salt dump at different times and different assumed permeabilities is shown
in Fig. 4.2.31 which yielded the intrinsic dispersion: coefficients o;, = 156m
and ay = 1m.

Pollution due to a sanitary landfill

The setting is described in § 6.2. The geophysical measurements of resistivity
have yielded the direction of the aquifer flow; the intensity of the aquifer
velocity along the mean flow axis is deduced by analogy from geophysical
measurements on the other sites (§ 6.2) which present an equivalent geological
composition {in the sense of permeabilities). Of course, at the scale of the
investigation (600—1000m), a mean velocity value deduced from piezo-
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Fig. 4.2.31. Computed and observed salt concentrations vs. the distance from the dump
at various times.

metric measurements already makes sense. Conductibility measurements of
the water were performed in a series of observation wells downstream of the
landfill and have been used to adjust a bidimensional, horizontal, monolayer
hydrodispersive model analogous to the model used in the preceding example.
Local authorities have provided the age of the landfill, which is taken as the
calibration time of the model. The various chemical ions were not differ-
entiated and only their global conductibility was taken into account. The
calibration curves are similar to the curves drawn on Fig. 4.2.31. The values
of the infrinsic dispersion coefficients were o;, = 12m and oy = 4 m.

Remark. Of course other experimental criteria could be used to calibrate
the model. For instance, the amount of total dissolved solids can be computed
from chemical analysis and used as an environmental tracer.

4.3. FIELD METHODS FOR THE DETERMINATION OF POLLUTION
VELOCITIES

Field methods used to determine the velocity of a pollution are classified
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into two families: (1) indirect estimatés of the velocity from the hydraulic
parameters of the aquifer and Darcy’s law; and (2) direct estimates of the
velocity.

4.3.1. Indirect estimates of the velocities through Darcy’s law

In Appendix 1, we develop the basic principles of hydrogeology and intro-
duce Darcy’s law as the governing equation of aquifer movements, connecting
the velocity v and the pressure gradient:

k
v = ——(grad p + pg grad 2) [4.3.1]
M

where k is the permeability coefficient tensor, g the gravity, p the pressure
of the fluid, u and p respectively the dynamic viscosity and the density; z is
the coordinate along the vertical axis 0z in a classical rectangular coordinate
system, where the gravity vector is parallel to 0z. In Appendix I we see that
Darcy’s law and the continuity equation yield the fundamental hydrologic
equation of the form:

dh
div (T grad h) = S+ [4.3.2]

written here for a confined aquifer of transmissivity T and storage coefficient
S; h is the piezometric potential, which can be introduced when p is constant,
and it is equal to:

k=£—+z

PE

g represents field singularities.

Remark. Constant p is a good and usual assumption in the case of water
flow. But for pollution flow, this assumption must be handled with care and
is valid in the tracer case only.

The principle of the indirect methods is to determine the permeability
coefficient (or the transmissivity) and from pressure-gradient measurements
compute v by means of Darcy’s law.

As already seen for dispersion coefficients, various methods have to be
used to determine permeability or transmissivity according to the scale of the
investigation. They can be classified into two sets: (1) experimental methods,
such as pumping tests or geoelectrical techniques, valid at global scale 1 or
global scale 2; and (2) mathematical methods which consist in interpreting
piezometric maps with the fundamental hydrologic equation either by
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trial-and-error adjustment of field maps and computed maps or by inverse
methods. The resulting parameters are valid at global scale 2 or at regional
scales.

Remark. Under special homogeneity conditions of the aquifer, trans-
missivity values computed by experimental methods at global scales can be
used in regional-scale models.

Pumping tests

Nonequilibrium methods (Theis, 1935; Chow, 1952, Jacob, 1947) and
steady-state methods (Dupuit) with their simplifying assumptions (Dupuit—
Forcheimer assumptions) are extensively described in several textbooks
(Todd, 1959). They are very classical; although they are used in pollution
problems, they are not specific and we do not elaborate.

It should be noticed that, in addition to the pumping well, at least one
observation well is needed at such a distance that errors in the hydraulic-
gradient measurements are not too important.

Geoelectrical techniques

Geoelectrical techniques described in Appendix II, have been used to
determine the transmissivities of an aquifer without any well. Although it is
an application of geophysics still under investigation, we present here results
obtained in an experimental area, as a hint for possible applications of these
techniques.

The proposed technique (Ungemach, 1975, Duprat et al., 1970), is to
interpret the values of the transverse resistances R;, given by electrical
soundings, in terms of transmissivities. The study has taken place in the Rhine
aquifer of eastern France, which is an alluvial aquifer made up of sands and
gravels and pebbles with thin clay lenses, on an impervious bedrock; it is
unconfined and its free surface is a few meters deep.

A relationship between transmissivity T and transverse resistance R, has
been sought, by plotting the transmissivities computed from pumping tests
in six wells versus the transverse resistances obtained by electrical soundings
near the wells, Other values of T and R, determined in other areas confirmed
the graph (R, —T) represented in Fig. 4.3.1. T appears to be an almost
linear function of R,.

A transmissivity map of the aquifer (Fig. 4.3.2) can be derived from the
graph (Fig. 4.3.1) and the map of R, (Fig. 4.3.3).

Remark. The values of R, introduced here are ‘“‘corrected” values. The
electrical soundings yield gross values of R;, which have to be corrected,
taking into account the local resistivity of the water: the resistivity of an
aquifer closely depends on the resistivity of its water. For instance, Archie’s
relationship can be used:

3

PalPy = ¢ [4.3.3]
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Fig. 4.3.1. Transmissivities vs. transverse resistance (Duprat et al., 1970).

Fig. 4.3.3. Corrected transverse resistance (x 100 ohm.m?) (Duprat et al., 1970).
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where p, and p, are respectively the resistivities of the aquifer and of its
water and ¢ its porosity and m a consolidation coefficient. This relationship
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shows that the resistivity of a given aquifer is proportional to the resistivity of
its water. Assuming a mean water resistivity, computed from samples, the
transverse resistance is computed at each sounding. These corrected values of
R, display the changes in real resistivity due to the alluvia properties, such as
grain-size distribution and clay content.

4.3.2. Direct estimates of velocities

Direct estimates of velocities can be performed at the local scale and at
global scales 1 or 2. They yield pore velocities.

Multiple-well method

As for dispersion-coefficient measurements, the method is based upon the
experimental setting of Fig. 4.2.15. A tracer (radioactive or not, such as 131
or INa) isinjected at a rate small enough not to perturb the natural flow. This
tracer concentration should be large enough to be detected by the measure-
ment device; also, of course, it must not preexist in the aquifer. An injection
device is presented in Fig. 4.2.11. The observation wells are located so that
preferential paths can be detected.

Remark. A weakness of the multiple-well method is that it is necessary to
know the mean direction of flow to locate the observation wells. This means
that preliminary studies are necessary to determine this direction; of course,
it could be possible to drill wells on concentric circles, which would be rather
expensive. In the case history of §6.2, we see how several methods are
coupled to reduce the costs and yield the expected results.

In Figs. 4.2.12 and 4.2.13 are represented the vanishing of the tracer with
time and its occurrence in an observation well, respectively. The input
function is assumed to be a Dirac §-function and the residence-time distribu-
tions E(t) are directly given by the concentration curves as:

c(t)

e [4.3.4]

E(t) =

From the residence-time distribution, a mean velocity can be computed by
the formulas:

_ o u(t)e(t)dt

fo e(t)dt [4.3.5]
u(t) = L/t
and: i = LJ:%E(t)dt [4.3.6]

where L is the distance between the injection and observation wells.
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Single-well method: a point-dilution technique

The preceding experimental device can be used to compute a local velocity
at the injection well, by using the vanishing concentration curve at the
injection well, the tracer having been well mixed over the whole depth of the
borehole (Fig. 4.2.11). The flow rate of tracer is equal to the mass of tracer
leaving the well during time interval d¢:

Sucdt = —vde [4.3.7]

where ¢ is the concentration at time ¢, S the section of aquifer intercepted
by the borehole, t the observation time, u the velocity and v the volume of
the borehole.

The integration of the differential equation [4.3.7] yields:

v
= —In(Cy/C
u = 5 Im(G/C)

where C, is the initial tracer concentration. The horizontal flow pattern in
the aquifer is distorted owing to the presence of a borehole and the different
flows therein. If a correction factor 8, which accounts for the distortion of
the flow lines owing to the presence of the borehole, is defined as:

0 = Qb/Qf

where @, is the horizontal flow rate in the borehole and @; the flow rate in
the same cross-section of the formation and in the absence of all other flows
but horizontal, then the filtration velocity is:

v
= —1n(C,/C
Uy BStn( 0/C)

Single-well method: a geoelectrical method

The single-well method described in §4.2.3 can be used to detect average
and maximum velocities of an aquifer at global scales 1 or 2. Actually, this
geoelectrical method has been first introduced to detect velocities and later
only modified to collect dispersion coefficients.

The idea was to adapt the well-known potential method (Appendix II). A
conducting solution (NaCl for instance) is injected into a well, resulting in
the distortion of the equipotential net in the direction of flow of the con-
ducting solution. Thus, it is possible to detect the mean direction of flow
of the aquifer (Chalengeas, 1970), as a preliminary step to the boring of
observation wells (as required by the multiple-well method, for instance).
The method has been extended to the direct measurement of velocities
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(Ungemach, 1975), by estimating the displacement of the distortion with
time by resistivity measurements. '

The potential method is used to display the direction of flow (Fig. 4.3.4)
and the resistivity measurements yield the maximum and average velocities
(Fig. 4.3.5). The occurrence of salt water progressively decreases the resistivity
which reaches a minimal value after a period of time depending on the
experiment, the velocity is the average of the maximum velocities correspond-
ing to the first occurrence of salt water at the various observation points.

We have seen that the resistivity-variation map (Fig. 4.2.22) was interpreted
in terms of dispersion (§4.2.3). It also yields the flow direction and can be
usefully compared to Fig. 4.3.4, which it confirms.

From the technical point of view, a few precautions must be taken (as
already stated in the case of dispersion measurements):

(1) The injection rate must be small enough to prevent perturbations of
the natural flow.

(2) If possible, the injection should be constant with time.

(3) The amount of salt should be large enough to create modifications of
the electrical properties of the medium, this can be detected by the superficial
geophysical probes.

(4) The geochemical and geophysical properties of the medium must be
measured before the injection; they will serve as the initial condition of any
model of the experiment.

4.3.3. The single-well possibilities

Single-well methoas nave been introduced because they only slightly
disturb the medium. We summarize their possibilities in the following flow
chart (Fig. 4.3.6).

In this book, we do not elaborate on the determination of clay lenses by
fixation, a technique developed by P. Levéque (Leveque et al., 1971).

The single-well techniques which have been successfully applied in many
hydrological problems are now currently investigated for simplification
purposes; local methods, especiaily by radiotracers, are under study and as
an example, we describe the device derived by Drost et al. (Drost and
Neumaier, 1974) which can be handled by one person with professional
experience of hydrological problems, measuring techniques and the basic
principles of radiation protection.

The single-borehole probe is presented in Fig. 4.3.7: the detector, the
injector and the mixing coil are inside the sealed measuring volume of the
probe; rubber packers with detectors monitoring vertical flow are placed
above and below this measuring volume. Flow in the outside gravel pack
is avoided by forcing possible vertical groundwater currents through the
pressure-equalizing tube; under this condition, the influence of vertical
currents on the measured filtration rates can be neglected. The probe can be



FIELD METHODS TO DETERMINE POLLUTION VELOCITIES 111

SINGLE WELL

LOCAL METHOD
RADIOACTIVE TRACER

|

GLOBAL METHOD
GEOPHYSICS
SALT WATER INJECTION
INJECTION DEFORMATION OF
PUMPING EQUIPQTENTIALS

N A— *

i
RELATIVE DISPERSION GLOBAL VELOCITY

DILUTION

LGCAL DISPERSION

VELOCITY

COEFFICIENTS | |DIRECTIONS| |PERMEABILITIES| | | COEFFICIENTS
AS A FUNCTION| | | AS A FUNCTION
OF DEPTH OF DEPTH
FIXATION [ GLoBAL DISPERSION

DETERMINATION OF
y CLAY LENSES

Fig. 4.3.6. Possibilities of the single-well methods.

lowered in the borehole (diameter = 5 cm) by means of a cable the diameter
of which is 1 cm.

4.3.4. A note on porosity measurements in the saturated zone

When velocity is determined indirectly by means of permeability (or
transmissivity) measurements and the use of Darcy’s law, it is necessary to
know the effective porosity ¢, as the pollution velocity is the pore velocity.
We recall the relationship between Darcy’s filtration velocity v and pore
velocity u:

u = vlg

Many methods exist to determine ¢ (Bear, 1972) but we shall restrict our
note to specific methods of pollution studies, i.e. the two-well pulse method
with radioisotopes and the geoelectrical single-well method.

The principle of the methods of porosity determination in the saturated
zone is based on the approximate equality between porosity ¢ and partial
volume of water (defined as the ratio between the volume of water and the
total volume).

In the two-well method, traced water is introduced in one well and pumped
at the other; dispersion is neglected and v being the volume of water pumped,
we have:

v = 7r*b¢

where b is the aquifer thickness, r the distance between the weils.
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Fig. 4.8.7. Borehole probe for the determination of groundwater filtration velocity (from
Drost and Neumaier, 1974).

This formula is valid under the following conditions (Int. At. Energy
Agency — UNESCO, 1968, p. 187): (1) the velocity of the aquifer is
neglected with respect to the radial velocities induced by pumping. The flow
pattern is locally radial; (2) the thickness of the aquifer is small compared to
the distance between wells; (3) the cone of depression at the pumping well is
small compared to the total water volume V.

Exchange and dispersion effects between flowing and bound waters can
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create errors in the interpretation and might yield intermediate values between
porosity and effective porosity.

Radiotracers are used and V is taken as the volume corresponding to the
peak activity, this volume being determined by plotting the aotivity as a
function of VY2 (Halevy and Nir, 1962). Porosity is then: T

¢ = V/mr*db

The geoelectrical single-well method is based upon tracing the water by an
electrolyte and recording the resistivities of the traced water p, and of the
total layer (solid matrix and traced water) p,. The techniques used to measure
the resistivities are described in Appendix II. The ratio of both resistivities
is called the formation factor F and we have:

F = pip, = ¢

This relationship is known as Archie’s formula. m is a coefficient with a value
between 1 and 2, depending upon the consolidation of the layer. Porosity is
then given by:

¢ — F—l/m
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CHAPTER 5

CLASSICAL MATHEMATICAL MODELS AND THEIR NUMERICAL
FORMULATION

This chapter is mainly intended for the Engineer and will provide him
with practical numerical formulation and rules to treat groundwater-pollution
mathematical models. It is divided into three parts: canonical rectangular
coordinate models, curvilinear coordinate models, and special models (ana-
lytical, deconvolution).

The finite-difference discretization is also presented as the most used
procedure (although finite-element methods begin to be used in pollution
modelling, they still belong to a research stage of dispersion modelling).

5.1. CANONICAL RECTANGULAR COORDINATE MODELS

5.1.1. Bidimensional monolayer model

The pollution is horizontal, plane and transient. The mixture density is
a linear function of concentration. The movement is unidirectional and pres-
sure only depends on x. The regime is dynamic dispersion, with dispersion
coefficients proportional to the velocity. The mathematical problem is defined
by a system of equations:

(5) ()

0 { pay lu | —— b} lu f—=—
P T oy Pty 1 e ae
ox oy 0x ot
k. op
U, = —— —
Mo Ox
u, = 0
Olpu,) _ _0p
ox ot

p =ac+b
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where u, and u, are the components of the mixture velocity, k&, the per-
meability along Ox, p the pressure, p,u, respectively the density, the vis-
cosity and the porosity; a and b are constants given by the tables.

The domain is defined in Fig. 5.1.1 and is symmetrical with respect to the
x-axis.

Symmetry axis

/ Pollution
! source
) il

Fig. 5.1.1. Modelled domain
Initial and boundary conditions are:

c(x9y70) = CO

x
p(x,0) = py +Ipg —pwl —

L,
c(0,y,t) = ¢, with 0<y<L
c(0,y,t) = ¢ with L<y<L,
C(x,Ll,t) = CO

C(LZ,y,t) = CO
oc
—(x,0,t) = O
dy

p(O,t) = Pw
p(L29t) = Pg

where ¢, and ¢, are constant, and represent the pollution concentration at
the source and the pollution initial concentration in the domain, respec-
tively; py and pp are constant.

This system is discretized in finite differences according to the ADIP. The
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convection term is discretized in backward differences with the flow direction.
Density p and velocity u are constant during a time-step. A possible dis-
cretization scheme is:

oy [ el + 1,0 1u( + 1,) 1+ p(i,i) lu(i,j)] {c+(i +1,7) &G0
dx? [ 2 p(+1,05)  p(i.j) }
_ e uN! + pi — 1) lu(i — 1,)) {c*(i,f) i 1,)) H
2 p(i,)  pli —1,j)
oy { 0G0+ 1) + (i) [ca,j +1) _g@}
+— [ u@,)! — -
dy 2 pG.J+1)  p@.))
p(in)) + p(ij — 1) {cu,j) _cli,j — 1) H
2 p(.j)y  p(i,j —1)
_uln)et ) —uli = L) = 1,4) _ €700 — (i)
dx dt(n)/2
ay [p(i + L) lui + 1,7) 1+ pG,) lu@@f | ¢t + 1,)) _c+(i,j)]
dax? 2 { pli+1,5)  p(.d)
PG IuGN T pli— L) lu@ — 1,5)] {C*(i,f) _e(i— 1) ”
2 p(ii)  p(i—1,))
p(ini + 1) + p(i.j) { c(ij + 1) elij) }
2 p(,j +1)  p(,))
(o) + p(ini — 1) { c(i)  eli,j —1) ”
2 pG.j)  p(ij—1)
_ b)) —ulE = L, — 1) elid) — ¢*i.i)

~ lu(i, N

Op ..
+ é—y% [Iu(l,m

— lu(i,p!

dax dt(n)/2
ke | pG+1,))+p(G,0) . PG+ pi— 1))
dez[ 9 {p(i + 1) —p(i)} p
T e = TG
{p(i) — p(i 1)}] = mdt(n)
p(i,j) = ac(i,j) + b
wij) = —FePOZPETD) j

uo dx

where ¢* are intermediate values without physical meaning introduced within
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the theory of alternate direction methods (§9. 4 4); p~ is the density at time
t(n) and p is the density at time t(n + 1).

The linear systems are solved by direct Gauss tridiagonal elimination. At
each time step, p~ is known, p is computed, then ¢ and a consistency test is
made on u (usually the procedure is iterated within the same time-step until
good convergence is reached), then the procedure is iterated to the next
time-step. This method is summarized in the flow chart of Fig. 5.1.2.

READ THE DATA

SET THE INITIAL VALUES
OF
DENSITY,PRESSURE,CONCENTRATION

=
— 1
[READ BOUNDARY CONDlTlONS—l

COMPUTE VELOCITIES

COMPUTE DISPERSION COEFFlClENTS]
I

CONCENTRATION COMPUTE CONCENTRATIONS
MAPS .

COMPUTE DENSITIES

NFIN = NUMBER OF TIMESTEPS

Fig. 5.1.2. Bidimensional horizontal model: computation flow chart.

Fig. 5.1.3 shows the evolution of a pollution intrusion with time as the
output of the model written for constant p and u (the tracer case) and a
linear source all along the western boundary.

5.1.2. Bidimensional multilayer model

This aquifer is multi-layered and in each layer, the pollution is plane and
horizonfal. It is the tracer case and the movement is unidirectional at a
constant measured velocity. Experimentally, only an average value of the
pollution concentrations is obtained (by surface resistivity measurements for
instance) and the model yields the values of concentration averaged on the
depth of aquifer. The layers are independent.
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CONCENTRATIONS > 1g/1

Xand¥Y inm
Time O.22hr
0 10 20 30 40 50 60 70 80 90 100 X
2
A
6
8
10
Y
Polluted area : 64m’
Time 3.28hr
16 20 30 40 50 60 70 80 90 100 X
T T T T v : v

Poliuted area : 208m?

0 10 20 30 40 50 60 70 80 90 100 X
T T

Polluted area : 368m’

Fig. 5.1.3. Evolution of pollution with time for the bidimensional tracer case.

The mathematical problem is defined by a set of equations:

a( llac)-i—aallac a(u) c
— — - ul———(ue) = —
ox aLubx oy T oy ox ot

[1/(z; — 2] J:z ¢ dz
[1/8z,— 201 [ gedz

A=
]

o
1}
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where o, o and u are the longitudinal intrinsic dispersion coefficient, the
lateral intrinsic dispersion coefficient and the velocity in each layer,
respectively; ¢ and ¢ are the porosity in a layer and the mean porosity, ¢ and
¢ are the concentration in a layer and the mean concentration;z measures the
thickness of the aquifer.

The discretization of the dispersion equation is identical to the discretiza-
tion of the bidimensional monolayer model taking p and u as constant, and
it is solved by ADIP for the same type of boundary conditions in each layer.
Then c is directly computed by averaging the concentrations in each layer at
given x and y along z. A more complex form of this multi-layer model is
under study at the time of publication of this book; the problem is the same,
but the pollution may transfer vertically from one layer to another and point
sources are added to the dispersion equations in the meshes receiving that
vertical pollution. The infiltration rate has to be first estimated.

5.2. CURVILINEAR COORDINATE MODELS
5.2.1. Curvilinear coordinates: some definitions

Let Oxyz be the usual rectangular coordinate system of R>. Suppose that
the coordinates x, y, z of a point P can be expressed in terms of some vari-
ables x!, x2, x3 and conversely that x!, x?, x3 can be expressed in terms of x,
v, 2; assume further that the functions x(x!, x?, x3), y(x?!, x2, x3), z(x!, x2, x3),
xl(x,y,2), x¥(x,y,2) x¥x,y,z) are single-valued and continuously differ-
entiable. The correspondance between the set (x, v, z) and the set (x!, x2, x%)
is then unique. The system (x!, x2, x3) is called the curvilinear coordinate
system of P.

In groundwater-pollution modelling, three curvilinear coordinate systems
are used:

(1) the cylindrical system (Fig. 5.2.1a) defined by the equations:

x = rcosf x''=r x*=80, x°=z
y = rcosf

2 =2

(2) the spherical system (Fig. 5.2.1b) defined by the equations:

x =rsinycosd x'=7r, x2=4y, x3=90

y = rsin  sin 6

zZ = rcosy
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(3) the equipotential-streamline system or ¢ — y system (Fig. 5.2.1c)
where x! = ¢ (x,y) and x% = ¢ (x, y).

(a) (b) (c)

Fig. 5.2.1. Classical curvilinear coordinate systems used in groundwater pollution.
(a) Cylindrical system (b) Spherical system (c¢) Equipotential-streamline system.

The line element ds in the curvilinear coordinate system (x!, x2, x3) is
defined by:

d32 = gij dxi dxj

using Einstein’s summation convention (g;dx'dx’ = g, dxldx! +
g1dxldx? + ..). g; is a twice-covariant tensor (Spiegel, 1959) called the
metric tensor.

In the usual rectangular system g;; is defined by:

gijzlifi:j, g,-,-=0ifi7€j and ds2=dx2+dy2+dz2
The twice-contravariant tensor (g"), defined by:
gig, = 1ifj =k and gig, = 0ifk # j

using the summation convention, is called the conjugate tensor of the metric
tensor. Associating a square matrix (g;;) to the metric tensor, we associate
the inverse matrix of (g;;) to the conjugate tensor. The determinant of the
matrix (g¥) is written as g.

These two tensors are used to shift from contravariant to covariant co-
ordinates and conversely and they appear in the curvilinear form of the
partial differential equations:
the divergence of vector ¥ = (v'), i = 1, 2, 3 being given by the relationship

a .
divy = g—1/2 _a;_l (g l/zvz)
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the general equation of dispersion in an orthogonal curvilinear system (i.e. a
curvilinear system where g;; = 0 if i #) is written:

0 UkC oC
5;( 172 v ) = — (5.2.1]

) 8C*
g—1/2 ( 172 kal - ) _g—1/2
dx® & 8rh

' dx!

where K} is the component (i, p) of the dispersion tensor, U * is the physical
component k of the velocity and C* = ¢/p.

The physical components of a vector are the projections of the vector on
the tangent to the coordinate curves. If Vx, Vy, Vz are the components of
the vector in the usual rectangular system and V!, V2, V3 its components in
the curvilinear system, the following relationship holds:

Vi=glt Ve, V2 =gifVy; VP =gV

The metric tensor, its conjugate, the determinant g and {5.2.1] are expressed
in the three usual curvilinear coordinate systems here after Lichnerowicz
(1955) and Bachmat and Bear (1964).

(1) The cylindrical system:

1 0 O 1 0 O
o) = |0 7 0, (@)=]0 1y 0
0 o0 1 0 0 1
g=r
120 k1 a(c/m] +__{K2 delo)] | D [y elp)
r or or 290 a0 0z 0z
1 1 dc
— = —@Ule)— = — (Uk) —— (U? 5.2.2
. (rU c) 266( ¢) ( 0) = = (5.2.2]

(2) The spherical system:

1 0 0 1 0 0
(gpq) = 10 r? 0 > (g°7) = 0 1/r? 0
0 0 r?sin?y 0 0 1/(r? sin? ¢)

g = rtsin? y
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_1_._8__ [ 2K1 _a_( / ) \i K2 i
2o p = Leip W oy sin  K3p ™ (C/p)
1 1
2 2 _ Y
3 o d/ ae K3p (C/p)} (r U'e) — w (sin  Uc)
_ 1 — (U3
rsiny 00 ¢) = at [5.2.3]

(3) The ¢ — Y system (two-dimensional):

B [[(acp/ax)’~’+(a<b/ay)2]"‘ 0
(8pa) = 0 [(aqz/ax)2+(a\11/ay)2]“]
o [(aq>/ax)2+(a<1>/ay)2 0 ]
™) = 0 (0W/3x)* + (3 /dy)?

The pore velocity is given by:

U= —grad ®

and ¢ and ¢ are related by the Cauchy conditions:

od/ox = oV¥/oy, ob/oy = —ov¥/ox

The physical components of the velocity by definition are:

U = U, U =0
and they verify the following relationships:

g7 = 1/U%, g = & = 1U?

The dispersion equation [5.2.1] becomes:

? aC* 3 ac 5c  ocC
v2-= [ K + U2 =2 (K = = = 5.2.4
aq»(p “’acp) aqf(p“’aqf) 00 ot [5.2.4]
with C* = ¢/p.

5.2.2. Single-well model

The aquifer is confined and stratified horizontally. The strata are homo-
geneous and independent. The dispersion regime is pure dynamic dispersion,
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and the dispersion coefficient is proportional to the mixture velocity. It is
the tracer case, where the mixture density is constant. The model is used
for the determination of local dispersion coefficients by a radioactive tracer
injected and pumped in one well, the radioactivity being recorded in the well;
near the well, the natural velocity of the aquifer can be neglected compared
to the velocity imposed by injecting and pumping the tracer. Flow and dis-
persion are assumed to be axisymmetrical (§ 4.2.1). The mathematical prob-
lem is defined by the system of equations:

190 oc 190 oc
——\ralul —|——— (ruc) = —
r or or r or ot

2
13 3% _ S o [5.2.5]
r or or? T ot

_kogon
du or

where ¢ is the tracer concentration, h the piezometric head, k the per-
meability coefficient, r the distance from the well, u the pore velocity of the
mixture, S the storage coefficient, T' the transmissivity, ¢, p, u, the porosity
of the soil, the density and the viscosity of the mixture respectively.

The initial and boundary conditions are:

(1) during injection:

c(ro,t) = 1 during the tracer-injection period
¢(ro,t) = 0 during the injection of fresh water used to push the tracer
c(eo,t) = 0

where r, is the well radius, the origin being chosen as the center of the well.
Injection is usually performed at a constant head & at the well:

h’(rO,t) = hO
h(et) =0

The initial conditions correspond to a step-input function:

c(r,0) =
h(r,0) = 0
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(2) during pumping back:

oc
5;(ro,t) =0

C(ot) = 0

The zero-flux condition at the well corresponds to the instantaneous homo-
genization of the tracer in the well, It means that the concentration in the
well is equal to the concentration near the well. The concentration variation
due to dispersion can be neglected on a space-step. The complete boundary
condition would be:

de
Uec—K-— = Ucy
or

where ¢y denotes the concentration in the well. Here we have:
cw = c(ro, t)
Pumping is usually performed at a constant head &y :

h(ro, t) = —hg
h(o,t) = 0

The initial conditions are the conditions prevailing in the aquifer at the end
of the injection period:

e(r,t) = ¢ (r, ty)

where ¢, is the time at the end of injection and ¢,(r, t;) the solution of the
system with the injection initial and boundary conditions at time £, :

h(r,t;) = 0

assuming that the aquifer comes back to its natural equilibrium state between
the end of the injection and the beginning of the pumping.

This system is discretized according.to a totally implicit finite-difference
scheme; the convection term of the dispersion equation (first-order spatial
derivative) is discretized as a backward difference in the velocity direction.
The linear systems are solved by the direct Gauss elimination method for
tridiagonal matrices (§9.3.2).

Here is a nnacihle farm af the diecretized annatione with enacowarvine
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space increments dr(i) and time-varying time steps dt(n).
(1) Injection period:

r@) lu@ |+ r@ + 1) lu@ + 1)1 [c(i +1) —c(i)]

2 dr(i + 1)
r(i) lu@@) |+ r(i — V) lu@ — 1)1 [c(i) —e(i— 1)}
o 2 dr(i)
(i) dr(i + 1) + dr(i)
2
1 r(@u(e(i) —r( — Du(i —1)e(i — 1) ci) —c (i)
r(i) dr(?) dt(n)
(2) Pumping back period:
c(i+1)—ec(i
[r)u@@) |+ r(i + 1) lu@ + D] _(—d—r(_i)Il—)(—)
: : c(i) —e(i—1)
N [r@) u@! + r@ — D)lu@@ — 1)1 —_—d—rr
r(i) dr(i + 1) + dr(i)
2
1 r(i + Dui + De(@ + 1) — r(Du(i)e(@) c(i) —e¢ (i)
r(z) dr(i + 1) dt(n)

where n is the number of the time step, ¢(i) and ¢ (i) are the concentrations
at point i at times n and n — 1, respectively.

If the pumping or the injection are permanent, the corresponding model
is obtained by setting r(i)u(i) = A, where A is a constant determined by the
pumping and the injection conditions.

During injection and pumping, the movement and velocity equations are
written:

h(i +1) —h(@@) hG)—h(i—1)
1 k(i) —h(—1) v dr(i + 1) dr(i) _ S k(i) - h™(0)

r(i) dr(i) ar(i) +dr(i +1) T di(n)
2

k(i)pg h(i) —h(i —1)
bu dr(?)

u(i) = —
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where h(i) and h™(i) are the heads at point i at times n and n — 1. At each
time step, the movement equation is solved, the space-velocity distribution
is determined, the velocity values are put in the dispersion equation which
is then solved. The movement equation does not depend on the dispersion
equation (Fig. 5.2.2).

READ THE DATA

J= STRATUM INDEX
J=1

|=
SET INITIAL PRESSURESJ

AND CONCENTRATIONS

=
READ BOUNDARY )
CONDITIONS

COMPUTE VELOCITIES AT ALL POINTS i
AT ALL TIMES t

[COMPUTE THE DISPERSION COEFFICIENTS |

COMPUTE CONCENTRATIONS AT ALL
POINTS i, AT ALL TIMES t

END OF INJECTION |- NQ Zt<t\ YES [t< t+ dt

READ BOUNDARY
CONDITIONS
35041 |

COMPUTE VELOCITIES AT ALL POINTS i
AT ALL TIMES t

PUMPING STARTS

[EOMPUTE THE DISPERSION COEFF!C(ENTﬂ

COMPUTE CONCENTRATIONS AT ALL
POINTS i, AT ALL TIMES ¢

t-tedt YES Ciettt>-NO__TEND OF PUMAING

]
CURVES: CONCENTRATIONS AT
THE WELL AS A FUNCTION OF PUMPING{<J<Y
- TIME

NO
JF=NUMBER OF STRATA

ttt= END OF PUMPING

Fig. 5.2.2. Single-well pulse model: computation flow chart.

Fig. 5.2.3 shows the concentration curve obtained at the well during pump-
ing for a permanent pumping rate; ru = constant.

5.2.3. Multiple-well model

The aquifer is homogeneous and confined. The dispersion regime is pure
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dynamic dispersion and the dispersion coefficient is proportional to the
mixture velocity. The mixture velocity is composed of the natural aquifer
velocity and the velocity imposed by the injection of the tracer in the well.
The density of the mixture is constant (tracer case). Transverse dispersion
is neglected.

c/co

! T
10 p— o
20 D«;—.—r e i S e A St —
NI

I

o 1
40 ‘ f*——r — et

3 | T
S0 T——J~~ —f e — e e

|
60 f———t——+ - J{ 1 P S
70 aF_‘Y L ’ RPN
80 f—o"t—r rwjﬂ
90 :l ]
time min

Fig. 5.2.3. Computed concentration curve vs time at the well, at a given depth. Permanent
pumping rate.

The dispersion matrix is diagonalized in the system of curvilinear coor-
dinates defined by the streamlines and equipotential lines (Fig. 5.2.3). The
injection rate is constant, which implies that the water flow is steady. The
mathematical problem is then defined by the system of equations:
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0 dc dc de
w—|alul—)|—u?— = —
d¢ 0¢ ¢ ot

10n 0%h S oh

ror or: T ot
kpg oh
U, = —— —

¢u or

u = uy tu

[5.2.6]

where u,; is the injection velocity, and u, the natural aquifer velocity.
The initial and boundary conditions are:

c at the well = 1, cattime 0 = 0
0, h at time O

fi
I

¢ at infinity
h(ro, t) = hy
h(e,t) = 0

here ry is the well radius.

Relationships between u, ¢, and ¢ have to be added:

, =% _ [5.2.7]

ds dn

where ds and dn are the elements of curvilinear abscissa along the streamline
and equipotential line. Usually ds = dn.

The system is discretized according to a totally implicit finite-difference
scheme as in § 5.2.2. The resulting linear systems are solved by direct Gauss
elimination methods for tridiagonal matrices. The movement equations are
discretized as in §5.2.2 and a possible discretization of the dispersion
equation is:

lu@i) !+ lzu(i + 1)l e+ 1) —e(i)] — lu(i)l+ l2u(i—1)l fe()) —c(i—1)]
ou®(i) a0?
— i) c(D)—c(i—1) _ c(i) —c7(i)
do de

The increment d¢ is chosen as constant and small enough to reduce numerical
diffusion errors. The computations are performed on the x-axis which is a
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streamline and is discretized by [5.2.7]. The concentration values are then
extended in the x-y field along the equipotential lines.

Shamir and Harleman (1967b) discuss other various numerical schemes
in ¢ —y coordinates, especially the general ¢ — dispersion equation
[5.2.4], where transverse dispersion is not neglected: discretization is anal-
ogous to the one adopted in §9.4.4 and the resolution method is the
Alternate Direction Implicit Procedure (§ 9.4.4).

5.3. ANALYTICAL MODELS

Analytical solutions of the dispersion equation exist only in very few cases,
extensively discussed by Bear (1972). If it is possible, an analytical solution
is interesting because it does not introduce errors due to the numerical
diffusion and errors due to the approximations by the finite-differences.

Various mathematical techniques can be applied to the finding of ana-
lytical solutions, such as Green functions, Laplace transforms or Fourier
transforms. As an illustration, we give here two basic examples that can be
used to derive pollution type-curves for mono- or bi-dimensional flow.

5.3.1. A monodimensional model

Assume longitudinal dispersion, at a constant velocity U in a semi-infinite
medium, with a step initial function. The dispersion coefficient K is constant.
The mathematical problem is defined by the set of equations:
K(08%C/0x* — U(aC/dx) = aC/dt
Clx = 0,t>0) = C,, Clx = oo, t20) = 0, (5.3.1]
Clx=20,t =0) =0
The problem is solved by Laplace transformation.

Note. Let f be a function of the variable x, defined for all x and equal to
zero for x < 0. The Laplace transform of f is the function:

L() = fo) = [, e fx)ax [5.3.2]

provided that this integral exists. p is a complex number, equal to  + it If
71 is zero, f(p) is the Fourier transform of f.
The properties of the Laplace transform used here are the following:

1

L(f) = pfp)—1f(0)
L(f") = p*f ®) —pf(0) —f'(%)
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easily proved by applying [5.8.2] to the functions f'(x) and f"(x). Setting
cx,p)= [ e Ple(x, t)dt, [5.8.1] yields:

K(d?%/dx?) — U(de/dx) = pc

- — [5.3.3]
c(x=0) = co/p c(x =00) = 0
and [5.3.8] has the solution:

Co U— (U? + 4pK)1”?
C = —exp X

2K
c Ux) 1 —x [(U? . 12
= exp| —|-—exp| —= | —
oexp| o ' Plginlg TP

From a table of Laplace transforms, we obtain:

Co x— Ut Co Ux) x + Ut
C = —erfc | +—-——exp \—| erfc | =7 5.34

g ¢ [2(Kt)”2] g P (K 2K [5.3.4]

Fig. 5.3.1 provides the solution of this equation as type-curves.
| v v rrrrig T LENELERS BRI N 21.1-r>r1'AVH|7 T L
r 7 0.05Q10.2 0.5 1 0(: Co
L 4
L ]
L / :o.so
[ ,’:100/ jn_so
/50 J
[ 20 ]
i 10 41010
s
[ , ¥z ut/x ]
/ / 'oos 02 01005 = K/ux ;o.m

L A/i/l . / jL._.A ~ sl N TS o

0.005 G1 05 ; 2 5 10 50

Fig. 5.3.1. Type-curves for monodimensional dispersion; constant velocity (Ogata and
Banks, 1961).

5.3.2. A bidimensional horizontal model

The aquifer is horizontal, monolayered and homogeneous. The water
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velocity u is constant and parallel to Ox. The dispersion coefficients are
constant, proportional to the velocity (dynamic dispersion regime). At the
origin, pollution is injected at concentration C, and at the rate @; during
period di¢, the mass of the injected pollution is CyQd¢. The initial concen-
tration is zero. The domain is infinite and the concentrations are equal to
zero at infinity. The mathematical model is the equation:

% N 0% dc de
GU—‘*opu——u— = —
L ez T e T e T ot

The Green function, i.e. the solution of this equation for the injection of a
unit amount of pollution at the origin, instantaneously at t = 0 is:

— 2 2
Gx,y,t) = ! p[—(x uty Y }

dmrut(og ap)l’? 4o ut doput

and the solution of the problem is then:

_ 2 2
Cla,y, 1) = — o [_(x TR }

dmut(oy ap)'’? 4o ut doput

For a continuous injection at rate @, the solution at time ¢ is:

CoQ t (x — ub)?* y2 ]dé
C b b t = T T i, - - - 5.3-5
(7. 1) druog op)? fo exp { 4o ub 4a,UB| 6 [ ]
The steady-state regime is obtained for t = oo;
Co@ x? y?
Clx, = — 20, YKoy {\— + 5.3.6
(x,¥) omu(ay op) 2 exp (x/201) Ko (404{ 4y i [ 1

where K is the modified Bessel function of the second kind and zero order.
It should be noticed that on the x-axis (y = 0) when o, tends to zero the
concentration tends to infinity, which has no physical meaning: one should
revert to the monodimensional case. If the velocity u increases, the concen-
tration decreases everywhere: pollution is quickly washed out. If @ and u are
constant, ¢ tends to 0 when ¢« tends to infinity: when dispersion increases,
the concentration at a point decreases.

An interesting computation of [5.3.5] is due to Emsellem (see Arlab, 1974)
and leads to practical type-curves by the introduction of the tabulated
Hantush function W(u, b):
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Equation [5.3.5] can be written:
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setting y = ufl /4o, we have:

uf

(x/20) J-Ot exp [—- —

Clx,y,t) = .
L
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X
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402 4oy o
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Cx,y, 1) = exp (x/20,) [ exp (—y — bay)

2

and eventually:

C
Clx,y,t) = E(TO%;/_? exp (x/20;) [W(O, b) — W(t, b)] [5.8.7]
LT

The values of W(¢, b) can be found in Hantush tables (Walton, 1962), for
instance. Fig. 5.3.2 provides the necessary values for most simple pollution
problems, from [5.3.7].

5.4. A BLACK-BOX MODEL

As developed in Chapter 7, it is sometimes interesting to treat a pollution
problem by a black-box method: the aquifer is equivalent to a black box
where pollution comes in and flows out; the mechanisms inside the box are
unknown and only the global effects of the box are analyzed, by studying the
pollution inputs and outputs. The method will be used essentially for large-
scale studies, when the influences of the aquifer on the pollution are complex
but can be integrated in one representation: for instance, the physico-chemi-
cal phenomena of the non-saturated zone will not be detailed and only their
results will be analyzed, if the pollution output of the watershed is to be
determined. The basic principle of this method is to consider pollution as a
signal e(t) (or as some composition of unit signals) which is transformed into
s(t) by the aquifer acting as an operator A which is symbolically represented
by s = A - e, while £ is the time.



134 CLASSICAL MATHEMATICAL MODELS

10 T T T T T T
w(ulb)
10 0007 ]
5.03 0015 IIF}oos
61 o075 005
0.2 04
04 03
uz.:
1.01 : ug.7 4
1.0
15
2.0
7/, b=25
o1f / ]
0.01 1 1 A ' ' N ls ,
- 3 4 S
10' 10 10 10° 10 10 10 10 Yo

Fig. 5.8.2. Type-curves W(u, b) vs u for various b (Walton, 1962).

The following assumptions are usually made:

(1) The transformation e — s exists, i.e., there is an operator A such that
s=A-e.

(2) s is a linear function of e, i.e., A is linear. So, if s corresponds to e,
then As corresponds to Ae; and if s; corresponds to e; and s, to e,, then
s, + s, corresponds to e; + e,.

(3) Any translation in time at the entrance e implies the same translation
in time at the exit s (i.e., the transformation e - s commutes with trans-
lations in time). v

(4) The transformation A is continuous, i.e., if the sequence e, (t) tends
to 0, when n tends to infinity, then the sequence s, (t) = Ae,(t) tends to O.

Then it can be proved (Hérmander, 1969) that the transformation is a
convolution written:

s = Axe

The pollution model is the operator A which is called “impulse-response”,
or ‘“unit-response” or transfer function, of the aquifer for pollution and the
problem consists in computing this unit response. Once A is known, the
model can be used in two ways: either e is known and s is computed (this is
a convolution) or s is known and e is computed (this is a deconvolution).

For example, consider a watershed with an aquifer and some rivers. The
water of the streams is used for drinking purposes. Factories pile up their
wastes which contaminate the aquifer by infiltration due to rains; the pol-
lution input from these wastes is e(¢) and authorities need to forecast the
output s(t) from the aquifer into the rivers to establish safety rules concerning
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the factories (for instance, a timing of pollution piling or burning). If they
know A, which characterizes the aquifer they can compute s(t) for a given
e(t) by the convolution A x e.

Now, if they want to respect pollution sanitary thresholds (which impose
the function s) and determine the possible input e, they do a deconvolution
on e and s. Of course preliminary deconvolution experiments with known s
and e will be performed to determine A.

Although convolution is rather simple to perform numerically, it has been
shown that deconvolution is an unstable numerical operation and special
numerical methods have to be used. After a review of some classical numeri-
cal methods, we present a numerical method based on Emsellem’s algorithm
(Emsellem et al., 1971) and developed by Poitrinal (Emsellem, et al., 1971)
which is stable and already in use rather extensively.

In what follows, we assume that the operator A is an integrable function
and that the convolution equation is written:

s(t) = jj A(t — 1) e(r)dr

A further good assumption is that A and e are zero for negative times which
yields the convolution equation:

s(t) = jot A(t— 1) e(r)dr

5.4.1. Classical deconvolution methods

Fourier transform
The Fourier transform of a function of f is defined by:

F(f) = f() = [ exp (—2imx¢) f(x) dux

for appropriate convergence conditions on f.

_ The Fourier transform of a convolution product f x g is the usual product
f+g and an obvious deconvolution method is to Fourier-transform the con-
volution product, to divide it by the known function and apply the Fourier
inverse transform to obtain the unknown function:

s =Ase—>§=A-e~>e=3A>e = Fl3/A)

Direct identification

The convolution equation is discretized according to a unit time-step: the
input gives e(0), e(1),..., e(n) and the unit response A gives A(0), A(1),...,
A(n). Each e(p) is an impulse of amplitude e(p) which yields a response
e(p)A(n — p).
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The convolution equation then provides the linear system:

s(0) = e(0)A(0)
s(1) = e(0)A(1) + e(1)A(0) [5.4.1]
s(n) = e(0)A(n) +e()A(n—1)+ .. +e(p)A(rn —p) + ... + e(n)A(0)

The unknowns are e(0), e(n), and the system [5.4.1] is easily solved.

These methods are highly unstable when the data present some errors and
do not exactly verify a convolution equation (Fig. 5.4.1). Classical remedies,
such as smoothing of the Fourier transforms, do not totally improve these
methods. Some other methods are now tried, such as analog deconvolution.

Normalized
amplitudes |

}' Computed impulse response
90}

60}

T

30

L Input

0 75 15 225 30 seconds

Fig. 5.4.1. Deconvolution by Fourier transform.

5.4.2. Emsellem’s deconvolution method

The basic principle of this method is to derive the unit response by suc-
cessive approximations, each new approximation being a correction with zero
mean of the preceding approximation. These approximations are computed
by projections on a special orthogonal vector basis, the best to limit the
influence of experimental (measurement) errors. First, the time n when the
unit response becomes zero again is computed by trials (Fig. 5.4.2).

First approximation
It is a constant function which, by convolution with the real input func-
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Impulse
response

time

0 n
Fig. 5.4.2.

tion, gives an output on the whole measurement interval such that the
difference between real output and computed output be minimum. This
difference is usually minimized by a léast-square method: consider a basis
vector b, equal to 1 on (0, n) (Fig. 5.4.3).

time

) n
Fig. 5.4.3. Vector b,.

The projection A (i) of the unit response, verifies the equation:
A(D) = a;b,(i)

and a, is the constant function to be determined to minimize the difference
between known and computed output functions at all points j where the out-
put is known.

n

0= e =1) A = )~ 3 e~ asby(D

it

= s()—a, ; e(i— ) by(i) = EG)

The optimal a, is determined by:

d [Z Ez(j)] jda; = 0

n

o =[Z{ ) ¥ ei—0 bl(i)” b [_Zoej—i)bl(i)}z

]
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Second approximation

2 is unknown, the interval (0, n) is divided up into two intervals and a
basis vector b, equal to 1 on (0,1/2) and —1 on (n/2, n) is considered
(Fig. 5.4.4).

+1

n time

Fig. 5.4.4. Vector b,.

The second approximation of 4 is A, defined by:
A,()) = a1b,(i) + azb,(i)

a,b,(i) obviously is a correction with a zero mean of the first approximation
and the aspect of A, is sketched on Fig. 5.4.5.

A,

e
\

;

a, i

Fig. 5.4.5. Approximation A, with b, and b,

time

a, is determined in the same fashion as a,:

n . 32 E%)
E(j) = s()—a; X, e( —i)bi(i) —ay Y, e —i)bi) ——— =10
i=0 i=0 da,
o=y s(f)—m;eu—abl(z)geu—z)w)} / S el — i)by(i)

i i 0
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Following approximations
They are obtained by dividing up (0, n) into 3,4 ... intervals and defining
the vectors b, bg,... (Fig. 5.4.6).

b

3

+1
‘ time

n

b,

+1

n time

Fig. 5.4.6. Vectors b, and b,.

The vectors are easily derived one from the other by an iferation process:
b, and b, are derived from b, and b, by dividing up the support into four
intervals and multiplying the respective values of b, and b, on each side of the
new divisions by + 1, — 1; b5 to b4 are derived from b, to b, in the same way.
These vectors are orthogonal. Of course, if (0, n) is some power of 2, this will
simplify the algorithm. a; and a4, can be computed together from these
equations:

Asi) = aybi(i) + azb,() + azb (i) + asb (i)

il

=

E(j) S(j)*i e(j —1) A3q(i)

0

i

0)=a; 3, e =)0, — . —as § el = 1)bili)

OTEN) _  IZEW) _

b

aa3 aa4

These computations are iterated to the other approximations.
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A phase is the set of vectors of a given partition of the interval (0, n) (for
instance, phase 1 is b,, phase 2 is (b,, b,), phase 3 is (b;b,b3b,) ....). For each
phase, computations are iterated until a minimum value of the minima T E*(j)

J

is reached: on phase 2, a, is computed, than a, is corrected by going back to

phase 1, then a, is corrected and so on before computing a,, a4; when two

following minima ZE?(j) are almost equal, then it is time to compute the
J

next phase, otherwise one has to go back to phase 1.

Emsellem’s algorithm has the following properties:

(1) Each phase represents a finer partition of the unit response than the
preceding phase: if the approximation is considered as accurate enough, the
procedure can be stopped.

(2) Each vector brings a correction of zero mean to the preceding approxi-
mation.

(3) Each vector modifies the unit response on the whole interval (0, n);
during the convolution of the basis vector and the input function, the input
errors, if not systematic, balance each other and generate lesser errors on the
computed projection.
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Fig. 5.4.7. Impulse-response computed by Emsellem’s deconvolution method on the data
of Fig. 5.4.1.

An example of this method has been given in § 4.2.1: the determination of
a radioactive-probe transfer function.

Fig. 5.4.7 represents the unit response computed by Emsellem’s method
using the data of Fig. 5.4.1.



CHAPTER 6

CASE HISTORIES

We have chosen a series of case histories to illustrate the possible appli-
cations of the methodology. These case histories are distributed into three
groups: (1) description and evolution of an existing pollution; protection
against existing pollutions; (2) prediction of a potential pollution; protection
against pollution hazards; and (3) seawater intrusion into a coastal aquifer.

6.1. DESCRIPTION AND EVOLUTION OF AN EXISTING CASE OF POL-
LUTION: POLLUTION OF THE RHINE AQUIFER BY MINING WASTES

The occurrence of a pollution by salt in the aquifer of southern Alsace
(eastern France) has been known for a long time and it was detected by the
increase in salt content at the pumping wells of the city of Colmar (Fig. 6.1.1).
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Fig. 6.1.1. Salt content in a pumping well at Colmar.

This pollution comes from residual salts in the extraction and treatment
zones of potash mines, made up of sodium chlorides (85%) and clays (15%).
For a very long time, these wastes have been dumped above the ground; rain,
infiltrating through the dumps, carries solved Na(Cl into the groundwater.
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Of course, to prevent such a pollution, the NaCl was progressively carried by
pipeline to the Rhine and the dumps now only receive residues of residues
with a very small percentage of salt. But, this policy has not really improved
the situation: first the River Rhine is now heavily polluted, with consequent
international implications; then these dumps were not destroyed and although
they are not being renewed, they are so large (an average height of 20 m and
an average base area of 100 x 100 m) that they pollute the aquifer as a con-
tinuous source of dissolved salt. Therefore, investigations of the pollution
have been performed in order to
— characterize mechanisms of the contamination of ground and surface
waters
— estimate the annual amounts of salt transferring into the surface hydro-
graphic net coming from the mining district and the evolution of the salinity
of groundwaters.
These investigations have displayed two types of pollution: (1) a light contam-
ination, by well-diluted salt waters entering the aquifer by hydraulic ex-
changes between the streams and the aquifer; and (2) a heavy contamination
by almost saturated salt waters, infiltrating the aquifer near the dumps with
rain.

6.1.1. General description of the problem

The aquifer reservoir is made up of Quaternary alluvia, a mixture of sands,
gravels and pebbles in variable proportions, with clay lenses on a marl sub-
stratum; it is very permeable, with a horizontal Darcy’s coefficient of the
order of 10~% m/sec. It is 50—200 m thick. The mean annual pluviometry is
70 cm. The two types of pollution are located in two distinct zones: the light
contamination is in a zone 1, where the studies are aimed at controlling the
pollution charges conveyed by the streams, describing the mechanisms of the
hydraulic exchanges between streams and aquifer and computing the increase
of salinity of the groundwater due to the input from the streams. The heavy
contamination is in a zone 2 where the studies are aimed at establishing the
annual balance of infiltrated amounts in the aquifer, describing the
mechanisms of the salt-water evolution quantitatively, both horizontally and
vertically, downstream from the dumps and modelling the whole mining dis-
trict for forecasting purposes.

The pollution cycle is described in Fig. 6.1.2.

6.1.2. The operations

The operations are described in a flow chart (Fig. 6.1.3) (Fried and Unge-
mach, 1973). The following commentaries help to understand the flow chart.
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Fig. 6.1.2. Cycle of ore and pollution at the potash mines.

The detection of pollution by geophysical means

Electrical prospecting yields the geometry of the permeable reservoir. Its
use is additionally justified, because on the one hand the resistivity of an
aquifer formation is proportional to the resistivity of the water which it con-
tains, and on the other hand the resistivity of the water is inversely propor-
tional to its salt content; it follows that the real resistivity of a given forma-
tion (in our case, recent alluvia) will decrease when the dissolved salt content
of its water increases. This phenomenon is quantified by the relationship:

Pe = PuAlP

where p, is the resistivity of the soil soaked with water, p,, the resistivity of
the soaking water, A a coefficient depending upon the degree of consolidation
of the soil and ¢ the effective porosity.

Thus sands with a porosity of 25%, soaked by water at resistivity 40 {2m
(at 18°C), equivalent NaCl pure and dry of 135 mg/l, will show a resistivity
of 240 Qm. As only a few conductive clay formations can be found in the
alluvia, most of the conductive zones, displayed by the maps of apparent
resistivities, correspond to the zones polluted by salt.

Figs. 6.1.4, 6.1.5 and 6.1.6 show the three types of results obtained from
this geophysical campaign: a map of the substratum and resistivity distribu-
tions vertically and horizontally.
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Fig. 6.1.3. Pollution by industrial wastes: operation flow chart.
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Fig. 6.1.4. Map of the bedrock contour lines.

The measurement and control of pollution

The main measurement and control devices are deep and shallow piezom-
eters and surface stations (limnigraphs and salinographs). Fig. 6.1.7 shows
some results obtained with these devices: the horizontal extent of salinity in
zone 2, near the dumps. Fig. 6.1.7 should be compared to the geophysical
document in Fig. 6.1.6. The original aspects of the experimental devices are
given in the following note.

Note on the measurement and control devices (Fried et al., 1971a and b)
(1) Levels of the aquifer. In order to detect the exchanges between a stream
and the aquifer, a line of piezometers 25 m deep and screened on the last 5 m
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Fig. 6.1.5. Vertical resistivity distribution (distorted scales) — geoelectrical method.

has been set. The captors are probes with a capacitor effect using the dielec-
trical rigidity contrast between air and water, any raising of the water level
yielding a change in capacity of these probes. They have been calibrated
directly on the piezometers to take into account the influences of the tubes
and of the soil. The characteristics of such a captor are summarized in Fig.
6.1.8.

(2) Levels of the streams. For the analogue recording, two types of device
have been used: a mechanical limnigraph with counterweight and float and a
pneumatic limnigraph with air line and pressure transmission to a mercury
tank where level measurements are performed by float and counterweight.
The analogue digital conversion is performed mechanically, the levels being
perforated every 15 minutes on tape; the analysis and treatment of these
tapes are done by computer. Calibration curves between heights and flow-
rates have been established for these stations by gauging with a current meter.

(3) Control of the salt concentrations in the streams. This has been done
by point sampling with time and by recordings of the resistivity of the water.
Fig. 6.1.9 describes the device schematically.

A scanning device consisting of several probes (a small sequential that can
be programmed) can be used. Temperature compensation and correction to
obtain the measured resistivity at 20°C is ensured by a second electrode,
identical to the measurement electrode, immersed in a calibration solution
having the same ionic profile as the tested water and the resistivity of which
at 20°C is known and called p'. The compensation is satisfactory if the two
probes are in thermal equilibrium, a condition that is almost always realized
in rivers.

Fig. 6.1.10 shows a pollution-measurement station in the zone of light
contamination,

(4) Control of pressures and salt concentrations downstream the dumps.
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Fig. 6.1.6. Horizontal resistivity distribution — geoelectrical method.

Two types of observation wells have been drilled downstream from the
dumps: fully penetrating piezometers screened over the whole depth of the
aquifer to measure fresh-water equivalent heads (Lusczynski, 1961) and sets
of three wells (Fig. 6.1.11) to measure the concentration and pressure evolu-
tions at various depths.

6.1.3. The models

As displayed on the flow chart (Fig. 6.1.3) two types of mathematical
models are used to describe and forecast the evolution of salinity: (1) at a
hectometric scale, a dispersion model; and (2) at a kilometric scale, a
mechanical convective model.
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Fig. 6.1.7. Extent of salinity, measured with wells. A > 10 g/1, B> 1 g/l, C > 100 mg/l,
D < 100 mg/l.

The dispersion model

It uses the dispersion scheme (Chapter 3), simplified thanks to the follow-
ing assumptions.

(1) At the hectometric scale, the medium is homogeneous.

(2) The salt dump is in contact with the aquifer, which means that the in-
fluence of the unsaturated zone is neglected (this is a very conservative
assumption).

(3) Viscosity u is constant and density p depends linearly on the concen-
trations as p = ac + b, @ and b being constants determined by type curves.

(4) From Fig. 6.1.5, it has been assumed that the salt reaches the bottom
of the aquifer and that, at the right-hand side under the dump, salt concen-
tration is constant and maximum along the whole depth of the aquifer. This
is also a very conservative assumption.

(5) At each dump in Fig. 6.1.6, there is a corresponding model. The veloc-
ity direction is constant (Fig. 6.1.6) and horizontal.

These assumptions lead to a horizontal, bidimensional model, which de-
scribes the horizontal spread of salt. The axes are the velocity direction and
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Fig. 6.1.9. Principle of the resistivity meter with heat compensation. 1 = reference elec-

trode (reference resistivity 0'), 2 = measuring electrode (unknown resistivity p), 3 =
source, 4 = amplifier, 5 = measurement device, 6 = recorder.

its perpendicular and the dispersion tensor is diagonal. The dispersion scheme
reduces to:

0 0
B Ky pd(c/p)/ox] + 3y [ Krpd(c/p)/dy] — d(uc)/dx = oc/ot

i (dp/ox)
u, = — X
Pu P
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u, =0
d(pu,)/dx = —ap/ot
p=ac+b

where K; and K, are, respectively, the longitudinal and transverse compo-
nents of dispersion. All other notations have been defined in Chapter 3.

An estimate of the mean-flow pore velocity, from pumping tests, of the
mean grain-size distribution and of the molecular diffusion coefficient of
NaCl allows a computation of the dispersion Peclet number and shows that
mechanical dispersion is predominant (§2.4.2). Thus K; and K, are written:

KLZ(X[U[ and KT:(X/lUI

The boundary conditions are defined in Fig. 6.1.12.

P;lszw+—Li(P~P) c=c,
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Fig. 6.1.12. Domain of the mathematical model — Boundary conditions.

The computation approximation is the Alternate Direction Implicit Pro-
cedure (§9.4.4) and the dispersion scheme is the general case, detailed in
Chapter 3, which consists of the following iterative method: at time ¢, p, ¢
and U are known; p is assumed constant and U is computed from the con-
tinuity and Darcy’s equations at time ¢ + d¢; ¢ is then given by the dispersion
equation at time t + d¢ and p by the equation of state. Of course, there are
several iterations during the same time-step until convergence is obtained.

Calibration of the model is performed by comparison with the map in
Fig. 6.1.7 and calibration curves are given in Fig. 4.2.31.

The hydro-convective model

It is assumed that the differences in viscosities and densities between the
two fluids (salt water infiltrated from the streams or from the salt dump, and
fresh water from the aquifer) are negligible. This assumption is well founded,
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considering the kilometric scale of the model (which is the scale of the water-
shed) and the relatively small contrast of concentrations in the case of
hydraulic exchanges between stream and aquifer (1 g/l in the stream and
100 mg/l in the aquifer).

The model is convective, which means that the dispersion term of the
general dispersion equation is neglected. The classical dispersion scheme
(Chapter 3) reduces to a hydraulic model, which yields the velocities, and a
mass-conservation equation which is purely convective. Concentrations in a
mesh are computed by weighting the saline charges at the entrance and the
exit of the mesh.

The flow is bidimensional and unconfined and it verifies Dupuit assump-
tions, i.e., the equipotential surfaces are vertical and the flow essentially
horizontal; the pressure distribution is hydrostatic. The flow is governed by
Boussinesq’s equation:

9 K, (h— )§ﬁ+iK (h — )%"S ?fz—{-Q
3 xx ( n ax oy ¥ n dy Y 3t

where h(x, y, t) and n(x, y, t) denote the elevation of the free surface and
of the bottom of the aquifer, respectively, above some datum level. S, is the
specific yield and @ is transfer water (see §9.5).

The evolution of the concentrations is governed by the convection
equation:

dc
div (Uc) = — —
(Uc) P

The movement equation is solved first, the term @ of the second member
comprising all the punctual flow rates of pumping or of injection. The salt
dumps are assimilated to injection wells, taking pluviometry into account;
the stream—aquifer exchanges are assimilated to a line of wells, feeding or
draining wells according to the exchange mode. Then the convection equation
is solved. The computations of new piezometries and concentration distribu-
tions are performed by line overrelaxation.

Before being used to forecast the possible evolution of the groundwater
salinity, the model is calibrated on an annual cycle of observations. The grid
and some results are given in Figs. 6.1.13, 6.1.14 and 6.1.15.

These results show a significant spread of the pollution which has been
linked to the progressive disappearance of industrial wells used to collect a
major part of the effluents. This is an interesting paradox: the progressive
disappearance of an industry increases the pollution.
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Fig. 6.1.13. Observed salt intrusion during 1970.

A mechanical convective model

In the zone of light contamination, a mechanical model has been set up to
represent bidimensional flow in a vertical aquifer section of unit width, per-
pendicular to the stream, and contamination to and from the streams. It is a
conductive-paper-type model adapted to the study of a transient phenomenon
with an iterative procedure. Results are shown in Fig. 6.1.16.

6.1.4. Conclusions

This case displays the basic steps of the methodology presented in Chapter
3: the collection of preliminary data, the decision criteria and fundamental
assumptions, the models and the collection of pollution parameters. The last
step was performed by using the preliminary data for velocity parameters
and by calibrating a model on the existing pollution for dispersion coeffi-
cients, as the pollution is on a regional scale.

For the case studied itself, the results were the setting up of predictive
models on two scales, on the scale of a dump and on the scale of the whole
region of the mines, and, more generally, a whole set of observation means of
the aquifer and the streams, allowing accurate knowledge of the present pol-
lution and a check on the predictions of the models.
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Fig. 6.1.14. Computed salt intrusion during 1970.

6.2. THE PROTECTION OF AN AQUIFER AGAINST POSSIBLE POL-
LUTION

An urban community plans to protect its drinking-water wells against
normal urban pollution and against accidents. As an example, here is the
study conducted near the town of Lyons in central France, to derive mathe-
matical models aiming at, on the one hand, describing the unavoidable urban
pollution and helping in establishing protection rules, and, on the other hand,
estimating the usefulness and delay of an intervention in the event of an acci-
dent near a well. This study has been performed strictly according to the
methodology of Chapter 3 (Fried, 1972a; Fried and Ungemach, 1973a).

6.2.1 Preliminary study of existing datc

The reservoir is alluvial, with sands and gravels, slightly stratified with clay
lenses; it is locally multilayered but globally monolayered, as pumping tests
and non-equilibrium methods display a mean permeability in the zone of in-
fluence of the wells. But permeabilities derived from grain-size distributions
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Fig. 6.1.15. Computed salt intrusion for 1975,

on soil samples have different values along a vertical. An estimate of the mean
global pore velocity (5 m/day) can be derived from these pumping tests. Also,
there exists a mean grain-size, ds, equal to 1.5 cm. The aquifer is 20 m thick,
and the water table is at —4 to —5 m.

The unavoidable main pollutions are due to hydrocarbons (in small pro-
portions, less than 0.4 mg/l), sulfates and nitrates. Besides these, it appears
that the greatest pollution hazard comes from trucks carrying chemicals
miscible with water and also from light hydrocarbons, such as domestic fuels,
which, after reaching the water table, could be washed downstream.

Thus, only miscible pollutions have to be taken into account and hydro-
convective or hydrodispersive models will be set.

6.2.2. The working assumption

The demand being for a protective area around pumping wells, the corre-
sponding scale is 20 to 100 m, i.e. global scale 2, and a dispersion model has
been chosen accordingly, which is a multistrata model to account for the
permeability variations along a vertical and which represents the locally multi-
layered aquifer, but where concentrations are averaged over the aquifer
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Fig. 6.1.16. Conductive-paper model — contamination of the aquifer by a stream.

depth to simulate the global monolayered aquifer. The layers are horizontal
and a horizontal, multilayered, hydrodispersive model has been conceived,
where the dispersion tensor is diagonal, because at the scale of the study, the
streamlines are almost parallel and straight. The Peclet number, computed
from a mean diffusion coefficient, is:

Pe = (5-107° x 1.5)/1075 = 750

Thus, the possible pollutions will be governed by a dynamic dispersion regime
and the dispersion coefficients are given by K = ou. The parameters that have
to be collected are the global velocities u and the intrinsic dispersion coeffi-
cients a.

6.2.3. The determination of the dispersion parameters

In order to refine the knowledge of the stratification and also to assemble
the dispersion coefficients that could be used to model a pollution by light
hydrocarbons remaining in the upper part of the aquifer, a local experiment
has been performed by the single-well pulse method with radioactive tracers
(§4.2.1). It has yielded the vertical distribution of longitudinal-dispersion co-
efficients at one site (Fig. 6.2.1). ’

The dispersion parameters at the global scale 2 have been collected at five
experimental sites, in order to draw a map of dispersion coefficients covering
an area of 35 km? (Fig. 6.2.2). These experimental sites were chosen as the
most representative, according to the geology and lithology of the region.
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Fig. 6.2.2. Location of the experimental sites.

One of these experimental sites is a sanitary landfill, that yields dispersion
coefficients valid at the scale of 600—1000 m using environmental tracer
methods. On the four other sites, the experimental device used was the
single-well method in geophysics, i.e. the injection of salt water and its detec-
tion by resistivity measurements performed at the ground surface. Although
this method is thoroughly described in §4.2.3, some details of the operations
are given here for information purposes:

(1) The time spent on one site was 15 days, including conveyance of equip-
ment, injection, control measurements, geophysical measurements, drilling



TABLE 11

Characteristics of the sites

Site Depth of Depth of Width of Transmis- Horizontal Storage Resistivity Equivalent Numher
No. of the the sivity permeability coefficient before NaCl of
horehole water table aquifer injection 18°C piezom-
y eters
(m) (m) (m) {m"fsec) {m/scc) (5.D.%) (52 cm)} (mg/H

1 20 3.3 16.7 5.5-1072 3.3-107°

2 23.5 45 19 1.4-107! 7.0-107° 1658 360 2

3 35 16.5 18.5 5.0-1077 2.8-107° 2180 250

4 19.6 2.06 17.5 1071 5.5°1073 13 33756 160 2

5 18.3 2.40 15.90 3.0-107° 2.0-1073 22
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TABLE III

Adopted stratification on each site and results

Site Strata Width Permeability Porosity Mean Veloceity Intrinsic Intrinsic Transmissivity
No. No. velocity per longitudinal lateral
stratum dispersion dispersion
coefficient coefficient
(m) (m/sec) {m/day} {m/day) (m) (m) (m?fsec)

1 1 5.5 0.0040 0.2 7.9 7.000

2 7.5 0.0020 0.2 7.2 3.9 12.00 14.000 0.055
3 2.0 0.0090 0.2 17.7 3.110
2 1 4.0 0.0005 0.2 0.7 1.000
2 7.0 0.0010 0.2 1.3 0.500

3 6.0 0.0110 0.2 9.6 14.3 8.00 0.045 0.140
4 2.0 0.0325 0.2 42.3 0.015
3 1 5.8 0.0050 0.2 24.6 0.290
2 10.2 0.0001 0.2 0.5 14.500

3 2.0 0.0050 0.2 18.00 24.6 5.00 0.290 0.050
4 1.0 0.0100 0.2 49,2 0.145
4 1 8.5 0.0005 0.2 0.8 1.000
2 2.8 0.0024 0.2 3.1 0.250

3 3.0 0.0010 0,2 9.00 1.5 7.00 0.500 0.100
4 2.0 0.0160 0.2 24.8 0.031
5 1.0 0.0551 0.2 85.2 0.009
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of an observation well, and withdrawal of the equipment. An average of
200 kg/h of salt (NaCl) was injected for 160—225 h depending on the site,
over the whole depth of the aquifer from a completely screened well.

(2) The preliminary data actually used in the modelling of the geophysical
experiment are summarized in Table II, and the results of the model calibra-
tion are given in Table III. Results of the calibration on site 5 are given in
§4.2.4.

6.2.4. The models

The model defined in §4.2.4, which is calibrated on salt-water intrusion, is
used as a predictive model for the whole area spanned by the five sites at the
scale of 100 m and the model defined in §4.2.5 (bidimensional, horizontal-
monolayered) is used for pollutions at the scale of 500 m.

6.3. SALT-WATER INTRUSION INTO A COASTAL AQUIFER

Coastal aquifers represent an important water resource, especially in semi-
arid zones bordering the sea (southern Italy or Tunisia, for instance). Pump-
ing programmes must, however, be very carefully established to prevent
pollution by salt which can act in two ways (Fig. 6.3.1): (1) salt water coming
into the pumping well, which pollutes the extracted water; and (2) global
intrusion of sea water, which can destroy the surface agriculture: vineyards
in the Medoc region, in southwestern France, for instance, are endangered
by such pollution.

When water is badly needed, it may be advantageous to pump at the ut-
most limit and then to relax and allow a recharge of the aquifer, and to iterate
the process. The possible occurrence of a transition zone, the evolution of its
width and its forward and backward movements under the pulsation of the
pumping programme and also under the effect of tidal conditions become
very important factors. In order to try to understand the mechanisms of this
particular type of pollution, a methodological study, based on the elements
presented in Chapter 3, has been initiated. The objectives of this study are:
(1) to define experiments, models and rules necessary for the derivation of a
pumping programme in a coastal zone; and (2) to define the setting of control
and observation points.

This experimental study has been performed on the Malika aquifer in
Senegal.

6.3.1. Preliminary studies

The aquifer is located about 20 km from Dakar, It is a fresh-water lens at
most 50 m deep, lying everywhere on salt water (Fig. 6.3.3). This lens is about



162 CASE HISTORIES

Aquifer
q Pumping well

Coning

Salt wedge

/ VAV A A/

(a)

/7

Salt wedge

/ / /-

before pumping

—— —— after pumping
(b)

Fig. 6.3.1. Salt-water intrusion in a coastal aquifer.

1 km wide and is bounded on the north by the ocean and to the south by
salt waters (at the ground surface the salt waters appear as lakes, which are
parallel to the coastline and their salinity varies from 14 to 53 g/l) (Fig.
6.3.2) (Debuisson, 1970).

The aquifer is made up of sands with clay lenses and some gravels and is
relatively homogeneous; the water table is between 3 and 6 m deep. The
aquifer flows to the sea and also to the southern lake, the water-divide fluc-
tuating with the seasons. The boreholes are permanently equipped for resis-
tivity measurement which have approximately defined the geometric charac-
teristics of the transition zone (Fig. 6.3.3).

The transition zone, which is due to tides and seasonal variations since no
systematic pumping takes place, is 2—12 m wide. Considering its mean
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Fig. 6.3.2. Location of the aquifer (Debuisson, 1970).
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Fig. 6.3.3. Vertical section of the aquifer showing the transition zone and the hetero-
geneities (after Debuisson, 1970).
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position as an interface between fresh and salt waters, it can be observed
that the ratio between fresh-water heights above and below sea level varies
between 1/5 and 1/75, which is very different from the Ghyben-Herzberg
value of 1/40.

Also, it has been observed that after heavy rains recharging the aquifer,
the limits of the transition zone are displaced downwards and its width
varies. Pumping has been performed during three months, with two wells at
a global flow rate of 26 m?/hour. The amount of water pumped out was
63,400 m> and observation wells were drilled around the pumping well to
define the depression cone. A mean transmissivity of 6 107 m?/sec and a
storage coefficient of 0.17 were computed.

Limits of the transition
zone

17.5.1965 before pumping
------- 1.9.1965 end of pumping

50m
Scale
Bedrock

Fig. 6.3.4. Evolution of the transition zone with pumping (after Debuisson, 1970).

Pumping has influenced the transition zone within a radius of 200 m (Fig.
6.3.4). Measurements by electrical soundings have also been performed, which
record the variations of superficial equiresistivity curves with the pumping.
The results are plotted on maps, an example of which is given in Fig. 6.3.5,
showing the inward movement of salt water.

Among the usable data, it should be noticed that tidal waves have been
recorded in the aquifer: pressure variations at various levels have been
noticed, corresponding to tidal variations more or less damped according to
the geology of the layer. These results have been interpreted as displaying the
horizontal stratification of the aquifer and linked to the effective porosity of
the various layers.
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Fig. 6.3.5. Evolution of the equiresistivity curves with pumping (after Debuisson, 1970).
6.3.2. The working assumption

The preliminary data show that we have a medium-scale pollution by a
pollutant miscible to water. The extent of the source (the sea), the recorded
dimensions of the transition zone and its importance relative to the studied
domain imply the use of a hydrodispersive model and the setting of a disper-
sige Cliceme,

6.3.3. Use of the dispersion scheme

Prior to introducing the equation itself, hydraulic models have been derived
to refine the knowledge of the multilayered aquifer in terms of strata geom-
etry (extension and thickness) and hydrodynamic characteristics (horizontal
and vertical permeabilities, storage coefficients) and fresh-water flow rates to
the sea.

Immiscibility assumptions are introduced as a first approximation and
vertical hydraulic models are adjusted on the mean transition zone in the
permanent regime and on piezometric oscillations due to tidal waves in the
transient regime.

Then a stratified, horizontal hydraulic model is used, with vertical transfer
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of water between the strata. It is coupled with the horizontal dispersion
model, also stratified and with vertical mass transport between layers. The
hydrodispersive model is adjusted on curves analogous to the resistivity lines
of Fig. 6.3.5, simulating the mean encroachment variation. A finite-element
method has been proposed for this model and is being tested at the time of
writing.

6.3.4. Difficulties of the study

As pointed out by Bear (1972), the main difficulty in salt-water modelling
is the fact that not only is the dispersion scheme non-linear, but also the do-
main is not known, because some of its boundaries are free surfaces. The
first results of the present study have been to define the difficulties which
we now detail.

The mechanisms of movements and dispersion are not well known, but
some experimental facts provide a theory: it has been noticed that near seas
which have no tide (such as the Mediterranean), the transition zone is usually .
very narrow and sometimes non-existent; near seas with tides (the Atlantic
Ocean, as presented here), the transition zone may be rather considerable
(Fig. 6.3.3).

The theory is then the following. Without tides and without pumping, and
neglecting seasonal recharges due to rains (an especially valid assumption in
semi-arid climates), the mean salt—freshwater interface does not move.
The only movement is fresh water flowing to the sea on the salt water (Fig.
6.3.6) which generates a probably small transverse dispersion, as it is linked
to the vertical permeability. Also, salt water dispersing in the aquifer will be
carried away by the fresh water.

~—la

S

Fresh water flow

salt water fwws

Dispersion

e

Fig. 6.3.6. Transverse dispersion from fresh-water movement to the sea.

When there is a tide, the horizontal component of the salt-wedge velocity
is larger than the vertical component and, especially if the aquifer is horizon-
tally stratified, it will create a large longitudinal dispersion. This dispersion is
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the origin of the rather significant transition zones that are observed. Of
course, tides and seasonal recharges are oscillatory phenomena and a back-
and-forth movement of the wedge is expected; the oscillatory movement
raises a question: will the transition zone widen with time or will it reach an
equilibrium? According to known data, it seems that in practical cases an
equilibrium is reached, probably due to the washing-out phenomenon already
mentioned: part of the dispersing salt water is washed out to the sea by the
aquifer discharging naturally. Another explanation (which does not con-
tradict the previous one) is that dispersion is in some respects reversible and
that part of the transition zone created by an inward movement will be erased
by the outward movement.

We have mentioned here the evolution of the dispersion zone under natural
conditions (tides, rains). The main problem is to check the validity of this
theory under pumping conditions and to see whether the washing-out of the
salt water by the aquifer compensates the possible dispersion effects. This is
the purpose of the study mentioned here and which is under way. If pump-
ing does not influence the width of the dispersion zone, then immiscible
models of the fresh—salt-water interface will be used and it will not be neces-
sary to compute dispersion coefficients from field experiments which are
always very difficult to carry out at convenient large scales.

The dispersion theory of salt-water intrusion is important in determining
pumping policies in semi-arid zones; in that case, each drop of fresh water is
necessary and it is sometimes planned to over-operate the aquifer, i.e. to in-
verse its gradient, which creates heavy intrusion; this intrusion is then pushed
back to the sea by the natural recharge during the rain period and it must be
determined whether some pollution still remains: the oscillatory theory of
dispersion with rinsing and reversibility should provide an answer.

6.4. A RADIOACTIVE POLLUTION BY LIQUID WASTES

Radioactive pollution hazards are likely to increase in the next few years
with the continuing development of atomic-energy sources. Both psycholog-
ically and physically, the radioactive pollution is a danger and should be
treated adequately. As a case-history illustrating the methodology presented
in Chapter 3 the case presented briefly here does not differ very much from
the industrial-salt pollution of §6.1. We shall see that overall scales are cer-
tainly different, but the basic modelling and techniques are equivalent. We
prefer to present it separately, however, because we wish to stress the impor-
tance of miscible pollution techniques applied to this very special type of
pollution. Thus the emphasis is not put on the methodology but on the types
of data and on the scale aspects.

The facts presented here concern the disposal of liquid wastes at the
National Reactor Testing Station, on the Eastern Snake River plain in
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southern Idaho (U.S.A.) studied by the United States Geological ‘Survey
(Robertson et al., 1974).

6.4.1. Preliminary studies

Geological setting

The eastern Snake River Plain is a large downwarped basin 31,000 km? in
area. It has been filled to its present level with perhaps 1500 m of thin basaltic
lava flows and interbedded sediments. The Snake River Plain aquifer flows
to the southwest (Fig. 6.4.1) at high velocities (1.5—8 m/day) and its trans-
missivity ranges from 10* to 10° m?/day. Its storage coefficient range from
0.001 to 0.2 and from 0.01 to 0.06 at the waste-disposal site. Most of the
aquifer flow occurs along the upper and lower contacts of successive basaltic
flows which have fractures and fissures.

The National Reactor Testing Station occupies 2320 km? of this plain.
Fig. 6.4.2 shows the NRTS boundaries and the contours of the water table,
which are used to compute the main flow velocity of the aquifer.

The wastes

There are two main waste-discharge facilities, namely the Test Reactor
Area (TRA) and the Idaho Chemical Processing Plant (ICPP), which discharge
80% of the total chemical wastes and over 90% of the total radioactive waste.
Depth to the water table at these locations is about 140 m.

The pollutants, i.e. the wastes that affect water quality, are non-radioactive,
such as sodium chloride, chromium and heat, and radioactive, such as tritium,
strontium 90 and cesium 137.

Chloride has been a continuous waste product at both sites. Natural chloride
concentration in the aquifer water ranges from 10 to 20 mg/! and a value of
15 mg/l was used as a lower limit to indicate waste contamination. The aver-
age effluent concentration, from 1962 to 1972, was 245 mg/1 at the ICPP.

Sodium is discharged with chloride as sodium chloride; it behaves as chlo-
ride, but its movement is retarded by sorption (ion exchange): for instance,
at observation wells where the chloride concentration is 60 mg/l the sodium
concentration is only 14 mg/l, although the injected sodium mass is 2/3 of
the chloride mass.

Chromium: the contamination level was fixed at 0.01 mg/l and the highest
recorded level is 0.5 mg/l.

Heat: the natural water temperature is 12°C and the temperature of the
effluent discharge at the ICPP is about 21°C. Heat transport has created a
detectable plume of warmer water about 3 km? in area.

Tritium is the most abundant waste radioisotope, occurring as tritiated
water. The natural tritium concentration in the aquifer water is less than
0.2 pCi/ml (pico curie per millilitre) and the normal detection limit in NRTS
tritium analyses is 2 pCi/ml used at the lower mapping limit. The average
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Fig. 6.4.1. Map showing location of NRTS, Snake River Plain and inferred groundwater

flow lines of Snake River Plain aquifer (Robertson and Barraclough, 1973).
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concentrations of tritium discharged at TRA and ICPP, respectively, are
615 pCi/ml and 430 pCi/ml (from 1962 to 1972).

Strontium 90 and cesium 137: the maximum °°Sr concentration was
0.15 pCi/ml at the ICPP and the lower detection limit was set at 0.005 pCi/ml.
Sorption is important, it retards the movement and strengthens the influence
of radioactive decay on concentration reduction. !37Cs has been discharged in
the same quantities as °°Sr, but due to heavy sorption, was never detected.

Waste discharge facilities

The TRA generates several different types of liquid waste and uses four
types of disposal systems.

(1) Low-level radioactive wastes are discharged to three interconnected
seepage ponds and percolate to the water table.

(2) Corrosive, but non-radioactive chemical wastes are discharged to a sepa-
rate seepage pond.

(3) Non-radioactive cooling-tower blow-down wastes are discharged direct-
ly into the aquifer through a disposal well, 395 m deep, which generally
contains 1200 mg/1 of naturally occurring dissolved solids (five times as much
as groundwater).

(4) Sanitary wastes are discharged to a separate seepage pond.

The ICPP discharges all its low-level effluents directly to the aquifer
through a 180 m deep well. Nearly all radioactivity is removed from the
effluent by distillation and ion exchange before discharge, except for tritium
and small amount of strontium 90 and cesium 137.

6.4.2. Decision criteria

Obviously, we are facing a pollution miscible with the aquifer water. The
problem is to determine the scale of the study.

Of course, the amounts of the various discharged pollutants are known,
but more interesting are the recorded maps of pollution concentrations in
space and time, which really fix the scales. Fig. 6.4.3 shows such maps in
the case of chloride pollution. For other pollutants the maps are alike.

From these maps, it appears that the pollution takes place at a regional
scale, that the waste-disposal facilities are equivalent to a point source, but
that the intensity of that source is such that dispersion effects must be taken
into account; the very aspect of the waste plumes shows that both longitudi-
nal and lateral dispersion are large. Modelling is thus based upon the working
assumption that the pollutions are governed by the dispersion scheme.

6.4.3. The dispersion scheme

It is based upon a generalized form of the usual dispersion equation to in-
clude sink effects, radiocactive decay, sorption effects and medium compressi-
bility:
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9 _ div (K grad C) — div (UC) — Ca 2 —QC, = € — - [(1— $)N]
— = div ra — div —Co—— — — - —
ot & ot ° ot

[6.4.1]

where C, is the solute concentration in a source or a sink, o the compressibility
of the medium, A the radioactive decay constant of the solute and N the
concentration of sorbed solute on solid phase. All other terms have been
defined in Chapter 3.

Ton exchange can also be modelled by introducing a distribution coefficient
A which is the ratio of the nuclide concentration in the solid phase to its
concentration in the liquid phase (pCi/cm?), assuming instantaneous equilib-
rium, reversible, linear adsorption isotherm, and multiplying the left-hand
side of [6.4.1] by ¢/[¢ + A(1 — ¢)].

Pollution takes place in the tracer case, and in the dynamic dispersion
regime, with dispersion coefficients proportional to velocity. The aquifer is.
horizontally stratified and it has been observed that most of the pollution
flows horizontally. The dispersion model is then bidimensional. The aquifer
flow is governed by the usual hydrologic equation for confined aquifers (see
Appendix I):

oh
div(TgradH) = S_at_+q

The dispersion scheme has been discretized on the grid of Fig. 6.4.4.

The flow equation has been solved by ADIP and the dispersion equation
by the method of characteristics (8§9.4.6). An example of the result is
sketched in Fig. 6.4.5.

6.4.4. The determination of the dispersion coefficients

We know that to operate the dispersion scheme, field values of the disper-
sion coefficients must be obtained. The present study is performed at a very
large regional scale and the dispersion coefficients have been derived by using
the pollutions as environmental tracers.

A good environmental tracer must be free from chemical reactions, such as
ion exchanges and precipitations for instance, and must not react with the
medium. The initial and boundary conditions must be known (essentially by
injected amounts and their history). Chloride was then chosen as the simplest
and most accurate dispersion tracer. Tritium could be used also, but its be-
haviour is more complex than that of chloride, because of its very variable
discharge rates and its radioactive decay.

Chromium too, could be used, but certainly not sodium because of its
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Fig. 6.4.4. Finite-difference grid. Shaded area is used for the forecasting of waste immi-
gration (Robertson, 1974).

adsorption. The dispersion was then adjusted on chloride-concentration
curves and the values obtained for o;, and ar were:

o = 91m and o = 13Tm

These values were used to adjust a tritium model on the experimental tritium
concentration curves accouriting for radioactive decay (Fig. 6.4.5) and a
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strontium model for a uniform sorption-distribution coefficient. The large
value of the lateral dispersion coefficient is probably due to the very large
scale of the model and to the fissured nature of the aquifer.

6.4.5. A forecasting model of pollution

The dispersion scheme can be used as a forecasting model for various
hydrologic and disposal conditions.
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CHAPTER 7

POLLUTION AND THE MANAGEMENT OF WATER RESOURCES — A
GENERAL METHODOLOGY

The economic importance of water is obvious and with growing needs
all the water resources become important and especially groundwater
which is water stocked in natural reservoirs. Water is used in two principal
ways, for consumption (human, agricultural, industrial) and for transpor-
tation; by this last word we mean the carrying away of wastes, both human
and industrial. Of course this transportation of wastes implies a cumulative
degradation of water quality, sometimes tempered by self-purification pro-
cesses and usually governed by dispersion models; this phenomenon is
pollution.

Imagine two users of the water of an aquifer: the creation of the pollution
by the upstream user may yield economic stresses on the downstream user,
if pollution has not been reduced to an acceptable level during transportation.
For instance an industry needs a water with certain quality specifications,
which it may not find in an already polluted water; it will invest in purifi-
cation devices or it will bring water from far away; its economy will be in-
fluenced by pollution acting on the quality of the water and also on its
quantity.

In general, we can say that pollution is a constant degradation factor of
water, which influences both its quality and quantity: for instance, a qual-
itative property of water may be used (such as its refrigeration property) and
not an amount of water; but the quality of the water depends on the rate of
pollution, which is a function of both the carried quantity of pollution and
the carrying amount of water.

Thus the quality and quantity of water are interdependent notions and
the economic study of a pollution, i.e. of the quality of water, is tightly
linked to the economic study of water itself; pollution studies are part of
the management of water resources.

Groundwater pollution is a factor of groundwater management, itself part
of water management; thus groundwater poliution must not be treated
separately from other economic aspects of water.

In the previous chapters, we have seen that pollution problems have tech-
nical solutions, with fairly good approximations; now when speaking eco-
nomically, must we consider pollution as the problem?

Is it so expensive to treat pollution that financial difficulties cannot be
overcome? To answer, we quote an example due to Emsellem (1972b) made
for river waters, but of course even more valid for groundwater. It is possible
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to estimate the cost of suppressing all arrivals of pollution to rivers in France,
and surprisingly this cost is rather low. A citizen and his economic activity
are represented by an equivalent inhabitant, worth three inhabitants, which
means that France has a population of 150 million equivalent-inhabitants.
The mean investment for one equivalent-inhabitant is $30; maintenance costs
of purification stations represent 6% per year of the investment. The invest-
ment is thus 150,000,000 x 30 = $4500 million.

To simplify, this program is financed on a long term; this sum is thus
doubled to take into account the interest rate and will be paid in ten years.
This yields 9000/10 + 0, 06 x 4500 =~ $120 million.

This amount should be compared to the budget of the country, which
amounts to $4000 million. The treatment of pollution, or its storage, are
not as expensive as thought!

Thus the problem is not “pollution is the fragedy of the century”’, because
its solutions exist both technologically and financially. The problem is ‘“‘facing
the development problems of our society, do we give priority to pollution
problems?”’ If the answer is yes, which is a good approximation, do we have.
the right tools, financial, fiscal, administrative and technical to reach the
objective without neglecting other priority objectives?

The real difficulty of the problem is not pollution by itself, but the
political definition of the national objectives: the pollution programs must
be included in sets of priority objectives, discussed at the political level.

In this chapter, we give an outline of an integrated study of water-resources
management, both technically and economically, presenting a methodology
used to prepare the technical files, which are the kernel of the study, and a
practical economic approach already successfully used for water-resources
problems. The methodology is a generalization of that presented in Chapter 3,
which was specific to groundwater pollution and uses some mathematical
tools which we briefly describe. In the economic approach, we do not detail
specific economic models — this is not the aim of this book, and should be
left to the economists —but we provide the engineer, hydrologist, and
physicist with practical and simple rules to help him understand and direct an
integrated water-resources study including pollution factors.

7.1. TECHNICAL METHODOLOGY

The management of water resources has an ecologic and economic com-
ponent, water quality. Water quality can be quantified, by introducing pol-
lution contents, diffusion, dispersion, convection and integrated in simulation
models. Calibrated simulation models are generally used to forecast and
they are mainly mathematical models. These “quantity—quality’ models
take place between field operations and economical and political decisions;
they are used to identify and freat field parameters, and to forecast their
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evolutions under various working assumptions, their results forming the
starting points of economic models.

The various necessary operations to go from the field to the forecasting
models and their results, are strictly defined within a methodology, the aim
of which is to optimize the collection and treatment of the useful field data.

The methodology is summarized in the flow chart of Fig. 7.1.1 which
shows the logical sequence of operations (Emsellem et al., 1973).

| N -
{ FIELD INVESTIGATION }

NUMERICAL
SCREENING

INTERPRETATION
MANUAL

|

PARAMETERS| [BEHAVIOUR] STRUCTURE
|

B HYDRAULIC MODELS]
FORECASTING MODELS

FORECASTS
CONTROLS

| WATER RESOURCES; POLLUTION

NON NUMERICAL

ANALYSIS

POLLUTION MODELS

UK : UNIVERSAL KRIGING O1: OPTIMIZATION OF THE INVESTIGATION
F :FILTERING OC: OPTIMIZATION OF THE CONTROL

FA: FACTOR ANALYS!S T : TRACERS

D . DECONVOLUTION G : GEOPHYSICS

) : INVERSE METHODS
Fig. 7.1.1. General methodology flow chart.

The operations start in the field, with the investigations. These give two
sets of information, numerical and non-numerical data. The numerical data
are hydrometeorological, geophysical, hydraulic and chemical information;
the non-numerical data are information about the geology, the lithology
and the structure.
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These data are screened and then used to identify the system. The system
is defined by its structure, the parameters of its elementary blocks and its
behaviour under perturbations. It should be noticed that the knowledge of
structure and parameters yields the behaviour; and also, that the knowledge
of structure and behaviour yields the parameters; this is very useful as infor-
mation on these three characteristics is always available: it allows the deri-
vation and calibration of models by using the necessary consistence between
model and information.

Once the model has been built, it may be necessary to go back to the field
because of lack of information and the optimization of the field investigations
can be automatically directed with the help of a computer.

Once the model is calibrated, it is used to forecast the behaviour of the
hydraulic system under new operations or new developments. Of course, the
forecasting has to be checked and means of control have to be set and
optimized by computer.

The methodology appears to be divided up into two parts: (1) preparation
and treatment of the information; and (2) derivation and use of the models.

The distinction between these two aspects is fundamental, as the deri-
vation and the use of a model must comprise a set of controls to localize
the errors in the available data and also in the adopted interpretation
structure which it simulates. § 7.2 examines the various tools used to prepare
and treat the information, while § 7.3 describes the adopted models.

7.2. PREPARATION AND TREATMENT OF THE INFORMATION

The flow chart comprises four blocks which are absolutely necessary for
the derivation and use of the models: (1) system identification; (2) screening
of numerical informations; (3) structuration of non-numerical informations;
and (4) optimization of the investigation and control sets. Here is some
information about the various tools that have to be used within these blocks.

7.2.1. System identification

The behaviour of a system under perturbations is determined in two
possible ways.

(1) The system is internally investigated to determine its structure and
to measure the values of its characteristic parameters. Relationships between
these parameters are then determined by observing the system’s behaviour
and considering the physical laws governing the phenomena which take place
in the system. A model is derived, which represents reality as closely as
possible.

(2) The investigator does not try to understand the physics of the system.
He considers the system as a black box and measures the response of the
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system to a given external perturbation. It is the method of increasing
covering, an application of which is the impulse-response analysis method
or deconvolution. It consists in estimating the value of the unknown vari-
able which best satisfies a partial differential equation in the whole do-
main; then the partition of the domain into subdomains is considered, and
on each subdomain the mean values, satisfying the partial differential
equation the best, are computed. The process is iterated by partitioning the
subdomains. The basic idea of such a method is that data are given with
errors not uniformly distributed in space or time; any local modification of
the parameter estimate implies the same modification of the values of the
parameters everywhere else, which erases sharp local errors and assures
numerical stability. This method has been applied to inverse problems, such
as the determination of the fransmissivities from piezometric data (Emsellem
and De Marsily, 1971) and to deconvolution problems such as the determi-
nation of unit hydrographs (Emsellem et al., 1971).

The behaviour of a system can be quantified by type-curves, from impulse
response data. This method is detailed in §5.3.

7.2.2. Screening of numerical information

Once the information has been structured, it is screened and various tech-
nigues can be used.

Unriversal kriging

Kriging is an estimation method introduced by Matheron (1965, 1969,
1971) for mining applications; it finds the best possible linear estimator of
the grade of a panel, taking into account all the available information, i.e. the
assay values of the various collected samples either inside or outside the
given panel. Kriging assigns a weight to the assay of each sample, these
weights being computed in order to minimize the resultant estimation vari-
ance according to the geometrical characteristics of the problem (shapes,
dimensions, relative setting of the panel and the samples). Intuitively a low
weight will be assigned to distant samples and conversely, except when com-
plex phenomena appear.

The effective computation of the proper optimal weights of the samples
is based upon certain assumptions about the structural characteristics of the
studied orebody by means of the variogram of the random function, a
realization of which is the set of punctual assays.

Such a random function has been called by Matheron, a ‘‘regionalized
random variable”, and is a function of space, the values of which vary from
one point to another, with some continuity and the variation of which
cannot, be represented by an extrapolable mathematical law; for instance,
the set of depths of the bottom of the sea, as recorded by sounding from a
ship, is the realization of such a regionalized variable.
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An extreme case of regionalized variable appears when its values, taken
from any two different points, are independent; all intermediate, structural
cases are possible until a complete organization of the space.

A variogram is a most important tool to describe these various structural
cases. Take x and x + h, two points of space (one, two or three dimensions)
and set f(x), f(x + h), the values of the regionalized variable f, at these
points. The variogram, or more correctly, the semi-variogram, is a function
v(h) defined by:

1
v(h) = EE [fx + k) — f(x)]?

where E(x) is the mathematical expectation of the random variable x.

Assuming the intrinsic hypothesis, i.e. for any vector %, the increment
f(xo + k) — f(x) has an expectation and a variance which are independent of
the support point x;, we see that -y is not linked to any particular position
of x but to the increment between two moving points, x, x + A. It helps to
grab quantitatively whether what happens at one point looks like what
happens in the average at a distance h. It quantifies the notion of the influence
zone of a sample and the structure of a body, essentially through its behav-
iour near the origin and at infinity.

(1) The continuity and the regularity, in space of f are expressed by the
behaviour of y(h) near the origin. There are roughly four cases (Fig. 7.2.1):

(a) parabolic trend: (k) is twice differentiable at h = 0, f(x) is then
differentiable and highly regular (in the mean square*);

(b) linear behaviour: y(h) is continuous but not differentiable at h = 0,
f is continuous (in the mean square*) but not differentiable and much less
regular;

(¢) nugget effect: y(h) does not tend to 0 when h tends to 0, f is not even
continuous in the mean square;

(d) f(x) and f(x + h) are independent for any two distinct points; it is
the “white noise” of the physicists.

(2) The behaviour of ¥ at infinity displays the connections between the
blocks of the studied system: if the variogram ends by a horizontal part,
starting at a range a (Fig. 7.2.2a), f(x) and f(x + h) are without correlation
for h > a; if the variogram ends by an ascending part there is a regional drift
(Fig. 7.2.2b).

*The random function y(x) is said to be continuous in the mean square if we have
E[{Y(x + h)— Y(x)}*] > O when h > 0.

In a one-dimensional space, we define the random function Y'(x) as the deriva-
tive in the mean-square sense of the random function Y(x) if E[{[ Y(x + h)— Y(x)}/ h—
Y'(x)}*] - 0 when h — 0.

There are similar definitions for n-dimensional spaces with n > 1.
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Of course, the range will depend on the direction of vector #, which may
reveal preferential directions of the variable in the field. In general, different
behaviours of the variogram in different directions of space reveal anisotropies.

range

Fig. 7.2.2.
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Matheron has generalized kriging into universal kriging to estimate drifts
(sometimes also called trends) of regionalized variables, the drift of f(x)
being its a priori expectation E [f(x)].

Applied to hydrology and pollution, kriging first yields maps of the quan-
tity measured on a discrete set of points: for instance, the concentrations of
a pollutant being measured in a set of points at a given time ¢, kriging yields
the continuous distribution of concentrations in space at ¢. But it is much
more than a simple interpolation method, it yields the structure of the
phenomenon in space, an estimate of the white noise, and the estimation
variance; i.e., it tells how reliable the estimation is in the whole space.
Further on in the paragraph, we shall see how important it is for the opti-
mization of measurement grids and for the optimal determination of missing
data.

Filtering

Experimental errors are always introduced in the measurements of real
data which yield an information and a noise. Experimental data should be
filtered by using the available information on the signal (regularity, fre-
quency, energy) and on the noise (zero means or estimation of the noise
standard deviation).

Kriging and standard statistical methods can be used. The data being
generally used in models, an analysis of the model’s sensitivity to errors
should be performed, a theoretical example of which is presented in § 8.

Factor-analysis of correspondences

The measurements of a given phenomenon lead to defining several indi-
viduals (measured objects), which take a set of characters (measurements):
for instance, a set of level measurements at given dates (characters) for a set
of piezometers (individuals), or a set of chemical analyses (characters) for a
set of water samples (individuals).

The correspondence analysis represents individuals and characters by
points, and the group of points, associated in clouds, shows the system
organization. The clouds and their dispersion give the necessary parameters
and the roughness of the interpretation structure for a given treatment
(Benzecri et al., 1973).

For pollution problems, a form of this correspondence analysis, called the
factor analysis of stabilities and evolutions, is generally used to include the
time variable (Monget et al., 1974). It describes the principal features of the
evolution of a pollution process without a priori assumptions as to the
space—time relationships; furthermore, it allows comparisons between the-
oretical and observed global evolutions of the process with accidental local
fluctuations.

The factor analysis of correspondence can be used in three ways.

(1) Descriptive analysis of causes and effects, by determining the principal
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inertia axes of the clouds and the minimal number of variables representing
the system with a sufficient variance; this is a filtering which erases the
noise. Individuals with similar profiles are grouped, which structures the set
of individuals and the set of characters.

(2) Structuring analysis by ellipses: a character being fixed for a set of
individuals, their clouds present inertia axes which are projected on the
factorial plane and are represented by ellipses. These ellipses can be classified
to refine the structuration of the data.

(3) Structuring analysis by a factor analysis of the correspondences of
variograms: when several variables are simultaneously measured, it may be
interesting to determine comparable zones and to observe which measured
factor yields possible differences. In each zone a local variogram is computed.
The local variograms are then classified by correspondence analysis which
yields the zones with similar structures. Of course, such a process must be
used very carefully, although it is now automatic.

Deconvolution

The measurement of some quantity is done by experimental devices. If
such a device does not measure point values, but detects and integrates all
values around the investigated point, it is necessary to treat the results to
obtain the real value at that point. For instance (Fried et al., 1972), during
the investigation of radioactivity in an aquifer, the probe does not give point
values but integrates the radioactivity in the ground around it. Usually it can
be assumed that the operation is linear and is a convolution; the space proper-
ties of the measurement device being described by some functions f(x), the
real values being the function E(x) and the observed values, through the
probe, being s(x), f, £ and s satisfy the relationship:

s(x) = L flx — t)e(t)dt

S being the space where the measurements are performed.

The problem is then: knowing f and s, to determine e, the space distri-
bution of real values; of course, the first problem will be to determine f, the
function of the measurement device, also called the impulse response of the
system (s is equal to f if e is a Dirac § function). The problem is solved by
the deconvolution method, briefly described in § 7.2.1.

7.2.3. Structuration of non-numerical information

Most of the time the information is both numerical and non-numerical: for
instance, during a pollution experiment we need the hydraulic parameters of
the aquifer, but because their measurements are expensive, we have to use
the geological and lithological descriptions of the ground obtained from
direct field investigation.
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A quantification of these data is not possible, but these non-numerical data
do give upper and lower limits to the model parameters. For instance, it is
possible to establish classes of soils defined by the ranges of the various
hydraulic and pollution parameters and even, with good experience, to local-
ize a given soil within its class and reduce the estimation range of its pa-
rameters. Such an analysis has been introduced in Chapter 3 to extend the
results obtained in a given area to other areas by geological analogies.

7.2.4. Optimization of the investigation and control nets

Optimization of the investigation

Field data are used to derive simulation and forecasting models, and at
each stage of the investigation, the problem is to determine whether the
acquired information is accurate and dense enough, i.e. whether there are
enough accurate measurements to derive a significant model.

For instance, consider piezometric measurements in an aquifer; the opti-
mization of the investigation of the characteristics of an aquifer (piezometric
levels) consists in estimating the minimal number of measurement points
(boreholes) to obtain a given knowledge of the characteristics.

Optimization is first obtained by kriging, basically as follows: the initial
grid of measurement points is kriged and the map of the estimation variances
is drawn; in the areas where the estimation variance is larger than the expected
experimental errors, the grid will be completed by new measurement points
and the kriging process is iterated. Thus kriging automatically localizes the
points which improve the overall knowledge the best, which of course reduces
the number of measurement points.

If the state of knowledge is already rather good, inverse methods and krig-
ing can be used together: for instance, piezometric levels are used to identify
the transmissivities of the aquifer by solving an inverse problem with the
increasing-covering method (§7.2.1); during identification, interpretation-
error residues appear in the subdomains and these residues may decrease or
stabilize during the iteration process; if they stabilize, it means that the
available information cannot tell more and that:

— the data are erroneous
— the data are not in sufficient quantity
— the structure of interpretation is not correct.

The superposition of the maps of identification residues and of estimation
variances shows, in the areas with high residue values, that: (1) the density
of piezometric measurements is not sufficient and indicates whether it has to
be increased by new drillings (high variance); (2) the piezometric measure-
ments are erroneous (high variance and high density); or (3) that the hydro-
geologic knowledge of the structure is not correct (low variance).

If both the residue and the variance are low, then optimal conditions are
reached and the work is finished.
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Optimization of the control

Forecasting models should be controlled while working: some parameters
must be constantly measured to make sure that forecasts are good; but
measurements are costly and it is desirable to reduce their number without
loosing too much information, whilst keeping an optimal set of measure-
ments in order to be able to determine the information that is not measured.

Factor analysis provides an automatic classification of comparable measure-
ment groups and in each group, only one measurement has to be chosen to
determine the others. The reduction of the number of measurement points
depends on the required accuracy for the missing data.

7.3. THE MODELS

All through this book, we have seen that the handling of pollution models
(or quality models as they are often called) requires knowledge of the me-
chanics of the groundwater flow;and especially the velocities. Sometimes the
velocities are measured directly (in the case of local pollution studies), but
most of the time and especially for the management of pollution in large
areas, they will be computed by models. This is the reason why we briefly
present here the various possible hydraulic models; further, as they can be
“solved” without any quality consideration, we present them separately from
the pollution models.

7.3.1. The hydraulic models

The hydraulic models are divided up into three categories: groundwater
flow, surface flow and non-saturated flow. For groundwater pollution hy-
draulic models of groundwater flow are the most important; we have detailed
their use in Chapter 9 and given their basic physical characteristics in
Appendix II. But surface and non-saturated flows determine the boundary
conditions of the groundwater hydraulic and pollution models and deserve
to be mentioned in this paragraph.

Groundwater models

Consider a cube of aquifer. A horizontal flux of water travels through its
vertical faces from or to the neighbouring cubes, these fluxes are positive or
negative, according to the flow direction. Also a vertical flux of water travels
through its horizontal faces from upper and lower cubes and this is called
drainage flow.

The algebraic sum of these fluxes is called the transport flux. In addition,
feeding from independent sources, such as rainwater, rivers or pumping wells,
yields a flux of water called transit flux and this is taken as positive if water
is brought to the block and as negative if water is taken out from the block.
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During some time period, the block either gains or looses some water: this
algebraic quantity is called stocked-water flux. The basic relationship of
groundwater modelling is then:

stocked flux = fransit flux + transport flux [7.3.1]

The transport flux is expressed by means of the transmissivities and piezom-
etries of the block and its neighbours, the transit flux is expressed by
means of pumpings or injections, evaporation and infiltration; the stocked-
water variations are related to the pressure variations of the reservoir through
the storage coefficient and the stocked flux is characterized by the vari-
ations of the piezometric levels with time. For an infinitesimal block,
[7.8.1] yields the classical hydrologic equation:

oh
div(T grad h) = S P +Q 17.3.2]

where h is the head (piezometry), S the storage coefficient, T the trans-
missivity and @ the transfer water (see §9.5.1).

The domain of application of the model is taken as large as possible in
order to minimize the influence of boundary-condition errors on the in-
vestigated areas.

Of course, [7.3.2] is a model of quantity, as shown by the use of the
transmissivity concept. It is a regional model and the velocities which can be
derived are mean regional velocities. To model local flow conditions it has
to be refined and permeability concepts have to be directly introduced, by
Darcy’s law and the continuity equation; anyway, locally, it is always better,
if possible, to measure the velocities experimentally.

Surface-water models

For water-resources management, two types of problem have to be mod-
elled.

(1) The forecasting of floods, which is a problem of safety; there are
several well-known techniques, which are usually based on impulse-response
methods and convolutions: the pluviometry is convoluted with some water-
shed transfer function to yield the amount of water reaching the rivers.

(2) The relationships between groundwaters and surface waters. Ground-
water pollution widely depends on these relationships: for instance,pol-
lution from a sanitary landfill will depend on the pluviometry, the infiltration
rate and also the surface run-off which may dilute the poliutants but also
extend the superficial polluted zone, thus changing the boundary conditions
for groundwater pollution flow. Hydraulic models integrating groundwater
and surface-water flows have been introduced: the classical hydrologic model
(defined for instance by [7.3.2]) is used and the superficial-water system is
a boundary condition of the groundwater model.
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The inputs of the superficial system are the meteorological phenomena,
which are convoluted with the transfer functions of the superficial system to
yield the input of the groundwater model, transferred to the underground
blocks by classical connections between the various blocks of the model.

Non-saturated flow

With regards to pollution, the non-saturated zone is very important,
because most of the chemical reactions, such as biodegradation and self-
purification, occur while surface water is moving through it. But the move-
ment of pollution and especially its dispersion are not yet known; laboratory
studies have started on the subject, based on physical models, but no sat-
isfactory mathematical model exists. What is usually done, is to make a very
conservative assumption, saying that the non-saturated zone does not influence
pollution concentrations and only delays pollution flow, the delay being
computed by Darcy’s law and gravity flow with vertical-permeability coef-
ficients and without dispersion.

With regards to water resources, Emsellem (1971), has noticed two
phenomena linked to the behaviour of the non-saturated zone: deep-pumped
aquifers drain shallow aquifers and the non-saturated zone; the water content
of this zone decreases because of the decrease of the superficial aquifer
levels, which means that the permeability decreases; infiltration is then much
more difficult and feeding also decreases, which accelerates the decrease of
the superficial levels. Deep pumping may then erase marshes or streams, and,
for instance, the feeding of a river from the aquifer to prevent too much
lowering of the river, may dry the upstream part of this river. Another
phenomenon is that agriculture becomes more and more difficult, as plant
roots do not reach the water, and the paradox is that part of this pumped
groundwater has to be reinjected by irrigation.

7.3.2. The pollution models

Two types of pollution models are used in water-resources management:
groundwater-pollution models and surface-water pollution models. The
groundwater-pollution models are the object of this book and are detailed in
the other chapters; within the context of management, let us emphasize one
result: these models are derived from laboratory studies on the dispersion
mechanisms but they have determined the field investigational procedures.

Due to the interconnections between streams and aquifers, stream pollution
may influence aquifer pollution and conversely.

A stream is a boundary condition in piezometric head for the hydraulic
model and in pollution concentration and flux for the groundwater-pollution
model. These concentration conditions are the outputs of stream-pollution
models which can be dispersion, self-purification and impulse-response
models.
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(1) Dispersion models have the same characteristics as their groundwater
counterparts; dispersion coefficients result from turbulence considerations.
They are valid for conservative pollution only; but oxydoreduction, bio-
logical and physico-chemical phenomena reduce pollution in streams, which
leads to self-purification models.

(2) A classical self-purification model, used in many studies, is based on
Streeter-Phelps equations. Set b the biologic oxygen demand (in mg/l) and
d the dissolved oxygen deficit (in mg/l), assume:

£i“b“—Kb ddd*Kb K,d 7.3.3
dt 1 an dt— 1 2 [7.8.3]

where K, is the rate of desoxygenation per day and K, the rate of oxygen-
ation per day and t is time in days. The integration of [7.3.3] yields the
following expression of d and b as functions of time:

b = b,C, and d = Kby(C,— C,) +dyC, [7.3.4]

where b, and d, are respectively the values of b and d for ¢t =0,
Ci=exp(—K;t),C, =exp (— K;t),and K = K, /(K, — K,).

Equation [7.3.4] describes self-purification in a stream. If the water ve-
locity is constant, time t is proportional to a travelled distance and [7.3.4]
can be written with a new variable, the curvilinear abscissa of a point in the
stream. Water velocity depends on the flow rate, such as K,; moreover K, and
K, are functions of the temperature of the stream, which leads various
authors to divide the streams into sections where flow rate and temperature
are constant and with a length of the order of a few kilometers.

(3) As dispersion models loose their meaning over rather long distances, an
impulse-response technique has been introduced (Guizerix et al., 1970): a
pollution wave is observed by a control station; the origin of the pollution
can be localized if there exists a map of the amounts of pollution emitted
by the known sources along the stream. The preliminary experimental deter-
mination of the transfer function of the river allows a deconvolution of the
recorded pollution wave and a comparison to the map of possible amounts
of pollution, localizes the pollution sources.

7.4. MANAGEMENT CONCEPTS

Extensive work on these problems has been performed by Emsellem
(1972a, b; 1974a, b) who has given new orientations around simple concepts.
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7.4.1. Place of groundwater-pollution management

At the beginning, pollution was treated separately from other economic
aspects of water and the basic idea was: the polluter will pay for pollution
and the user of water will pay for the water he uses. The amount of the
taxes, defined according to these aims, will be devoted to developing resources
and to fight pollution. These taxes are voted, thus negotiated and established
at some market level.

Million of tonsfyr

[} 16

Residual potiution in 2000: 2.6

Critical situation
residual pollution
in187G: 1.5

e
o

. X |, Years
1970 1980 1990 2000

Fig. 7.4.1. Comparison between created pollution and erased pollution, according to
present planning.

Since 1964 France has been divided up into six financial watershed agencies
which provide water to their areas and fight against pollution. An agency
council gathers together people from the state, from urban communities
and from economic sectors. Fig. 7.4.1 shows that in 1970 the amount of
taxes in a French watershed agency represents a quarter of the amount
needed to erase the existing poliution. If the rate of increase of the finances
available does not change, this difference will greatly increase in absolute
value. Thus, the agency had to modify its initial tax policy to progressively
reduce the difference (Fig. 7.4.2.).

The underlying problem of Figs. 7.4.1 and 7.4.2 is that within the political
and financial context of the time, in both the agency and in the country as a



192 POLLUTION AND MANAGEMENT OF WATER RESOURCES

Million of tons/yr

« ~
>~ ~
—_
Residual
pollution

Years
"

.

1970 1980 1990 2000

Fig. 7.4.2. Proposal to erase 80% of the pollution created in the watershed in 2000.

whole, the fight against pollution was not a top-priority objective: when the
pollution taxes were set, the financial availabilities of groups and activities
using or polluting water were at such levels that the first financial income
from the taxes was not sufficient to seriously reduce pollution levels; other
economic sectors had already used some of the financial availabilities of the
groups and activities. This means that political realities have defined pollution
as being one problem among others, and not as a single problem, that could
be treated separately. Of course at the beginning, the various implications of
a pollution project and its relationships with other objectives, were not
known. Actually, many effects in the economics of water are not always
very obviously interrelated. To illustrate this fact, consider a dam which
provides electricity: as all electric distribution networks are interconnected,
obviously this dam has a national interest, at the scale of the country; now
consider a dam which prevents flooding or which irrigates an agricultural
area: its effects are local, but it would be wrong to invest in its building by
taking into account the local effects only. In the economy of the country,
an increase of public safety or an increase of agricultural production may
have long range, although not obvious, financial implications.

Thus, groundwater-pollution management should be considered within the
wider scope of water-resources management, which itself cannot be separated
from other political development objectives. Results and methodology of
water-resources management should contain all possible information on pol-
Iution management.
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7.4.2. Elements of water-resources management

Outline of the methodology

The management of water resources is first a problem of choices.

(1) Choice of priorities. There is not enough water and a classification of
priorities has to be made between groups and activities. It should be stressed
that the occurrence of water by itself does not develop an activity: water is
a limiting factor in development but not a structuring factor, at least not in
industrialized countries.

(2) Choice of payers. It has been said at the beginning of this chapter that
the cost of erasing pollution was well within the financial possibilities of a
country. But the problem is to decide who is going to pay.

The problem can be schematized by considering the country as a black
box containing activities and groups, and submitted to a political program
of development with a classification of objectives.

For example group A gives 5, group B gives 9, group C gives 2 and group D
gives 13; after some time by the natural mechanism of economics A, B, C
and D respectively receive 6, 11, 4, 10. C has been favoured, A and B are at
the same level and D has been wronged. This means that the country by its
general management, has emphasized the development of C, probably because
this development corresponds to the general aims of the country. It is a
problem of transfers which represent a political trend implying a develop-
ment of C and a recession of D, and which leads to asking whether the
transfer system and the increased rate of activities and groups is compatible
with such a policy. If the answer is no, it will be necessary to choose which
economical, legal and financial tools have to be modified. If the answer is
yes, it will be necessary to forecast the coming difficulties, as for instance,
the handling of D.

Thus, the outlines of a methodology of water management appear: several
political programs exist, based upon the fulfillment of objectives by consistent
options depending on various possible investments. It should be investigated
whether these options can be realized, whether the available tools allow of
realizing these options within the financial, sociological, technical and legal
context, and whether these options have to be corrected. Then the analysis
of consequences and means characterizing each set of options yields a set of
synthetic files which, compared to each other, will help the men who decide,
the men who develop and the men who bear responsibilities to make a clear
choice.

At this stage, it should be stressed, that the first question never is: an
investment in a hydraulic development project has been decided, how can it
be optimized? A well-posed problem always implies a choice between re-
alizations: a watershed is not developed for the sake of best using its water
but, for a given development assumption, water has to be used the best.
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Elements of planning analysis

The country should be divided up into hydraulically homogeneous sets
(watersheds for instance). Of course, these sets should not be too small.
One set will be modelled at the regional scale, thus first divided up into
blocks, hydraulically, economically and administratively homogeneous. Hy-
draulic and pollution models will connect these blocks, for a given develop-
ment option. These models propagate quality and quantity fluxes and estab-
lish relationships between upstream and downstream consumers. On this
oriented grid, the economic activity will be projected at various times (1980,
2000, for example).

Then needs in water will be estimated. They result from the economical
activity at the chosen times and depend on the consumer. Thus, a typology
of consumers expressed in quality and quantity needs, will be derived from
the real data collected in the chosen geographical set. This description of the
consumers, linked to forecasts of activity levels per group, yields an estimate
of the needs in water for a group and for a block of the grid. A circulation
model of quality and quantity fluxes is derived, as a forecasting model.

Then needs and resources should be compared. Thus, the typology of the
existing, planned or possible hydraulic works will be derived to determine
their influence on the hydraulic functions of the forecasting model. They
will be included in a simulation model of the hydraulic system.

At last the project must be financed. First, of course, one must make sure
that it can be realized globally. Then existing legal procedures should be
investigated, which distribute the costs between those who pay. By comparing
transfers and objectives of the option, it is possible to determine whether
changes should take place. This procedure is summarized in Emsellem’s flow
chart (Fig. 7.4.3).

Three types of blocks appear:

(1) Alternate political parameters. These depend on the politician whose
function it is to have a global view of the area and its future, with objectives
and means. These parameters consist of socio-economical development as-
sumptions, a development policy and financial possibilities. The politician
must assume the consistency between these parameters and a given set of
these three political parameters determines a solution. Of course, there are
many possible solutions.

(2) Treatment tools. These are models or typologies. For instance, a model
of employment (the development assumption is expressed in terms of em-
ployment per group), a forecasting model (the development assumption is
expressed in terms of hydraulic functions, based upon the needs in water), a
simulation model (the development assumption is verified in terms of hy-
draulic works satisfying the known needs) and a cost-distribution model
(development costs are distributed among the consumers). Also two ty-
pologies have been defined, a typology of consumers and a typology of
hydraulic works.
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Fig. 7.4.3. Logical sequence of operation blocks for water management.

(8) Technical data and results. These are the hydraulic solution of the set
of political parameters.

Of course, this approach may yield an infinity of possible solutions by
varying the size of the hydraulic works for instance. Then a series of tech-
nical criteria should be used to optimize the hydraulic development project,
within a given political option, which clarifies the choice between options.

7.4.3. Basic principles of an approach to water-resources management

As a conclusion to this chapter, we propose the basic principles of
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Emsellem’s alternative-options approach to the management of water re-
sources as a base of thought for the water economist, the engineer and the
student. Of course, this is not the only possible approach, but it has yielded
results that can be applied directly as such to groundwater-pollution man-
agement and represents a very good working tool.

Refusal of the cost—benefit analysis (C.B.A.)

The C.B.A. is interesting as it introduces a global objective function that
can be analyzed by computers, but the C.B.A. has the following weaknesses:

(1) It is difficult to define and model some results which are then ne-
glected: for example a tax on industry will raise its prices, influence its
exports and the level of its activities.

(2) Some aspects of a problem may be neglected to reduce its complexity:
for instance, pollution alone will be studied and we have seen that this is a
mistake.

(8) Time is a very important factor, as it greatly influences the price of
money, hence the advantages of the investment loans.

(4) A stress and a variable are not considered equally in the objective
function: a stress may be satisfied when a production variable is not maxi-
mum.

It is possible to overcome these difficulties, but, fundamentally, the
C.B.A. introduces a unit which is the monetary value of various elements and
takes into account market parameters only. Of course, it could be possible to
give a value to ideas or to non-numerical parameters such as politics, en-
vironment or life, but it is not an easy task.

Furthermore, the aim will be the optimal use of water and water will be
considered as the only structuring factor of growth. This is fine for arid
zones, but often wrong for industrialized nations, because in most cases, for
an individual consumer water is only a marginal factor of production and for
a group of consumers water can be reused or replaced. Finally, an objective
function should represent the preference of collectivities which is valid for
well-identified collectivities with one decision factor. When, however, the
number of decision-takers increases and when individual interests diverge,
then the derivation of only one optimal objective function is very hard and
does not represent reality. There exist many optimal, but quite unfeasible,
solutions.

The principles

There is not one objective and one decision-maker and the method will
not try to optimize well-being, profit or any other criterion of only one
group or one activity. What should be attempted, is to reach a balanced
development of groups and activities with decision centers determined by
institutions, economic mechanisms and traditions.

Although the water is divided between consumers, it should be considered
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as indivisible collective goods: the consumers are interdependent and model-
ling should take place in a geographical unit taking into account this inter-
dependence. For instance, a watershed can be considered as a good geo-
graphical unit for large-scale studies.

Water is characterized by a set of non-ordered data such as geographical,
mechanical or physico-chemical variables. A model must take into account
the various laws that govern these variables, which are quality as well as
quantity variables. Actually no distinction between quality and quantity
should be made, as most of the needs depend on both these factors together.

The economical role of water depends on the climate: in arid zones, for
instance a development program can be based on the optimal valorization of
water resources, at the national level; in temperate countries, future needs of
water depend on regional development programs.

But industrialized countries have become aware of ecological problems and
water can become a limiting factor of development: the fight against pol-
lution usually replaces one pollution problem by another, but the economical
growth is responsible for this pollution and growth criteria should be com-
pleted by ecological criteria.

As a consequence of pollution, many industrialized nations have declared
that water is scarce, even if they have huge amounts of it, of course polluted.
This particular type of scarcity must be especially accounted for, to prevent
great mistakes being committed.

An objective of development could well be the optimization of natural
resource and not only the optimization of economic growth.

Numerous hydraulic planning solutions correspond to a given socio-eco-
nomical development theory of watersheds. The method consists in helping
the political choice of solutions by comparing synthetic files: each file is
built upon only one political option of development of the set of activities
and groups of the geographical units. This defines the needs in water; these
needs are satisfied by a set of hydraulic works which put the development
objectives in hydraulic terms. These hydraulic works are then financed and
their costs distributed among the payers according to transfer laws.

Then the file is complete. It consists of a comparison between needs and
resources, including pollution stresses, a distribution of cost charges and the
global costs; it defines the expected non-numerical advantages such as the
socio-economical development, the environmental priorities, and the general
safety. It can be compared to the other files on the basis of objectives,
necessary means and consequences. Nothing is optimized as a unique
decision factor. The economists and the engineers do not replace the pol-
itician, who has the final choice with the help of alternative option files
which he can compare.
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CHAPTER 8

AN INVERSE DISPERSION PROBLEM: THE POINT-DILUTION THEORY

The present theory is part of the attempted solutions to the basic problem
of groundwater-pollution studies and modelling, the determination of the
dispersion coefficients. It stems from considerations of single-well techniques
and the quest for local coefficients, when reduction is sought of the number
of measurement points. It shows that it is quite possible to compute the
diffusion-operator coefficients from a series of experiments performed at
only one point in the medium and provides explicit formulas for these
coefficients.

It is based upon the following principles: we impose an initial condition in
concentration localized in the neighbourhood of the measurement point
and we observe the evolution of concentration with time at that point. On
this concentration, we perform some weighted averaging (at some sense, given
in the chapter) and start the experiment again with an initial condition even
more localized in the neighbourhood of the measurement point. The limit
of the weighted averages for increasingly localized initial conditions, yields
the dispersion coefficients.

Three cases are successively studied: the isotropic dispersion operator,
with constant coefficients; the isotropic dispersion operator with varying
coefficients; and eventually the anisotropic dispersion operator with varying
coefficients.

Of course, we mean varying coefficients in space but not with time. This
chapter is completed by a study of the stability of the solutions of a dis-
persion problem with respect to the dispersion coefficients, i.e. the behaviour
of the difference of the real solution and the theoretical solution computed
with the dispersion coefficient obtained by point-dilution.

8.1. PRELIMINARY DEFINITIONS

These definitions are taken from Unterberger and Unterberger (1970,
1971). Consider a vector space X on R of dimension n and E its dual, |x |2
and dx are a quadratic form and a Lebesgue measure on x, | £ [ and d§ the
corresponding form and measure on E. In this chapter, we only consider
X = R" and E = R". R" has its canonical structure of Hilbert space.

Definition 1. Let s be a real number; H°(X) is the space of distributions
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Te §'(X) whose Fourier transform T is a function satisfying:
[ @+ 1Py iTE) s <+ o

This space is given the topology defined by the norm:
ITl, = I+ 1EP2TE) e,
and is called Sobolev space of order s.

Definition 2. Let m be a real number; (Xx=, m) is the space of functions a
on Xx= with complex values and Coo such that:

vp, qgeN*,  ¥YMeN, 3C>0:

(1 + |x[»H™ |D fa(x, fi<ec@a + |E|2)(m— lal)/2
2im 9x, 2im 3x,

A U I
and: 0; = oy E)_g_" , lgl = g1+ ... +q,

. 1 9\ 1 3\
Wlthp = (pl’ "'9pn), q = (qu"" qn)a Dg = (_——\) (_'_‘”_)

Definition 3. If ae(XxE, m), Op(a) is the operator defined on 8 (X) by
formula:

[Op(a)(u)] (x) = J;' a(x, ?g‘)a(z)eZiTrxng

Definition 4. (1) e(Z, m) is the space of functions b, Co on = with complex
values such that:

VqeN" 3AC > 0:1agb(g)| <c@+ IEIZ)(m -lah)/2

(2) 8™ is the direct sum of & (XxZ, m) and e(=, m) identified to a functional
space on Xx=,

Definition 5. We call operator of order <<m any linear operator
A: §(X)—> §'(X) that can be extended for all s as a continuous operator of
H?(x) into H*™™(x); an operator of order <<m for all real m is called an
operator of order —oo,
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8.2. THE DETERMINATION OF THE DIFFUSION COEFFICIENT OF AN
ISOTROPIC DIFFUSION OPERATOR WITH CONSTANT COEFFICIENTS

The general theory, presented later, of course applies to an operator with
constant coefficients. But the results of the general theory are obtained here
in the case of the operator with constant coefficients by a direct method
only using the classical tools of physical mathematics, as they are taught in
most graduate courses for physicists.

The isotropic dispersion equation with constant coefficient is:

KAC — c = —
ZB +y 50

i _ag oC
ox*

where n is the space dimension, and {§; the components of the mean flow

velocity. Coefficient vy has various physical interpretations, for instance —v is

the reciprocal of a radioactive tracer mean life time.

Lemma. Let ¢, be the x-tempered solution of Cauchy’s problem:

oC
KAC = 25 ¢(x,0) = exp[—mr(x —x0)?] [8.2.1]
where t and K are real and strictly positive, where x, belong to R". Let s
be a real number, strictly comprised between —n/2 and 0. The following
relationship is verified for all 7:

e ['(—s) (s + n/2)
S s=1 = ot
; '[) 7Gx, )dt = 2%t o

[8.2.2]

Proof. To simplify the notations, take x, = 0, the general case is immedi-
ately given by the translation x,.

n
2 2
Set a* = _21 a;
i=

Apply Fourier transform in x to the system {8.2.1]:

deé ~
—4TPKe= . G(50) = 7 exp(— ngn)

which yields:

¢ (5, t) = 7" exp [—n’ (47(Kt + %) 52]
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and by inverse Fourier transform:
¢, (0,¢t) = (4nKtr + 1)™/2

Taking the value back into the integral [8.2.2] and doing the successive
changes of variables ¢ = 47Ktr and v = 1/(0 + 1), we obtain:

7 [ e 0, 0de = 70 [ e (dnKer + 1) 2at
0 0
= [ 2#mKio 10+ 1) do

1
— 22s,n_sKs f (1 __U)—s-lvs+n/2—ldv
0

= 2%7°K*B(—s,s +n/2)
- +
_ g P(s)T'(s + n/2)

= .ed
I'(n/2) d
Theorem. Let c, be the x-tempered solution to Cauchy’s problem:
oc )
KAC —) B;3,C +~C = Py ¢, (x,0) = exp[—nT(x —x0)%] [8.2.3]

where 7, K, 3, ¥ are real, 7 and K strictly positive, x, belongs to R”. Let s be
real, strictly comprised between —n/2 and 0. For all A < —~, the following
relationship is verified:

% D(—s)I(s + n/2
lim 77° ( t—s_le“CT(xo,t)dt = 92548 M s

8.2.4
Toe Y I'(n/2) (8241

Proof. (Fried, 1971c, p. 47). Take xq = 0.

[#p]
@
&
QN
Il
M=
NQN
=2
o
Il

n
Y ab;, dx = dx'dx?..dx"

i=1 i=1

Apply the Fourier transform in x to the system [8.2.3]:

iy
~4m K — 2B + 96 = T, &,(£,0) = 17 exp(~mE7)
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which yields:
2

é (5 t) = 77" 2exp (—-w Ejr*) exp[(—47?E2K — 2inBE)t] eVt

Apply the inverse Fourier transform:

¢, (x,t) = (4nKt) "2 VfRnexp[—M(x—n)zl exp ["é}(ﬂ*ﬁt)z} dn

1
e (0,t) = (4nKt)™"2e"t jkgxp(—ﬂmz)exp [“ e (n*BtV] dn

and set:

0 B
4K (m’ +——1——)
4Kt
gt

¢ (0,8) = (47Ki) “n/2gvt exp (—— —~~—) exp

§:

X j exp [(—m +£&) §2] d¢

or:

¢, (0, 1) = (47Kt, +1)""2e" ex (—B—Z—t— exp |[——Pt
e i P\7 4k )P (16K 7t + 4K

Replacing ¢, (0, t) by its value in the integral [8.2.4] and setting § = t7, we
obtain:

* _ 9 g%
j@ s~1(47KQ + 1) "'2exp ()\+7): exp |-~
0

4KT
ex 6% de
P laek?n0 + 4K)

Set (0, 7) as the function in the integral and take 7 greater than 1. f(6, 7) is
bounded independently of 7, by the integrable function 6 ~*"}(47K¢ + 1)™"/ 2
exp(f*/16K?%); also, when 7 tends to infinity, f(6,7) tends to
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07° Y (4nK0 + 1)™’2  According to Lebesgue’s dominated-convergence
theorem and the preceding lemma:

f:f(o, 7)d0 > 221 T (—8)T'(s + n/2)KYT(n/2) qed.

The initial condition ¢,(x, 0) = exp{—n7(x — x,)?] has been used to
express the integral [8.2.4] simply. The results can be generalized to functions
of R" into R, indefinitely continuously differentiable and rapidly decreasing,
by the following calculations:

cr(x> O) = C](X\/F), ér(éa 0) = T—n/2él (\-57') [825]

The solution of the system [8.2.3] with the conditions [8.2.5] is:

e, 0) = (4nKD) 267t [ e na/7) exp [_ i w] an

— 1
c(0,1) = (47Kt) _"/2‘3”&" ci(m/7) exp [—:Lfi_t (—n “51‘)1 dn

which yields, by carrying c, (0, t) in the integral [8.2.4]:
I=77| 57 (dnKy) et M
0

- 1
[}Rncl(n\/?) exp {*Zk—t

and setting t7 = 0 and n4/7 = z:

(n+ Bt)z} dnJ dt

R _ o
1= o< anko)y™" exp{(7+7\)—}
0 T

0 )
o
“"“—'\LLdz de

jRn c(z) exp l‘ 1K0

7 tends to infinity, by applying the Lebesgue dominated-convergence theorem
twice, we obtain (with 6 + X << 0):

%5} 22
lim T = fo 6" Y(4nKpH)y™/? fRn c,(2) exp (—Eé)dz] do
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and setting 0 = 47K8 and z = y/¢:

lm 1 = 2237rsKsj o~s1 “Rncl(y\/g) exp(—vryz)dy} do
0

lim 70 [ 0 M, (xg, H)dE = 22WKT | oo

T i 0

“Rncl(yx/a) exp(—vry2)dy] do

Links with the physical experience

The existence of the coefficient exp (Af) which assures the convergence of
the integral does not modify the limit [8.2.4]. This means that this integral
is very concentrated at the origin of times: it will not be necessary to perform
long experiments and a good precision will be reached by computing this
integral on a rather short time interval.

The type of initial condition introduced here is what can usually be
realized experimentally: an experimental step-input function looks like some
exp (—nw7x?) near the origin.

8.3. THE DETERMINATION OF THE COEFFICIENTS OF THE
DIFFUSION OPERATOR WITH VARYING COEFFICIENTS

8.3.1. The isotropic diffusion operator

Consider the diffusion operator:
- 0
A = KA+ Y Bilx) — + v(x)
i=1 ox

Assume that the coefficients K, §;, v are C, that K is bounded as all its
derivatives to the second order, that §; are bounded as all their derivatives to
the first order, that - is bounded. Also assume that K has a strictly positive
lower bound. The operator A is then said to be strictly elliptic.

According to Yosida (1968), there are two real numbers A and u satisfying
@ > A, such that for all o> u the operator A — Al is inversible and the
following inequality holds:

1
_ -1 R
4 —an < ——

where || || is the canonical norm in L2
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Choose v>u and set c=—A + vl and ¢’ = —A + ul; (¢’ — od)™" exists for
o <0 and:

1 1
e =o' = A~ —o [ < ———— <—
L—oa— A —a

According to the Hille—Yosida theorem, —c¢' is the infinitesimal generator
of a contractive semi-group, i.e.:

el <1
hence the inequality:
efd L eH

Lemma 1. The integral f(s,c)= (f;7t*'e *dt)/T(—s) converges for
Re s <0.

The condition Re s < 0 assures the integrability at the origin. Noticing that
e te|| = et~ et < e~V with u — v < 0 we see that f(s, ¢) is integrable
at infinity.

According to Seeley (1967), for Re s < 0 and with the previous conditions
on A, the operator ¢® can be defined as:

i
¢ = (A +vlp = — J Z2{—A+ w—2)I1"'dz
2ir r

where I' is the contour coming from —o° on the real axis, around the origin
as a circle of radius e and returning to —oo above the real axis (Fig. 8.3.1).

e
.

)
/

Fig. 8.3.1.

According to the previous assumptions, the origin belongs to the regularity
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set of ¢ (c is inversible). Thus, there exists €' > 0 such that (¢ — eI)™! exists
for 0 <e <¢'. The usual determination of Inz in the plane without the
negative half axis is chosen. The comparison between the complex power of
the operator c, as defined by Seeley, and the operator f(s, ¢) yields the proof
of the following proposition.

Proposition: The operator f(s, C) coincides with the operator C*

With the given conditions, f(s, C) and C® are holomorphic functions of s
for Re s < 0; thus it is enough to prove the equality for Re s < —1.
The resolvent of the semi-group e ¢ is:

(C—zI)! = .[o e tCeftdt

1 o0
Hence: C* = — j 2 (f e"tce”dt) dz
2im ‘¢ Y

In order for these two integrals to commute, it is enough that the integral:
(7] 12 te ey e®eatdoe)
o ’r

converges. (do(z) is the element of curvilinear abscissa along I'). Arg z is
bounded, hence [2°| <b|z|®®* where b is a constant. As Res<—1,
[ lz|ReseRe2dqg(z) is bounded independently of t at infinity. Besides,
e || < e with A — v < 0.

Thus, f5° fpl2°| le" € ||eRe#dtda(z) converges. Fubini’s theorem holds and
the partial integrals may be commuted. Hence:

1 o0
c: = —“J e"tcdtf Ze’tdz
2im “o r

Hankel’s formula yields:

Hence the identity between C*® and f(s, C).
If peLA(R™) and 7> 0, ¢, is defined as ¢,(x) = 77 %¢(rx) such that:

-l = gl  and $,(§) = T'"”é(z)

T
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Lemma 2. If k is a real number and R an operator of § into S ', such that,

for every real M, R may be extended as a continuous operator from HY (R")

into HY . *(R™), then, if —n/2 <M < 0 and if ae D, there exists C, such that

Voes.

NeR¢,ly-r <Cr7™ (gl + lgllL2)

Moreover, if k <—n, for every compact K of R", there exists C, such that:

VeS, supk [R,(x) | < Cur™(llgllL + 1llr2)

Proof. For all ¢ed, for M < 0, we have:

2
dg =], 1+ 7Py g0 Pan

s (£
loely = 7 0 (L £ ‘qb (T)

<o [ o n160m) 2dn

<o

2M | A 2 2 2
ey 1nPgm) Pdn + | 16()] dn]
If M > —n/2, |n|* is integrable. Besides, we have:

“(}BT <<l

Hence the inequalities:

192113 <72 (n@nzm [ ImPYdn+ ||¢3n%2)
Inl <1

<L Cor™ (B llF + G172

with Cg = sup(1, [, <,In1*dn).
As R is a continuous operator from HY into H{ 6 aR is a continuous
operator from HY into HY~*, Hence:

laR, - <Cligrllr <Ci 7 (Il + 1@ 1I2)

Moreover, we assume k <<—n; then M — k > in. For s > in, H? is included
in the space of bounded continuous functions with continuous injection.
Hence:

loR e < C3m™ (Dl + 11112)
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and the second part of the lemma:

supg |Ro, (x) | < Com™(ligllLr + 110l

choosing o equal to 1 in a neighbourhood of the support K.

Remark. We have used a result, proved by Unterberger and Unterberger
(1970 and 1971): give ueH*®, with s > n/2; then (1 + {£/*)™/* and
(1 + [£%°/%0(%) belong to L*(R™). By Schwarz’s inequality, we have:

.(Rn la(§)|dé = f o O 1E2)7™2(L + [E11)2]a() 1dE
< ClIoll-gllulls
hence: ([t | <llills <C'Null

Lemma 3. If B is an operator of the form:

B =) Op@)+R
=0

j=

-

where, for every j, ;eS*™%, with 0 = qy<a;<...q,, where g (x, ) is
homogeneous of order 2s —; for [£/>1 and where R is an operator
(pseudo-differential or not) or order < —n*. Suppose —n/2 <s <0. Let &
be the largest integer <m such that 2s—o; >—n for j<k and B; the
operator defined by:

Bux) = | o, £)a(E)e¥™EdE, ue$

where g; coincides with @; for {§/>1 and is homogeneous of degree
2s — o; for |£| # 0. We use the functions ¢, (x) = 7"/2¢[7(x — x,)]. Then, for
every M > —n/2, for every x,eR", there exists a constant C > 0 such that,
for every distribution of H"(R™) N L! with r > 0 and r > n/2 + 2s and every
number 7 > 1, we have:

k
Bo,(xo) = Z Tn/2+2s—aij(¢)(xo) + R, (¢)(xo)
i=0

with: |R, () (xo) | < CT™(| o)l + ¢ ll12)

Proof. We give the proof at x,=0 and it is valid at any point x, by
translation of ¢. First, a few remarks:

* Le., acting from ‘Ht(R") into Hltgc"(R") for every real ¢.
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(1) If ¢ (thus ¢,)eH™ with r >n/2 + 2s, B¢.(0) is defined. B is an
operator of order 2s: for every aeP(R"), there exists C > 0 such that for
every ued(R"):

lfoBu ll,—2s < Cliu i,
Furthermore, as r — 2s > n/2:

loBu (e < ClloBully-2

and Bu is a continuous function.
B may be extended to a continuous operator from H" into the space of
continuous functions.

(2)If j <k, 25 — o; > —n and thus g;(x, 2) is integrable with respect to d§
in a neighbourhood’ of £ = 0; this allows to defme the operator B; though its
symbol has a singularity at the origin. Furthermore, B -B; acts from H™~
into C™ as its kernel.

K(x, y) =f la(x, £) — a(x, §) a(x, §) | e ™=t qk

is everywhere C™.

Remark (1) shows that B;¢,(0) is also well defined when ¢eH”™ with
r>nj2 + 2s.

(3) B;¢(0) is always given by formula:

B;9(0) =f a;(0, £)$(§)d

when ¢ is adistribution of H"(R") N L', with r > n/2 + 2s — ;. By definition
this formula holds when ¢ belongs to 8§ and both sides of this equality depend
continuously on ¢ for the norm of H" N L. For the left side, it results
from Remarks (1) and (2). For the right side, noticing that ¢;(0, £) is C™ for
|£] # 0 and that ¢ is measurable, we write:

Jaopsmas = | a0 o+ J , o0

| [ @O né®a| <ol | a0, pia

lgl<1 gl <1

and the integral f la; (0, £) |d¢ converges.
g1 <1

| [, soos0d]<c[arien s

<C @+ 1ERY 2@+ ERYVA+ 15V 1G5 g
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By Schwarz’s inequality, we obtain:

[ wo,né0at|<c|[a+ igmarra ”2’ [a+igry
13 >A1 a
B P <N+ 1ERT N gl
Choosing N such that n + 2s — o; <N <r so that:
(L+ £y N2l and (1glly <9l

Hence, the inequality:

| Ja0. Dé©A |<C|iol, + 191

Let us now prove Lemma 3.
B— _;kBj verifies the conditions of Lemma 1:
s

m
i<k i<k i=k+1 i<k
i<k i=k+1

According to Remark (2), § k(Bj — B;) operates from H™™ into C™%*,
i<

) ;§+ 1B,~ is an operator of order < -—n by definition of k, R is assumed to be

j=

an operator of order < —n.

Thus, according to Lemma 2, we have:

IB@(O)“ Z Bj¢7(0)‘ <C ™Il + 1ol
i<k

B;¢,(0) has to be computed:

[ a0, Hé )3t = | a0, z>r‘"’2é(§) dg

i

B;¢:(0) ;

il

772 [ @0, r)d(mydn = /2% [ 4,00, m)d(m)dn
= 7"/2*B7%B.4(0)

which ends the proof of Lemma 3.

m recall: Hyo = 0 Hipo = C7

(1) Hge € C”: fCHige, Vae 0, afeC™ = feC™  (take o = 1 locally)
{(2) C”C Hyge: take feC”, Ve 9, afe 9C § C H” = feHpo,
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At this stage, the following remark is very important as a link with
experimental dispersion: only local estimations are made on R¢, (and even
point estimations); thus it is always possible to replace R by aR with ce 9
and equal to 1 in a neighbourhood of x,. It is not necessary to assume any
decrease in x in the symbols. If only initial data ¢, with compact support
(for 7 > 1) are considered, the rest R¢, (x,) is majored by:

IR, (x0) < crM "(b nL2

as Heomp CL§Omp CLclomp: for any compact set K, there exists a constant C
such that for any function u of L? and with its support in K we have:

lullp < Cllull.

from Schwarz’s inequality:

| uax =] udx<(dex)”2(f

172
u2dx) < Cllulize
R K K

with this remark, it is possible to take into account initial step functions
having a physical meaning.

Now, we shall apply Lemma 3 to the operator B = (—A + vl)® with
—n/2 <s <0, using the following results due to Seeley (1967).

There exists a real sequence (¢;); > ¢ increasing to +o° such that V;, a;(x, &)
is a C” function of x and £, homogeneous of order 2s — ¢; for |£| > 1and
verifying the following properties: "

(1) For all N, there exists n such that the operator B —j_EO O, (a;) operates

for every real t from H*(R") into H{ N (R™).

(2) For [§12>1, aqx, §) = [K@x)]°(4n|£]%)".

The various preceding results yield the following theorem, which, for the
sake of simplicity, we give in the case of an isotropic operator, i.e. with
a’l(x) = k(x)8;;.

Theorem. Let the diffusion operator be given as:

" 0
A = Kx)A+Y Bi(x) 5 + y(x)

i=1

We assume that the coefficients K, §;, v are C”, that K and its derivatives of
order < 2 are bounded, that §; and its first derivative are bounded, that v is
bounded. We assume that K is bounded by a strictly positive number.

A is a real number such that, for every o> u, (A — of) is inversible and
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the inequality:
4 —a)y | <(a—2n)"!

holds, where || || is the canonical norm in L?. We choose v > u, and s real
such that —n/2 <s<0.
There exist an integer k = 0, an increasing sequence (o;); < j< » of positive
numbers and a sequence (B;); < j < » such that:
(1) for every r > n/2 + 2s, B; is a linear, continuous (pseudo-differential)
operator on H"(R") taking its values in the space of continuous functions;
(2) for every M such that —n/2 <M <0, for every x, € R" and for every
compact K there exists a constant C >0 such that for every distribution
¢ with its support contained in K, belonging to H" with r 2 0 and r > n/2 + 2s,
and for every real 7 > 1, we have (taking ¢, (x) = 7'2¢[7(x — x¢)]):

F(_s) fo t—s—le—lft(etA ¢7-)(x0)dt = Tn/2+2s JRH [K(xo)]s(4772|£|2)s

k
G(E)dE + 3 T 2ETUB(9)(xo) + R (9)(x0)
i=1

with [R,(¢)(xo) | < CT™ |9l
This result yields the formula:

. T—n/2—2s °°_s_ -
Th_l)nw*r(j;)— fo t e (e ¢, )(xo)dt
= [K@ol' [ (an*1EP)*d(5)dg

Rn

which is useful to determine the highest-order coefficient.

The conditions of Lemma 3, of course, can be applied to the equation with
constant coefficients. As an example, an explicit formuia of K at the origin
is derived from the initial condition ¢, (x, 0) = exp(—n7|x |?):

ler( 5. [ e etig 0y dt = (KO (4 1P exp(—nlE 1) de

= [K(O)]S(47T2)sfwwnexp(_ﬂrZ)r2s+n—1dr
0

where w, = 27"/2/I'(n/2) is the R" sphere surface

_S

I'(n/2)

= [K(0)]*(4m?)® U'(s +n/2)
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by successively setting r> = R and 7R = y. Hence the relationship:

I'(—$)T'(s + n/2)
'(n/2)

Tlgn 778 f t-s—le—vt (etA ¢T )(0) dt = [K(O)] szZsﬂ.s
0

which is the formula derived in § 8.2.

8.3.2. The anisotropic diffusion operator

Consider the operator:

aZ

ox?ox’

A=Y Ki)

i,J

0
x

3 ;Hx)

+ Z Bi(x)
i=1

The preceding results and theorems hold in this case for the following
assumptions:

We assume that the K (x) are real, C*, bounded and that their derivatives
to the second order are bounded, that the §;(x) are C* and bounded and
their derivatives to the first order are bounded, that y(x) is C* and bounded.

The assumption of strict ellipticity is verified by the a"(x), i.e., there exist
two positive constants A, and u, such that for all x €R™ and for all

E= (s 80)

Mo Y £ > a7 (x) &5 > N0 Y H

i=1 j=1

Furthermore, physical considerations like Onsager’s reciprocity relationships
tell that (K¥) is symmetrical, hence it can be diagonalized.

(1) Assume that the principal directions of the dispersion-diffusion tensor
are not known. Yosida and Seeley’s results can be directly applied with the
given assumptions and yield the same lemmas and theorems as in the isotropic
cases. Initial test function ¢, must be chosen to account for the anisotropy:

¢, (x) = (deta)?7"'2¢(rax)

where a is a regular matrix (a;) with fixed coefficients; here ¢, will be
concentrated at the origin.by modifying one parameter only, 7.

Preceding majoration lemmas are found by noticing that the Fourier trans-
form of ¢, (x) is:

T2 (a—lz)
(det a)'? ¢ T
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the symbol of the highest-degree term is:
ag(x, ) = (47°)° [K(x)E, £T°
with: [K(x)§,§]1 = ¥ K¥(x)&¢

i’j

and B¢, (0) can be computed as previously.

B f - 72 X (a—lg)
Bo¢:(0) = | (4m*)'[K(0)&, £] (deta)'1’2¢ . dg

I

(472)* (det )21 '2* [ [K(0)an, an]* §n)dn

with [K(0)an, an] = K(O)a, e aﬂn and Einstein’s summation convention.

To determine the n(n + 1)/2K” coefficients, the integral has to be com-
puted for n{(n + 1)/2 matrices a. There is no explicit formulation of the
coefficients. The method yields the values of the dispersion coefficients and
the principal directions of the dispersion tensor.

(2) The principal directions of the dispersion tensor are known (by physical
considerations for instance).

Preceding results can be applied for initial conditions:

n

¢ (x) = ( Il ai)l/zr”’zcb(mx)

where @ = (a;) is a regular matrix diagonalized in the eigensystem of the
dispersion tensor. Formulas are the same as in the general case, but the
computations are easier if ¢, is concentrated with 7 in the principal direction
corresponding to the computied coefficient: matrices a will have a dominant
component in that direction.

8.4. THE MATHEMATICAL MODEL AND THE EXPERIENCE
8.4.1. Consistency between the model and the experience

The dispersion coefficients are estimated from experiments with a mathe-
matical model, which represents the experiments, and a theory derived under
the modelling conditions. A basic assumption is made, that experimental
results are model results.

Assume that the initial condition ¢, is given experimentally with a com-
plete accuracy. It corresponds to an experimental concentration distribution
¢, (x,t) and usually ¢,(x,t) is not a solution of a diffusion equation,
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i.e., we do not have:

d, _ .

dt o

The problem is then how to estimate the dispersion coefficients K as a
function of the experimental concentrations ¢, which do not verify the
dispersion equation. This estimation is then partly arbitrary but as it is the
only way to reach K,, we must give some conditions to restrict the arbitrary
character of the estimation as much as possible. This estimation yields K
which is an approximate value of K if the following conditions hold:

(1) If functions ¢, (x, t) are exact solutions (i.e., if A¢, = d¢, /dt with:

2

dx'ox

A=) KU +3 B 5——+’y), then K% = K4,
i J

i

Remark. The estimation procedure necessarily comprises a truncation
and this equality holds but for a truncation error.

(2) K verifies a stability property. Take any initial function and set ¢ the
theoretical solution corresponding to K and c the true solution; if the mathe-
matical model is consistent, the difference between & and c¢ defined in an
appropriate norm, must be compatible with the experimental errors.

The estimation of K¥ by the point-dilution theory verifies condition (1)
Hereinafter, we analyse a computation of errors on the dispersion coefficient.
These elements are applied to the formulas derived by the point-dilution
theory but, of course, the analysis could be applied to any explicit formula-
tion of K by other theories; then condition (2) is studied.

8.4.2. Elements for an error calculus on the dispersion coefficients

The error on K is due to measurement errors, to truncation errors of the
time-integral and to truncation errors on 7 in the limit operations. Proofs are
given for the isotropic operator with constant coefficients, with the initial
condition ¢, = exp(—n7x?), but could be easily generalized to the other
operators. If we set:

T'(—s)I'(s + n/2)
I'(n/2)

1s) = 27

then K is given by the formula [8.2.4]:

K* = [y(s)[™" lim T‘Sf t="1c, (0, t)dt
T — Jo
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How does an experiment take place? A value of 7 is chosen, concentration
&(0, t) are recorded (by either continuous or discrete methods) during a time
period (0, t,) necessarily finite. A finite number of such experiments is
performed for increasing 7, necessarily bounded by some 7.

The effective dispersion coefficient K satisfies:

tl)
Ks = |7(s)|—lr;,sf t714(0, t)dt
¢

The error on K comes from:

(1) measurement errors on ¢(0, t) or §,;

(2) the approximation error on 7, i.e. the error made by replacing the
infinite ¢-limit by the value:

Y677 fo £5715(0, tydt

It is called the 7-error, 6, ;

(8) the truncation error on the finite bound ¢,. It is called the ¢-error;

(4) the numerical integration errors, which we do not consider here.

Notice that c(x, t) quickly decreases to O when t tends to infinity ; £, should
not be too large as, after a short time, ¢ is less than the measurement errors.
An optimal t, is computed here.

Measurement errors are independent of the model. The 7-errors and the
t-errors are estimated and minimized.

Set 6 the error on K*:

Y58 = 8, + 8, + 8,

8, and 8, are studied and &, is neglected, using the analytical solution:

rgsj £771¢(0, ¢) — lim T_sf £=1¢(0, £)dt
0 T 0

()b =

and setting 7t = 0 and 74t5 = 0¢:
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v(s) : J <><,0’3'1'(1 + 47rK9)""’2exp(— *6-29*) ex 50 do
0 aKr) 7P| 74K + 167K 20)
— f 6= 1(1 + 47rK6)‘”/2d8‘
0
» 04 29 2
=\ | o= + aakg) exp{— B9 P9 1~1 do
0 4K7o 7o(4K +16TK0)
oo 26 2
+J 071+ 47K0) ™ *exp | — B )exp[ i -1de
), 4K7, 7o(4K + 16 TK20)
-f 67-1(1 + 47rK6)‘"/2df)l
60
00
< j 67-1(1 + 47K0) ™
0

e R e LY
[exp( 4K70)eXp AK + 167K%0)) |2

N

+

671(1 + 47K0) ™ exp (h 8% )
4K7,

0o

2
exp g dg
7o(4K + 16 7K?0)

+

[ o=t + amke) a0 I
00

which is written:

Y(s)8 <R;+R,+ R,

where R, and R ; account for the i-errors.
By formula |e e — 1| < [b—ale® <(a + b)e’:

9 8%, 32 g2
R, < 07 Y1 + 47K0Q) ™2 + — }dé
! fo ( mK9) (4KTO 161rK27'0) eXp(lGﬂKz'rO)

29 2 2
< vy(s)K* (B 0 4 g 5 exp --*B )
4K7, 167K%r, 167K?7,
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o0 20 2
R2<L (4mK)™29= 1" exp (— g )exp (~—B——) a6

4KT, 167K*r,
ﬁ2 663—n/2
< ~nf2
(4wK)™"*exp (167rK2’ro s+ n/2
co =s—n/2
Ry< | (4mK)™29=1-172df < (4mK) ™2 0 ——
Y8, s+n/2
and eventually:
5200 62 ( 62 ~ 6s—n/2
§)6 < y(s)K® + e + (47 K)™/? -
1($)0 < 7(s) (4KT0 Terkry) P\ Tenkir,) T TR T

BZ
X [1 + exp (—1611_—1{2-7_0) }

Now examine the influence of measurement errors on é(0, t), §., which
are independent of the mathematical procedures and constant:

-8

to 6
v(s)8 < 75° f £S5, )dt = ~°; 5,
! =

The error § due to the measurement of ¢(0, t) increases when 0, increases.
Usually 7, is given by experimental conditions and ¢, is varied. The optimal
error is obtained when:

_ 6200 ~ Bs—n/Z (—)s
R(0y) = K1 —— + 247K)™? ——+ — (8,
(0o) 76 4 71, (47K) s+n/2 ~s( )

is minimum, assuming 7, large enough to neglect 3%/(16K?r7,). The minimum
is obtained for:

2
R'(0op:) = Y(&)K*™! —f —2(47K)"?05° T +65° 71 (8.) = O
To

equation which can be solved by a graph, setting T = 5"! and computing
the intersection T, of the curves:

62
Y = y(s)K*1—— + T8,
47'0

i

Y = 2(4nK)"2T?
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Oopt = Tol/™V and:

2 -s—n/2 -s
<o)k & ot gy 9™ | O
4 74 s+n/2 —s

Remark. Assuming that the measurement error is zero, some elements on
the 7-convergence can be derived from the preceding computations. The error
on K* is then for a large enough 7,:

B2 9—3 ni/2

s—1 3 -nf2 Y _____
(8)6 < v(s)K +2(4 7K) s+ n/2

0
Set 0727 = ¢ - then 0, = ¢, 7/C*72+¥D  44d:
To

62 *s nf2
< —(s+n/2)/(s+ 1+n/2) s—1 + —n/2
()6 <7 [ K™ ey + 2(4mK) ™ "

The two terms in the brackets vary contrariwise and their sum will be
minimal when they are equal, which yields ¢;:

1
2(47TK)_H/2 4K_s+1 stn/2+1
Ccy = [ }

s+n/2 " ys)B

and:

1
ﬁ2 {2 (471,K)n/2 4K—s+l} stn/2+l
4% s+n2 v B

~s-n/2

2(47K)™2 4K~ } stn/atl
stz y()p?

stn/2

'Y(S)B < 7.0_ stl+n/2 [’}’(S)Ks—l

+ 2(47TK)y™?
s+n/2

From this expression, it is possible to compute 7, such that for all 7 <17,
(0/K®) < e for a given positive €.

The 7-convergence is very slow: takingn =1, K=1,8=107%s=—0.1,
it can be found for ¢ = 1072, 7, = 10 and for ¢ = 1071, = 20 000.

8.4.3. Stability of the point-dilution theory

Consider the dispersion coefficient 1{: obtained from experiments inter-
preted by the point-dilution theory. K is introduced into the dispersion
equation, which is then solved for any initial condition. Set ¢(0, ) the
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computed solution and ¢(0, t) the true solution, i.e. the dispersion equation
solution for a totally accurate K. Of course, this is a very strong assumption,
namely that if there is no error on field phenomena they verify a dispersion
equation rigorously.

We say that the point-dilution theory is stable if the difference between
¢(0,t) and é(0,t) is of the order of the experimental error. The most
reasonable norm is the uniform convergence norm:
llell = sup le(x, 8)]

Introducing the Fourier transform ¢(&, t) of ¢ with respect to x, we get:
e, 1< | et 0)ldg
and: llc|| < sup [ l6(%, )1d [8.4.1]

The problem is defined by the system:
" dc dc

KAc — ;T
.Zl g ox! ot

i=

c(x, 0) = colx)

co(x) belongs to & (R").
The Fourier transform of the solution is written:

e(k, 1) = éo(k) exp[— (4mKE? + 2imBE)1]

We set Er ¢ = ¢ — ¢ and obtain from [8.4.1]:

IBx cll <sup [ Bra(t, ¢)ldg

& being the error on K, given in § 8.4.2, we have:

|Eré| = 4n2E%t|811¢0(§)l exp[—(4n°KE? + 2imBE)t]

or:

1B cll <sup [ 452t 1811 (8)] exp [—(4m*KE? + 2inBE)t] dg

<47?%|8|sup A
£
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setting:

A = [ gt leo®)] expl— (AmKE + 2inBE)t] d
Stability depends on the behaviour of A at ¢:
A< [ £2 |éo(8) exp[—4niKE?t] dE

hence, by Schwarz’s inequality:
172

A<dr? [ f Szaléo(é)lzdé] v l | Py exp(—8 K a

and setting { = n/7V%

f t?£% 72 exp (—8mKE ) dE = t“‘"“f exp(—872Kn?)n* " 2%dn

which is finite if « = n/2. For o = n/2, we obtain:
Er cll < 472 {81 1Colln/a

which means that stability is obtained and the error on the model solution for
an experimental K is of the order of the error on K if the initial function C,
and its derivatives to the order n/2 are square integrable (C, belongs to the
Sobolev space H™'?).



CHAPTER 9

NUMERICAL ANALYSIS OF GROUNDWATER POLLUTION PROBLEMS

The purpose of this chapter is to provide the student with the basic
approximations, methods and theorems enabling him to treat groundwater
pollution problems numerically.

The emphasis is put on the very close relationships between the physics of
the phenomena and the numerical analysis of the problem: the discretization
processes must keep the physical laws and physical considerations-as the
basis of any improvement of the numerical analysis of a problem. Let us take
an example.

We have seen that the convective part of the dispersion equation is written
—div (uc), uc being a flux of matter due to the velocity of the aquifer. A
discretization process consists in dividing up the domain into blocks of centers
(I) and writing the flux variations between two blocks as:

(uc) 1) — (ue) (NI
IJ being the distance between the centers I and J (Fig. 9.0.1).

s
mmm e m oo
H

[

Fig. 9.0.1.

The discretization respects the physical meaning of uc, the mass transport of
pollutant per unit area per unit of time.

Now let us imagine a mathematician, who has absolutely no knowledge of
the physical meaning of the model, who nevertheless intends to treat the
problem. For him, div (uc) can also be written u grad ¢ + ¢ div u and he will
discretize div uc as, for instance:

ue(d) — e(D) /1T + e(N)[uld) —ul)] /1]
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which does not respect the physical meaning; although, mathematically, both
representations are equivalent, numerically and physically they are different
and will yield different answers.

On the other hand, when physics is respected, all mathematical tools help
the physicist solve his problem. We show both aspects of modelling in two
paragraphs: §9.4 treats the theory of approximation of the diffusion-disper-
sion equation (valid as such, of course, for the hydrogeological basic equa-
tion) by mathematical considerations; it shows how mathematical tools can
be used; §9.5 treats the hydrogeological basic equation by the balance of flux
theory, showing how physical considerations lead to discretization techniques.
§9.1 and 9.2 gather the useful mathematical tools (iterative methods and
theorems).

We hope that no mathematician will feel insulted when we say that a
physicist, with a good experimental and physical intuition and only a basic
mathematical knowledge, will be a much better ‘“‘mathematical modeller”
than a good mathematician without a knowledge of physics. The best, of
course, is a good physicist with a good mathematical background.

9.1. ITERATIVE PROCEDURES: PRINCIPLES AND THEOREMS

This paragraph is divided into two parts: from §9.1.1 to 9.1.3 we present
the general principles of iterative procedures, based on simple geometrical
examples. From §9.1.4 onward we develop iterative procedures for linear
systems of equations and present the basic and useful theorems used in the
mathematical models of groundwater pollution.

9.1.1. Principle

Consider a straight line (L) and a curve (C), which cuts L at point H in the
plane xoy, represented in Fig. 9.1.1. The coordinates of H are (xp, ¥, ). A
point Hy (x4, ¥¢) on C being given, we intend to travel from H, to H, assum-
ing that we know the equations of C and L. Fig. 9.1.1 shows a simple itera-
tive process allowing to go from H, to H by horizontal and vertical jumps in
a sequence of simple operations.

These jumps are chosen for the following reason: Hy(x,, yo) being known,
it is easy to determine the abscissa x; of point H, which is the abscissa of
point K, on the line L. The equations of C and L being respectively:

y = f(x) and y = ax+b
the abscissa x| of K, and the ordinate y; of H, respectively are:

—b
v, = 20 and y, = f(x,)
a
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Ky

Ho

K,

FOZ TS

1 Xo x

Fig. 9.1.1. Principle of an iterative procedure.

The process is then iterated.

At this point, we shall say that if we intend to solve an equation F(x) = 0*
by an iterative process, we must generate a curve C (or a surface) and a
straight line L so that the intersection H of L and C be the solution of
F(x) = 0 (i.e. the coordinates x; of H verify F(x.) = 0).

Mathematically speaking, it is a problem of construction of the adequate
and helpful curves. Of course, we shall try to simplify this construction as
much as possible and usually the straight line y = x may be chosen. The
iterative process then becomes (Fig. 9.1.2):

y=f{x)
Heo

x

O3 S
X

Xo

Fig. 9.1.2. Refined iterative procedure.

* Of course, x represents the coordinates of a vector (x1, 3, ... Xp) in a n-dimensional
space. In our simple example (Fig. 9.1.1) we have x = (x, ¥1)-
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Yo = [(xo)
X1 = Yo
yi = f(x)
X2 = M1

which is written as:

x; = f(xo)
X, = f(xy)
Xn = f(xp2) [9.1.1]

This process may converge towards x;, when n —> oo, Furthermore if f is a
continuous function, we have:

xp = f(x)

which shows that x; is a solution of equation x = f(x), defining the inter-
section of C and L.

9.1.2. Convergence

Convergence does not always exist and in Fig. 9.1.3, we show two possible
cases. These two sketches help us to understand under which conditions con-
vergence may be expected.

y=x C

Ho

Converges Diverges

Fig. 9.1.3. Convergence and divergence of an iterative procedure.

Let us write [9.1.1] as follows:
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xy = f(x0)
xy %y = [(x3) — f(x0)
X3 %y = fxy) — fxy)
Xy — Xn = (%) —F(xn 1) [9.1.2]
Besides x,,; verifies the following equation:
Xna1m = (xn+1'_'xn) + (xn ——xn-—l) +.0+ (x2—x1) + (xl _xO) +.7C0

[9.1.3]

If f is sufficiently regular, in a neighbourhood of the intersection point
H(x; ) we have (by a classical theorem):

I

X%y = f(x1) —f(x0) (xl—xo)f'(Ol)z(xl—xo)f'(xL)

X3 %, = f(x2) —f(xy) (xy—x)f'(02) = (xy— %) f'(x1)
2 (2 —x0) (%) [9.1.4]

i

Xnt1 = Xp = f(xn)—f(xn—l) = (xn_xn-l)f,(en):(xn—xn—l)f,(xL)
:(xl——xo)f'"(xL)

where 0; is a real number in the interval (x;_,, x;).
Equations [9.1.3] and [9.1.4] combined yield:

Zan = %o+ [F(x0) = 2ol [1+F (o) + F % (xp) + .o+ ()]

The convergence of x,4; to x; whén n — oo depends on the convergence of
the geometric series [ f'"(x. )] and we know that such a series converges if
|f'(x.) | <1 and diverges if | f'(x.) | > 1.

This is a general result: the convergence of an iterative process is equivalent
to the convergence of a geometric series; the convergence criteria will be the
same and convergence will be obtained when some quantities, acting as
f'(x1) of the previous example, will be less than 1 in absolute value.

Remark. We shall see that later in our case, these quantities are eigenvalues
of some matrices called “‘iteration matrices”.

Convergence may be increased and the various iterative methods which are
studied in this book are different improvements, in terms of convergence
velocity, of one basic method. For example, the previous iterative method
may be improved. If the approximation:

f(xn+]) _——f(xn) = (xn+1 ——xn)fl(xn)
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is fairly good, we write:

xL = xn+ (xn+l~xn) + (xn+2——xn+l) + L + (xn+m+1 ——xn+m) + L]
XF =t (X — )M+ (%) H @)+ o+ () F ]
= 2, + (Xnsr — %) [1/(1 — F'(x,)]

x} is a better approximation of x; than x,,; and the process is iterated from
x} instead of x,,4;.

9.1.3. Construction of an iterative process
The given problem is to solve the equation:
flx) =0 [9.1.5]

and it is assumed that the solution is unique for ¢ <x < b. To use an iterative
method, we have to give a curve C and a straight line L, their intersection
being the solution of [9.5].

Equation [9.1.5] is equivalent to:

fx)+x = x [9.1.6]
and setting f(x) + x = g(x), our problem is then equivalent to solving:
g(x) = x

i.e. to look for the intersection of the curve C and the straight line L, with
respective equations:

y = g(x) and y = x

The process will be convergent if:
—1<g'(x) <1 (witha<ax <b)
or:

—2<f"(x)<0

Of course there are other ways of generating an iterative process, which we
shall investigate, applied to linear systems of equations.
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9.1.4. Application to linear systems of equations
The given problem is to solve the system:
AX =B

where X is the column matrix of unknowns, A the system square matrix and
B a column matrix.

[ xq] [ 6, ]
x b
x=| | A= (aif) B=| '
i=1,...,n
i=1,...,n
_xn bn

We assume that A™! exists, i.e. the system has one and only one solution,
given by

X = A7B

We propose to find this solution by an iterative process. Using [9.1.6] we
obtain:

AX +X = B+X
X = (I—A)X +8B

i

| being the unitary square matrix:

[1 0 ]
0 1

|:
10 0 1]

The solution is the intersection of the curves:

Y = —A)X+B (C)
Y = X (L)
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and we generate the following iterative process:

X, = (I—A)X,;+B

[9.1.7]

If this process [9.1.7] converges, it will converge to the intersection of C and

L for obvious continuity conditions of the equations.

A simple example will illustrate this construction. Consider the system:

{—x—1.5y = 2}
or AX = B
—1b6x—y =0

e[ T o] o
2 LB
[l S

1.5 2

Equation [9.1.7] is then:

[x,,] [2 1.5} Xpoy [2}
= +

Yn 1.5 2 yn_l} 0

X, = 2x,,+1by,,+2
or:
Yn = 1"F):""‘n—l + 2yn—-l

We choose the initial vector x4 = 0.6, y, = — 1.4.

No. of iteration 1 2 3 4 5 6
x 1.10 1.35 1.475 1.538 , 1.569 1.585
y —19 —215 —2275 —2338 — 2.369 —2.385
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We observe a convergence of the iterative process towards x = 1.6 and
y = — 2.4. Of course the number of iterations should be greater to increase
the accuracy of the method. The exact solution can be computed by a direct
inversion of A, treated in §9.3. Often direct inversions are not practical and
iterative methods should be used.

9.1.5. Linear systems: basic theorems

The previous paragraph shows how to generate the curves C and L of an
iterative process. We also have to choose the initial vector. In order to make
this choice as easy as possible, we shall use the following theorem:

Theorem 1. An iterative process X,, = MX,,_; + B converges for any
initial vector X, if and only if all the eigenvalues of the matrix M are strictly
less than 1 in absolute value.

We only give a proof in the case of a matrix M that can be diagonalized.
The theorem holds for other matrices and a detailed proof is given by
Forsythe and Wasow (1960, p. 215), who also show that Theorem 1 can be
generalized to cases when some eigenvalues are equal to 1 in absolute value.
We do not discuss these cases.

Proof. M may be diagonalized. There exists a base of eigenvectors
Vi, ..., V,, of the n-dimensional space of the vectors X,, . With our nota-
tions, M is the matrix (I ~— A) of the previous paragraph. We call X the solu-
tion of the equation AX = B. X is the limit of the sequence X,, , if there is a
limit. Necessary condition: the limit X exists.

X, = MX,+B
X, = MX,+8B

Xy = MX,, +B
X=MX+B
X=Xy = M(X—Xp) = MUX —Xppoy) = M™(X —X,)

Let Ay, ..., N\,, p <n, be the eigenvalues of M. We assume that there exists
k such that:

A |21

The choice of X, is such that X — X, belongs to the eigensubspace corre-
sponding to A, :

X_Xo - lezleK
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K is the set of indices of the eigenvectors corresponding to the eigenvalue A, .
According to Einstein’s convention we sum up on i:

X—Xm+1 — M’"*‘xiVi = )\Zzﬂxivi
x' are fixed given numbers. Thus:

I)\k lm+1|xil_)°°

nm —> oo

The sequence does not converge to X; X, cannot be chosen at random.

Sufficient condition: knowing that X exists and verifies AX = B or
X = MX + B, does the sequence (X,, ) converge, when all eigenvalues are less
than 1 in absolute value?

X—Xpu = M™N(X —Xo) = NP af 'V,

with i = 1, ..., p and q; being the indices of the eigenvectors corresponding
to the eigenvalue A;. The sum is on i and ;. Introducing the norm, defined in
Appendix 3, we have:

X = Xy I <IN 2] Vi

This finite sum tends to zero when m — oo, if | A;| <1, and the sequence (X,, )
converges to X.

Interest of theorem 1

The interest of this theorem lies in the fact that X, may be chosen at ran-
dom. Theoretically, convergence may be obtained by choosing X — X in
the eigensubspace corresponding to eigenvalues less than 1 in absolute value.
Practically such a choice is impossible for two reasons:

(1) Usually nothing is known about X, the solution we are looking for

(2) In machine computation, round-off errors almost always introduce
small components of all eigenvectors and the sequence will fail to converge.

Remark. In the example of §9.1.4, an easy computation yields the eigen-

values of | — A, A; = 0.5 and A, = 3.5. The initial vector X, was chosen such
that X, — X belonged to the subspace corresponding to A; = 0.5 (X being
the solution vector x = 1.6 and y = — 2.4). The reader can easily verify that

the process diverges if X, — X has components in the eigensubspace corre-
sponding to A, = 3.5. (Take for instance x, = 0, yo = 0).

The main difficulty of an iterative process will be to estimate the eigen-
values, which usually cannot be computed directly. The following theorems
allow of computing the bounds of the eigenvalues.
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Definition: a matrix M = (a}) is diagonally dominant if:

lal| = Z |d [9.1.8]
E

with strict inequality occurring for at least one i (i is the row index).
Definition: a matrix M is reducible if there exist a permutation of the rows

and a permutation of the columns (usually different) so that the resulting
arrangement of M takes the form:

(A O)
B C
where A, B, C are square submatrices and 0 is a zero matrix. Otherwise M is

irreducible.

Theorem 2. A diagonally dominant, irreducible matrix M is regular. We
give a short proof in the case when M is strictly diagonally dominant, i.e.:

fall > X |al| Wi [9.1.9]
i#i
Then it is not necessary to assume the irreductibility of M. For a general proof

see Forsythe and Wasow (1960).

Proof. We assume that M is not regular. Its column vectors are not indepen-
dent:

adixt+abx*+ ... +a,x® = 0 foralli
We set:

x® = sup|x’|

The number of (x') is finite, thus x* is one of the (x). From:
afx'+ ... +afx*+.. . +akx" =0
we get: |afx®| < Z |af|x*|and [af | < T |af]
i*k i*k
which contradicts the [9.1.9]. M is then regular, g.e.d.

Theorem 3 (of Gerschgorin). The eigenvalues of a matrix M = (a}) are in
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the domain D defined as the union of all circles of centres a! and of respective
radii ¥ |g; |. This theorem is a direct consequence of Theorem 2: M — Al is a
j#i

singular matrix when A is an eigenvalue of M. Thus:

3i: |lal—N|<Z |d
P#i

Example (see Fig. 9.1.4):

2 1 0
M=|1 —3 1
0 1 —1

Fig. 9.1.4. Application of Gerschgorin’s theorem.

To complete this survey of the basic theorems, we present here an estima-
tion of the largest eigenvalue of a matrix M. Although we prove it for a
Hermitian matrix only, it is valid for any matrix with one and only one real
dominant eigenvalue (Remson et al.,, 1971, p. 187) and can be easily pro-
grammed for a computer.

M is Hermitian. It provides an orthonormal base of eigenvectors (V,,
V,, ... V,) corresponding to the real eigenvalues A,, ... A, which may be
distinct or equal. Any vector X, may be written:
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Xy = x'V, +x?V,+...+x"V,
MX, = !NV + 220,V + ...+ 1"\, V,

We consider the iteration process, starting at X, :
Xm = MXm—]
X, = M"Xy = x"\PV, +x2\FV,+ ...+ XNV,
Assuming that A, is the largest eigenvalue, we write:
) >\2 m >\n m
X, = NP|x'WV, +x2 =) Vo,+...+x"|[—]| V,
Ay ’ Ay

When m — oo, we see that X,,, tends to become parallel to the dominant eigen-
vector V,, and A; may be obtained by computing the limit of the ratio of
the scalar products (X, 1, X, ) and (X,,,, X, )

>\2 2m+l (?\n)2m+1
132 2v2 [ 22 ny2| Bnj.
(x)+(x)()\l) +...+(x") N

(Xm-!-l’ Xm ) —

—>)\1
(Xms Xm)

2m 2m
(x1)2+(x2)2(;—\2—) +.+ (x")Z(;t—") m = oo

1 1

q.e.d.

9.2. ITERATIVE PROCEDURES FOR LINEAR SYSTEMS: METHODS

The most frequent iterative methods are described. here, first for a very
simple example and then for a general linear system.

9.2.1. Jacobi’s method on a simple example

We consider permanent bidimensional flow in a porous medium with a
homogeneous transmissivity 7' = 1. This flow is described (89.5) by the
equation:

0*H 0°H
+ [
ax?  0y?

~ 0 [9.2.1]

Discretizing [9.2.1] in a square grid (Fig. 9.2.1) and writing H;; the value of
the head at node i, j, we obtain the classical five-point scheme:
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—d4H,;+H;_;+H;; +Hy ;+H; 3, =0 [9.2.2]
i,j-1
i1, 0] i+1, ]
i,j+1 Ay
Ax
Ax= by

Fig. 9.2.1. Finite-difference bidimensional grid
Solving [9.2.2] for H; ;, we obtain:

H_ ;+H ;. +H. ;+H,
H; ;= 1, -1 " .7 i+ [9.2.3]

Equation [9.2.3] generates a natural iterative process called Jacobi’s method:

Hf

H(m+1) _ i— 1]+H(m) +Hl(+r?l+le7+1
i,j -

4

[9.2.4]

The process starts with given arbitrary values of H at each node.
9.2.2. Gauss-Seidel method on a simple example

Formula [9.2.4] shows that A must be computed at every node during
one step. In order to increase the convergence velocity, it is interesting to
use new values of H immediately. As space sweeping is done for increasing i
and j, when computation of H{7*Y takes place, H'P and H{"!} are already
known. This remark has led to an 1mproved iterative method, the Gauss-Seidel
method defined by the following formula:

oy HEED + HOTD + HED, + HOR,
H;7 = 4

[9.2.5]
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9.2.3. Successive overrelaxation method on a simple example

A greater improvement of the convergence velocity may still be obtained.
Let us come back to the basic principle of iterative methods.

X 41 X Xm+2Xme2 Xms1  Xmet Xm

(a) (b}

Fig. 9.2.2. Successive overrelaxation.

By one of the previous methods, we obtain X,,,;. In order to get nearer
to the intersection, we multiply the vector X,.,; — X,, by an appropriate
coefficient w, which yields X,,,;. We iterate the process, that can be written:

Xss = f(Xm)
Xm+l = Xm + w(Xr,nH _Xrn )
Coming back to our simple example, we find that:

(1) the intermediate value H;§™V is computed by, say, the Gauss-Seidel
formula:

+1 (m+1)
) — HEPP + Hi0+ HS, + HiTy
1,J
’ 4

(2) H{*Y is then given by:

H{™ = H{P+ w[H§™Y — H{P] [9.2.6]

The obvious difficulty of course is how to choose an w large enough to yield
a good convergence velocity and small enough not to pass the intersection.
In §9.2.5 we give some practical results concerning .
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9.2.4. General formulas
Consider the system AX = B. To generate an iterative process, the matrix

A is usually decomposed into the sum of diagonal matrix D, a strictly lower-
triangular matrix L and a strictly upper-triangular matrix U. For example:

1 2 0 0 1 0 0 0 2 3

4 5 = 0 0]+{0 5 0 +[|0 0 6

7 8 9 7 8 0 0 0 9 0 0 O

A = L + D + U
or:(LL+D+U)X = B [9.2.7]
Equation [9.2.7] yields the various iterative formulas:
Jacobi:
XD = — p T [(L +U)X™ —B] [9.2.8]

Gauss-Seidel:
XM = — (p +L)Tux™ + (D +L)'B [9.2.9]
Successive overrelaxation:

DXmey = — LXpps — UX;, +B
X1 = Xm ¥ W(—D 'LX,pey — D'UX,, + DB — X,,) [9.2.10]
Xmsg = (DL +D)TA— wl—wD U)X, + (wD™'L +1)TwD™!B.

These formulas have to be expressed in terms of the various components of
the matrices, to be usable on a computer; the system AX = B is then written:

Zayx; = b, 1 =1,...,n
J

and [9.2.7] yields:

i-1 n
2oaxitagx;+ 2 oagx; = b i=1,...,n
j=1 j=it+l
Jacobi:
1 ]i-1 n
2D = = | 3 ayx™ Y ayxf™ b [9.2.11]

Qi | j=1 j=i+l
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Gauss-Seidel:

1 i-1 n
XM = —— [ Y a4 ¥ aya™ — bi} [9.2.12]

Q;; | j=1 j=itl

Successive overrelaxation:

1 i-1 n
xmD = x(m) 4 w[———{ Y oagx™+ Y guaf™— b, }——x,(m)} [9.2.13]

a;; \j=1 j=itl

9.2.5. Convergence of the methods

General discussion of convergence is to be found in Forsythe and Wasow
(1960) and Remson et al. (1971). Here without proof, we give some practical
results that are used in modelling groundwater pollution.

(1) A being the matrix of the system AX = B, if A is diagonally dominant
and irreducible, then the Jacobi and Gauss-Seidel methods converge.

Remark. Of course, if A is strictly diagonally dominant, the irreductibility
condition is not necessary.

The following definitions are taken from (Remson et al., 1971, p. 195).

(2) A square matrix A of order n is said to have property (A) if there
exists a permutation matrix P such that PAP is diagonally block tridiagonal
(Fig. 9.2.3) i.e. each D is diagonal.

D\E 0 0 0 0 o0

E D K O —— 0 0 O
PAP - \l\

0 O 0 0 En—z n-1 Fh—‘l

0 o 0 0 0 £,

Fig. 9.2.3.

(3) In a system of linear equations AX = B, the components x; and x; are
said to be coupled if either a;; # 0 or a;; # 0.

(4) The order of solving the equations AX = B is consistent with this tri-
diagonal representation if, considering a grid, numbered by using the index
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(i), the following permutation holds: the first node remains unchanged; the
other mesh points are numbered by using an index g (i) such that:

g(p) = g()+1 forp>i
g(p) = g(i)—1 forp<i

for each point p and all points i to which p is coupled. For example see
Fig. 9.2.4.

Fig. 9.2.4. Consistent ordering (Remson et al., 1971).

A very useful theorem is then:

Theorem. The matrix A of the system AX = B being diagonally dominant,
consistently ordered and having property (A4), the successive overrelaxation
method converges for 0 < < 2 and the eigenvalues A of the iteration
matrix (wD 'L + 1)1 (1 — wl — wD!U) are related to w and u by:

N+ w—1) = wuA

where y is an eigenvalue of the Jacobi iteration matrix — D71 (L + U).
The best overrelaxation coefficient is:
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w e —
ort 1'+\/1——/-lr2nax

where u,,., is the spectral radius of the Jacobi matrix. For this coefficient
the number of iterations is minimum. The problem is then to determine
Wept- Several approaches are discussed in (Remson et al., 1971, p. 199), such
as Carré’s method, that can be easily programmed.

We also recommend the direct computation of the largest eigenvalue by
the ratio of scalar products as defined in §9.1.5. Another result may also be
very useful: in the case of a rectangular grid of n internal columns and m in-
ternal rows, the largest eigenvalue of the Jacobi matrix corresponding to the
discretization of 92H/0x? + 02H/0y? is exactly:

1 1
%[cos( 77)-{— cos( n)]
n+1 m+1

This case corresponds to a homogeneous bidimensional aquifer. It can be
empirically extended to a quasi-rectangular domain (Fig. 9.2.5), by taking
an average value of the number of rows and columns.

Fig. 9.2.5. A quasi-rectangular domain.
9.2.6. Block iterative methods

We shall just give a few basic principles of these methods, especially in
view of applications to alternate direction procedures which will be developed
in the case of time dependent equations in §9.6.

The principle of block iterative methods is fo solve the system AX =B by
solving a sequence of tridiagonal systems. At each iteration step, a Gaussian
elimination method (see §9.3) is used and the convergence velocity is
increased.

This method will be best understood on a simple example, a homogeneous
aquifer, of transmissivities 1, discretized as represented in Fig. 9.2.6; blocks
1 to 6 are at a constant potential; eastern and western boundaries of the
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aquifer are impervious. The regime is permanent and pumping and infiltration

are represented by singularities @, to @5 in each block.

11213
7] 8|39
10 |1 |12
13|14 |15
4| 5| 6

Fig. 9.2.6.

Using the method described in §9.5, we obtain the

equations:
—3 1 0
1 —4
0 1 —3
0
0

0

0

1 0
-4 1

1 —3

0 0

0 1

o][H, ]
H,
H,
0 Hy,
Hll
0 H,
1 "_4 1 1"114
0 1 —3||Hys|

following system of

Q; —H, |
Qs —H,

Qo —H;

@10

Q@1

Q@

Q13 —H,
Q4 — Hs
LQIS _Hs_

[9.2.14]

There are three blocks X = (H,HgHy),Y = (HoH, H ;) and Z = (H3H ,H,s).

Setting:

-—3 1
A = 1 —4
0 1

o o
o = O

o O O
o O ©

o O O
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@, —H, Qo Q3 —H,
Qx = |Qs —H, Qy = |Qn Q; = |Qis—H;s
Qg —Hj Qi Qs — Hg

A 1 0] X 0y
I A 1 Y| = |oy
0 1 A |z Q,

The resolution method becomes now equivalent to a point resolution method,

coefficients being matrices. For instance Jacobi’s block method is:

AXm+1 - QX - IXm

AY,q = Qy —IX, —I1Z,

AZm+1 = QZ - lYm

In the same way, block Gauss-Seidel and overrelaxation methods may be

defined. The inversion of A is easily obtained by Gaussian elimination (§9.3).
Remark. Other blocks could be defined of course. In the example, we

have given the natural block decomposition in columns and rows, the de-
composition that is used in alternate direction procedures.

9.3. DIRECT PROCEDURES

We present the general direct method of Gauss elimination and its simpli-
fied form for tridiagonal matrices.

9.3.1. General Gauss elimination method

Consider the linear system of equations:

apx; tapx, .. tagpx, = b,
Oy X1 T apx, + ... +ay,x, = b,
@p1 X1+ Appx, + ... +a,,x, = b,

We divide the first line by a,;, multiply it then by a,, and subtract it from
the second line:
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Ay Q1 ay
(au-————a“) x1+(a22——a——a12 x,+ ...+ a2n——a——— Qin}| X, =
11 11

the coefficient of x disappears; we iterate the operation, multiplying the first
line by a,,. We obtain the new system:

xytaplagx, ... Fafenx, = bilag

0 byx,+...+byx, = by—(ay/a;) b,
0 bn2x2+...+bnnxn = bn—-(anllall)bl
with b, = apr — (a/a;1) ap.

Performing these operations starting from the second new line and iterating
the process, we obtain the system:

xytepnpx,t . tenx, = d;

X+ ...t ex, = d,
x, = d,

The last equation yields x,,, put into the preceding equation to yield x, _, and
SO on.

9.3.2. Tridiagonal Gauss elimination method

Consider the tridiagonal system:

b X, e X, = d,y
X, +b,X; ‘e Xjoy =d; (i=2,...n—1) [9.3.1]
aan—l +ann = dn

or:
by, ¢, O X, d,
a, b, c, 0 O X, 1=14d,
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Writing:
X; = o, BiXin

X, =

i=1,..

245

L, n—1)

[9.3.2}

and eliminating X;_;, X, and X;,; between the three equations:

Xio1= o — Bia X;

aiXi__l + biXi+ ciXi+l = di (l = 2, .. .,n"'—l)
X; = o= BiXin
We obtain:
@0y — aifi- 0 +ogb; = d;
! ! (i=2...,n—1)
a;Bi-18; —bBi+c¢; = 0
and:
d;— ;04
%= b;— a;3;
PPN =2, . .,n—1)
b= ——
l b= a;f;-
fori=1:
d,
b1X1+01X2 dl 0(1 -
. by
yields
— C
X, = o =61 X, By = —
b,
fori=n:
aan—1+ann = dn
. dnwanan—l
Xn—l = an—l_Bn—IXn ylelds &, = ——
bn—_anﬁn—-l
X, = o,

The solution of the tridiagonal system [9.3.1] is thus found by computing
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o;and §; from i =1 to i = n then replacing ; and §; by their values in [9.3.2].
This method is quite easily programmed.

9.4. THE THEORY OF APPROXIMATION OF THE DISPERSION
EQUATION

9.4.1. Approximation of derivatives

Under some regularity conditions (for our problems, it will be enough to
consider that C has continuous derivatives up to the order 4), the function C
can be expanded in a Taylor series in a neighbourhood of x; vy, 2, t are
constant:

de 2 n2
C(x+\h,y,z, t) = C(x,y,z, t)+h_,(x>y,z> t)+_——2(x7y>z,t)+
0x 2 ox
h 9% by, 4+ £) + 0(h") [9.4.1]
o s 2, - xX,Y¥,%, .
3! 8x3(x’y ? nt axn Y

The remaining terms of the series are equal to 0(h™): we say that a function
f is equal to O (k") if there exists a positive constant k such that | f| <k |h"].
Thus as { A" | = 0, |f| = O at least as rapidly.

Taking # = Ax and h = — Ax, we find, respectively:

dc 2 92

c(x +Ax,y,2,t) = e(x,y,2, ) + Ax —(x,y,2,t) + (% y,2,0)
0x 2 ox

+ 0(Ax?) [9.4.2]
de 292

clx —Ax,y,2,1) = ¢(x,y,2,t) —Ax —(x,y,2, ) +~——— = (x,¥,2t)
0x 2 ox

+ 0(Ax?) [9.4.3]

These equations can be solved for dc/dx to give:

§£ _ c(x + Ax,y,z,t)—c(x —Ax,y,2,1) +0(Ax?)
ox 2Ax

which yields the central-difference approximation of the derivative:

a_c c(x +Ax,y,z,t)—c(x —Ax,y,2,t)
ox 2Ax

We drop the remaining terms of the series called “‘truncation error”, equal
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to 0(Ax?). Stopping the Taylor’s expansion at n = 1 (we put n = 1 into
[9.4.1]), we obtain from [9.4.2] and [9.4.3]:

ac clx+Ax,y,2,t) —c(x,y,2, 1)

= + 0(Ax)
ox Ax
%«=wt%%”_dx_A&%%”+omm
ox Ax

This yields the forward-difference approximation of the derivative:

clx + Ax,y,2,t) —c(x,y,2,t)
Ax

dc
(x7 y’ Z’ t) :
0x

and the backward-difference approximation of the derivative:

ac C(x, Y, 2, t) —C(x_‘Ax, Y, 2, t)
—(x,y,2, 1)~
dx Ax

Both approximations have a truncation error of order Ax. To obtain an
approximation of the second-order derivative, we combine [9.4.2] and
[9.4.3] expanded at n = 4:

62_c(x v 2 t)~c(x + Ax,y,z,t) — 2c(x,y,2,t) +c(x —Ax,y,2,t)
ox2 T (Ax)?

which has a truncation error of order (Ax)2.

In the same way, we obtain approximations of dc/dy, dc/0z, 02¢/oy?,
02%¢/0z%. The forward-difference approximation of dc¢/dt is used in dispersion
problems.

9.4.2. Approximation of the equation

For the sake of simplicity, we restrict ourselves to the study of the mono-
dimensional dispersion equation with constant coefficients. The methods we
develop on this simple example are general and will easily be extended by the
student to other dispersion equations. We have to approximate:

dc dc d%¢
—_— = —y—+K— [9.4.4]
ot 0x dx?

We choose an approximation of dc/dx (backward, forward or central) and we
approximate d2¢/dx?. The approximation of — u (d¢/dx) + K (9%c/0x?) at
point x and time ¢ is written I'(x, {) and we have:
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% n=r 9.4.5

as a first approximation of the dispersion equation. The discretization of
dc/ot is based on the fact that we know c(x, t;) and we are looking for
c(x, t,) with ¢t, > t,, which gives:

a_c _ C(.’)C, t2) —_C(xa tl)

at t2_t1

We can choose now I'(x, ) at time t,, time ¢, or in-between. This will yield
the three approximations of the dispersion equation.
(1) The explicit approximation. We take I" at time ¢,:

C(.’)C, t2) _ C(x5 tl)
t,— &

= T'(x, t,) [9.4.6]

Equation [9.4.5] provides a geometrical interpretation of [9.4.6]: I'(x, t,) is
the slope of the tangent to the curve of equation ¢ - C(x, t) at point ¢;. If
C(x, t,) is the computed value and 7(x, t,) the exact value, we have Fig.
94.1.

Fig. 9.4.1. The explicit approximation.
(2) The implicit approximation. We take I' at time 2,:

c(x, ty) —o(x, ty) _ I(x, t,) [9.4.7]
tz_ tl

The geometrical interpretation is represented in Fig. 9.4.2. I'(x, t,) is the
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slope of the tangent at point ¢, and‘the straight line ¢(xt,) e(xt,) is parallel
to this tangent.

Fig. 9.4.2. The implicit approximation.

(3) The Crank-Nicolson approximation. We assume that I'(x, ¢) is linear on
the interval (¢, t,) and we write:

c(x, t2) - C(.’)C, tl)
byt

= \[(x, t;) + (1 — N [(x, t,) [9.4.8]

The name ‘“‘Crank-Nicolson” is given when A = 0.5, which corresponds to
Fig. 9.4.3.

X(x,tz)
Cixt,)

cix,t,)

t, t, t

Fig. 9.4.3. The Crank-Nicolson approximation.
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9.4.3. Stability and convergence of the approximations

The object of the approximations is to provide an estimate of the concen-
tration at time ¢, knowing the concentration at time t;. To be valid this
estimate should be close, in some sense*, to the exact solution of the disper-
sion equation ([9.4.4] for instance), which requires two conditions for the
use of the approximations: stability and convergence. As previously we call
¢(x, t) the computed solution and y(x, t) the exact solution of the dispersion
equation. We set t, — t, = At.

Definition of convergence. A finite-difference approximation is convergent
if the difference between y(x, t) and c¢(x, t) tends to zero when Ax and At
tend to zero, at given x and t.

Definition of stability. When time varies, we compute e(x, t + At} from
¢(x, t). This is an iterative process, which is valid if the difference between
v{(x, t) and ¢(x, t) is bounded in some sense, when ¢ = oo, for given Ax and
At. If such a condition is verified, the approximation is stable.

We admit that the approximations just presented are convergent and we
investigate their stabilities. It should be noticed that stability and convergence
are related and that it can be proved that under good conditions they are
equivalent.

Results on stability are given with short rough proofs, the purpose of
which is mainly to teach how to use the basic theorems of §9.1 in real
problems.

(1) The explicit approximation. Equation [9.4.6] is written between time
t, and time t,,, taking a square grid of space (Ax, 2Ax, . . ., iAx, ..., IAx)
and backward difference of the convective term:

C(i, tn+]) - C(i, tn) _
tn+1 - tn

c(i,t,)—c(i—1,t,) c(i+1,t,)—2¢(i, t,) +c(i—1,t,)
—U - +K
Ax Ax?

or:

1___ —

Gt) = oli—1.¢ )(KAt+ At)+ Gt UAt KAt
A ) = AU " Ax) 0t Ax - Ax?

KAt
tYe(i+1,t,) — 9.4.9
e(i )Ax2 [ ]

* The “closeness” of two functions depends on the type of norm adopted for the func-
tional space they belong to. In this book we do not give details about this problem; let
us only remember that the most usual norms in our case are || fI|_= sup [f(x) ||| fll,=
[ [ f %(x)dx1"? or || fll; = fg | f(x)|dx. The closeness of f and g is then defined by
the size of the real positive number || f—g|l.
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Wlth tn+1 - tn = At.
This system of equations may be written under the matrix form:

C(they) = MC(t,)

>~ |
M= [0—a; “a,_ajz 0
0 NN

with:

_ KAt UAt _ UAt_ KAt KAt
T Ax? Ax

a, 02—1_‘——"‘_'2_—'(13:_
X

C(t,,) is a vector of components c(i, t,).

From Gerschgorin’s theorem (§9.1), the eigenvalues of M lie in the interval
[1—2(UAt/Ax)—4 (KAt/Ax?), 1]. From the general convergence theorem
(§9.1), the iterative process defined by [9.4.9] does not converge if the
eigenvalues of the iteration matrix are greater than 1 in absolute value. Thus,
the explicit approximation is stable if:

UAt KAt
—2——4—>—1

Ax Ax?
or:
At < At, [9.4.10]
with:

_ Ax

At, = X

2 _A_; +U

At, is called the critical time step, and the approximation is said to be stable,
conditionally to [9.4.10].

Remark. With forward or central differences, Af, is different of course.
Computation of At, is obvious in all cases.

(2) The implicit approximation. Discretizing as previously, we obtain:

) KAt UAt ] UAt KAt
c(i—1, t,) _Zo_c—i _—Ax +e(i, t,,) |1+ mAx + 2 ———sz

At
+c(i+1, ta) (—K F) = e(i, t,) [9.4.11]
X
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or, under matrix form:
NC(t,1) = C(t,)

N being the triangular matrix:

0
N = /3] a, a3
0
with:
) KAt UAt 1+UAt+2KAt KAt
0 = ——————;a, = — — 0y = ———
! Ax?  Ax’? Ax Ax?’ 3 Ax?

The iteration matrix is then N7!.

From Gerschgorin’s theorem (§9.1), the eigenvalues of N lie in the interval
[1,1+2 (UAt/Ax) + 4 (KAt/Ax?)] which implies that they are greater than
1. Thus the eigenvalues of N™! have their absolute values smaller than 1. From
the general convergence theorem (§9.1), the iterative process [9.4.11] con-
verges.

We say that the implicit approximation is unconditionally stable.

(3) The Crank-Nicolson approximation. Using the same discretization as
previously, we have:

. 1 (KAt UAt . 1 [UAt KAt
e(i— 1, t,4) ——2— ——+ |+, t) |1+ —+2—

Ax?  Ax 2\ Ax Ax?
bei Lt [ 1 KAt y 1t){1(KAt+UAt)]+(.”
k n - = — b n - 5 — cl, n
e 2T g 2 \ax? " Ax,
1 (UAt KAt , 1 KAt
L—=|—+2== | +ei+1,¢t) |- —
I 2 \Ax Ax? 2 Ax?

written under matrix form as:
M C( tn+]) =N C( tn)

where M and N are tridiagonal matrices, the coefficients on a line being the
coefficients, respectively, of ¢(i — 1), ¢(i), ¢(i + 1).

Calling P the tridiagonal matrix a line of which is made up of the coeffi-
cients:
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KAtJr UAt UAt KAt KAt

Ax? Ax’  Ax Ax?’ Ax?

we notice that P, M = | — 4P and N = 1| + 1P have the same eigenvectors,
which implies that (I —P/2)"! and M~!N have the same eigenvectors as P.

p being the corresponding eigenvalue of P, 1 — p/2 and 1 + p/2 are the
corresponding eigenvalues, respectively, of M and N. Thus the corresponding
eigenvalue a of the iteration matrix M™IN is:

1+p/2
1—p/2

According to Gerschgorin’s theorem, the eigenvalues of P lie in the interval
[— 2 {(UAt/Ax) +2(KAt/Ax?)},0] and are negative, which shows that [a |
is smaller than 1.

The Crank-Nicolson approximation is unconditionally stable.

9.4.4. Alternating Direction Implicit Procedure (ADIP)

When the domain is bidimensional rectangular or at least very regular (con-
vex for instance), fast resolution may be obtained by the ADIP introduced
by Peaceman and Rachford. This method has a great advantage: instead of
computing the inverse of a general matrix, one computes the inverses of two
tridiagonal matrices. This is done by the simplified Gaussian elimination
method (§9.3.2) and is very quick in terms of computer time. We discuss
ADIP on a simple example.

Consider the dispersion equation:

0%¢ 9%c dc dc
—+tKy ——u— = —
ox?

K
L T 3y? ox ot

An approximation of this equation during one time-step consists in dividing
up this time-step info two and expressing the derivatives with respect to x
implicitly and the derivative with respect to y explicitly during the first half
time-step. During the second half time-step the derivatives with respect to x
are expressed explicitly and the derivative with respect to y implicitly:
c(i+1,)) —2* i)+ —1,)) - (i, j) —c(i—1,j)
Ax? Ax

(i, J) — ey, J) _K ¢ (i,7+1)—2¢,(,j) +¢,(i,; —1)

At/2 ’ Ay?

1) K,
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(i, i+ 1) = 2¢(5, ) + e(5, 7 — 1) (i, ) —¢*(,J)

2} K =
(2) Kr Ay? At/2
c*(i,+ 1,7) — 2¢™(i, j) + ¢* (i — 1, ) c*(i,j) —c*(i—1,))
L - +u
Ax? Ax

c,(i, j) and c,(i, j) are the concentrations at times ¢, and t,(¢, — t; = At),at
points (i, j) and ¢*(i, j) is an intermediate value which has no physical mean-
ing. The solution progresses by computing ¢* for all lines i by tridiagonal
Gaussian elimination, assuming ¢; is known, and then by computing ¢, for
all columns j also by tridiagonal Gaussian elimination. It can be shown that
the ADIP is convergent and unconditionally stable.

9.4.5. Some difficulties of the finite-difference approximations

Finite-difference methods are easy to handle, sometimes fast and usually
fairly well known. But in the case of dispersion models, two difficulties arise,
which are not completely solved up to now: overshoot and numerical
diffusion.

(1) Overshoot. Consider the injection of a unit concentration step-input
function in a one-dimensional flow governed by the dispersion equation:

Oc_ e _ 0o

ax:  “ax ot

comparison of the analytical solution and the computed solution at time ¢ is
given in Fig. 9.4.4.

c

--~- Computed solution
—— Analytical solution

Fig. 9.4.4, Overshoot.

It very often appears that computed concentration exceeds one near the
c-axis. This discrepancy is known as ‘“‘overshoot”. It may be explained as
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follows. Time-steps and spatial dimensions are not well adjusted and the
aquifer cannot ‘“‘absorb’ numerically the injected mass of pollutant. The.
time-steps should be chosen carefully and adapted to the problem. Often the
choice of the time increment as the general term of the geometrical series
(At, = aAt, _y, with 1 <a < 2) is found to erase the overshoot. For instance,
Shamir and Harleman (1967b) have used ¢ = 1.3 in some of their problems.

We recommend testing any model with a unit-concentration step-input
function to adjust time-steps and grid spacing before using it for general
boundary conditions.

(2) Numerical diffusion. Consider the injection of a unit-concentration
step-input function in a one-dimensional flow, governed by the dispersion
equation:

P et

K u
dx? ox ot

Take K = 0. Analytical and computed solutions at time ¢ are given in Fig.
9.4.5.

[

—Analytical solution

/Computed solution

Fig. 9.4.5. Numerical diffusion.

The shape of the computed curve explains why the name “numerical
diffusion” has been given to the phenomenon: it behaves as if the finite-
difference approximation of the convection equation — u (d¢/0x) = 0c/dt
was some diffusion equation:

P de _de

ox*  Lox ot

the coefficient D having no physical meaning. Some explanations have been
given by Lantz (1969, 1970): numerical diffusion is a truncation error; the
finite-difference approximations to the first-order derivatives (both time and
space) give rise to error terms proportional to second-order derivatives
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(8§9.4.1), the proportionality constants depending both on space and time
increments.

Take our simple example, the space first derivative being approximated by
a backward difference:

dc c(x)—c(x — Ax) Ax d%c
u—-=~u —y— —
x Ax 2 0x?

A numerical dispersion coefficient — uAx/2 is thus introduced, which may
be of the order of the physical-dispersion coefficient K. This artificial disper-
sion is a matter of concern in the domain of dynamic dispersion (when
K = au) for values of the order of Ax/2. No real solution has yet been found
for this anomaly, except by testing a mean longitudinal dispersion coefficient
of the form («u — ulAx/2) allowing some erasing of the numerical dispersion.

Of course for large-scale dispersion problems, numerical dispersion may be
negligible for suitable mesh sizes.

9.4.6. The method of characteristics

In order to reduce or suppress the above-mentioned difficulties, Garder
et al. (1964) have introduced a tentative improvement of the classical finite-
difference resolution schemes which they call the method of characteristics.
The problem is still approached by finite differences but physical consider-
ations on the evolution of dispersion lead to establishing a first-order partial
differential equation equivalent to the dispersion equation and to determin-
ing its characteristic lines.

The problem is defined by the dispersion equation:

o BC, e e e ac
L ax? T 3y? ¥ 0x Y dy ot
where:
k {dp oh k {op oh
Ux:—_ ._+pg_, LT}' = — — ———+pg— [9.4.12]
du\ dx 0x du\ 9y oy

considering that dispersion may be neglected with respect to convection,
they assimilate the equation to a first-order partial-differential equation and
look for its characteristics, solving the usual system:

dx/dt = U,, dyl/dt = U, [9.4.13a]
dc 02C 92C

E = K, E);; + K, Ey‘; [9.4.142]
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The characteristics (Garabedian, 1964) span the solution. A moving point
(xp, yp) is associated with each characteristic p, which is given by its para-
metric equation x,(t), y,(t) where ¢ is time.

The experimental domain, which is assumed to be rectangular, is divided
by a conventional stationary grid into rectangles of dimensions Ax and Ay.
Each point (i, j) is made the center of the rectangle Ri, j. Initially the moving
points are distributed at random, two moving points per grid interval being
sufficient (a greater number does not really improve the accuracy of the
method), with initial coordinates x,(0) y,(0) and an initial concentration
Cp(0).

Ci, j, n being known at the grid points, the viscosity and density at each
point are known, and the pressure is determined from the equation (¢ is taken
as constant):

div [(k/u)(grad p + pg grad h)] = 0

using the Peaceman and Rachford method. From the set [9.4.12] the veloc-
ity components are determined at the centers of the grid intervals and every-
where by bilinear interpolation. The new positions of point (x,, y,) are
obtained from [9.4.13a] as:

xp,rrH = xp,n + Atn Ux(xp,n’ yp,n)a yp,n+1 = yp," + Atn Uy(xp,nayp,n)
[9.4.13b]

All points are then examined to determine which rectangle Ri, j, they lie in.
Each rectangle Ri, j is assigned a concentration C*i, j, n equal to the average
of the concentrations Cp, n of all the points in their new positions in Ri, j.
The change in concentration due to dispersion in each rectangle is derived
from equation [9.4.14a] as:

AC}; = (At /¢) (KL AZCT; , + KpAXCE ;) [9.4.14b]

where A2 and A? are the approximations of 8%¢/dx2 and 9%c/dy?.
Each moving point is then assigned a new concentration:

Cp,n+1 = Cp,n + AC?:J'.”

The change in concentration due to dispersion is the same for all moving

points falling in the same rectangle.

The concentrations at the stationary grid points at the new time-step are
then given by:

—_ i+ +
Ci,j,n+1 - Ci,j,n + ACi,j,n
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This procedure is then repeated for each subsequent time-step. This method
prevents numetrical dispersion: if dispersion is zero (K; = K = 0) there is
no change in concentrations Cp, n: thus any discontinuity in concentration
is preserved and translated.

Although numerical dispersion does not appear, overshoot is not easily
overcome (Reddell and Sunada, 1970). This method may be of interest for
very particular problems (Robertson, 1974) but is hard to generalize, its uses
being very tedious; computer-time requirements are high.

9.4.7. A finite-element approximation: Galerkin’s method

The finite-difference schemes introduce a discretization of the domain in
squares or rectangles or parallelepipeds. Such a representation is not con-
venient when the boundaries are complicated curves or when fluxes will not
follow straight lines. Of course, finite-difference approximations are always
possible but may introduce truncation errors greater than the ordinary ex-
perimental errors; a better representation of the domain is required and a
finite-element approximation can provide it.

The basis of the finite-element approximation is the partition of the do-
main into subdomains or finite elements, usually of the same form. The
unknown function ¢ is approximated by a trial solution ¢ of linear form:

N n
c = 2 au;
=1

where the u; are linearly independent selected functions, which exist over
the domain and its boundaries and the g; are unknown parameters to be deter-
mined subsequently. In the subdivided domain (Fig. 9.4.6) n nodes are
chosen, usually at element vertices and at particular geometric locations. The
trial solution is represented in a piecemeal fashion across the domain, element
by element, in terms of the space variables and the nodal values of the solu-
tion and its derivatives. '

DOMAIN D

Fig. 9.4.6. Domain divided into finite-elements (Norrie and De Vries, 1973}.

There are mainly two types of methods, namely residual and variational
methods, using trial functions like ¢.
(1) If ¢ verifies some equation L(c) = 0, the trial solution c verifies some



THEORY OF APPROXIMATION OF THE.DISPERSION EQUATION 259

equation L(c) = R, where R is the residual. The problem is to minimize R in
some way, usually by minimizing a weight function of R in a well-chosen
vector space. The Galerkin method, detailed in this paragraph is a residual
method. The minimization conditions yield a set of algebraic equations that
can be solved by classical linear-system methods.

(2) In a variational method, the solution ¢ gives an extremum value to
some functional F(c). The technique is then to substitute ¢ in F and to mini-
mize F(c) which yields a set of algebraic equations and the solution of this
set, by classical linear-system methods, yields the coefficient a; (Norrie and
De Vries, 1973).

A possible application of the residual method, called Galerkin’s method,
has been proposed by Pinder (1973) to solve the dispersion scheme and
applied to a chromium pollution of ‘an aquifer.

The dispersion scheme is defined by the equations:

3
L.(c) = div (K grad ) — div (uc)—5§+ Q¢ =0

oh
L,(h) div (T grad h) —5; +Q =0

with our usual notations (Chapter 3). @ is a sink function incorporating well
discharge and leakage into a confining layer and ¢’ is the pollution concen-
tration in the source fluid.

Trial solutions are:

¢ = 2C(t)Ux)  h =2 H(t)wx)
i=1 =1

where x means (x, y, 2, . . .).

U;and w;(i = 1 ..., n) are basic functions satisfying the boundary condi-
tions for each equation. These basic functions are linearly independent and
represent first n functions of complete systems in the domain. The objective
is to determine the coefficient functions C;(f) and H;(¢) that minimize the
linear forms L (¢) and L, (h).

The minimization of L.(c) is obtained by setting n integrals of the weighted
residual L (c) equal to zero:

fpL)UAdD =0 (i =1,2...n) {9.4.15]
The weighting functions are the basic functions U;. In the same way we have:

fpLpyhyw;dD =0 (i =1,2...,n) [9.4.16]
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Remark. Geometrically, these relationships express the fact that if the
projections of a vector on the three usual coordinate axes in R 3 are zero, then
the vector is zero. This property is extended to more general functional
spaces, spanned by complete bases: a set of functions U; is said to be com-
plete if any arbitrary function f, admissible for the problem considered, can
be approximated by a linear combination:

¥ a,Uy(x)
i=1
to any desired accuracy by choosing n large enough. When n tends to infinity

i a;Ui(x)
i=1

converges .(in some norm) to f A complete base in a general functional space
acts like a usual base for an n-dimensional vector space like R ® for instance.

The suitability of the Galerkin technique for computer application depends
upon the choice of basic functions and elements. Pinder uses the curved
isoparametric quadrilateral (Fig. 9.4.7).

Linear, quadratic, cubic polynomial basis functions may be defined along
the edges of the elements and different-order functions may be used along
each side to accomodate the geometry of boundaries or the anticipated form
of the unknown solution. To facilitate integration, a dimensionless and curvi-
linear local (§) coordinate system is introduced in which the elements appear
as a square with the side nodes located at mid-points (quadratic side) or one-
third point (cubic side) (Fig. 9.4.7; Norrie and De Vries, 1973, p. 86). The
functions Ui(x) and wi(x) are written in terms of £ and are selected such that
they fulfill the basic requirements of a basis function and relate the global and
local coordinate systems (Zienkiewicz, 1971).

From the dispersion scheme and [9.4.15] and [9.4.16] two sets of
algebraic equations can be obtained:

[N] {C}+ [M] {dC/dt} + {F} = 0 [9.4.17]
[P] {M}+ [R] {dH/dt}+ {U} = 0 [9.4.18]

where N, M, P, R are (n — m) x (n — m) matrices (m being the number of
passive nodes due to Dirichlet boundary conditions), and C, H, dC/dt and
dH/dt are vectors containing the undetermined coefficients and their time
derivatives. The coefficients of the coefficient matrices are expressed in
terms of integrals over the domain of the basis functions and their derivatives.
The computations of these integrals are performed in the local rather than
the global coordinate system, with limits of integration of — 1 and + 1 and
Gaussian quadrature is used. According to experience, exact solutions must
be obtained from these integrals. The coefficients depend on the boundary
conditions.
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Fig. 9.4.7. Deformed mixed isoparametric quadrilateral elements on global x and £ co-

ordinates (Pinder, 1973).

Systems [9.4.17] and [9.4.18] are solved by approximating the time
derivatives of concentration and hydraulic head by a finite-difference scheme

with a backward difference in the dispersion equation:

I

[N] {C} .t [MI({C},ip,— {C}t) /AL + {F}
[P] {H}pae + [RI{H} 0, — {H},) /AL + {U}

Il

These equations are solved sequentially for each time-step, for given initial

and boundary conditions.
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9.5. THE BALANCE-OF-FLUXES THEORY OF THE HYDROLOGIC
EQUATION

One of the main parameters of groundwater pollution is the velocity of the
groundwater. We already have investigated field methods which provide this
factor. Of course such methods cannot be used for predictive models and
management models, when pumping and recharge vary, when projects of new
wells and industries are studied, in general when the regime of the polluted
aquifer varies with time. Thus mathematical modelling of groundwater move-
ment has to be introduced.

The general hydrologic equation is:

oH
div (T grad H) = S—a—t—+Q [9.5.1]
where T = Ke transmissivity of the aquifer (see Appendix I), S = storage

coefficient, H = heads, @ = field singularities (such as evaporation or wells,
for instance).

This equation can be approximated, using the mathematical results of
§9.4. But in this paragraph, we present a discretization method which is
closer to the physics of the phenomenon, and illustrates the philosophy of
modelling we have sketched in the Introduction. These methods complete
each other and should be used together in any real problem.

For the sake of simplicity, we consider a bidimensional horizontal confined
aquifer, the third dimension being included in the transmissivity term. Our
results may very easily be extended to more general aquifers and we leave
this to the reader.

9.5.1. Balance of elementary blocks

The basic principle is to isolate a block of ground by thought; water comes
in through some faces and out through other faces; besides this some water is
stocked in the pores. We apply the principle of mass conservation, with the
following convention: when a block receives water, the received quantity is
positive and when it loses water, the lost quantity is negative. The balance of
mass is then written:

stocked water = received water — lost water

Now we analyze the various components of this balance. The elementary
blocks of ground are cubes, of length Ax. The aquifer is discretized as shown
in Fig. 9.5.1.

Remark. The theory is valid for any other discretization of the aquifer: the
simple geometry of the example does not imply any simplification of the
theory.
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The center of an elementary block is C; N, S, E, W are respectively the
centers of blocks north, south, east and west of C (Fig. 9.5.2).
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Fig. 9.5.2.

The distributions of head and hydraulic parameters are defined by allocat-
ing the mean value of the considered quantity in its block to the center of
the block and computing the balance for block C between two times ¢, and
t,. The density of the water is assumed to be constant, thus we only consider
a conservation-of-volume equation.

Stocked water
Between t, and t,, the piezometric level varies from H, to H}. By defini-
tion of the storage coefficient, the stocked volume of water is, algebraically:

(Stocked water between t; and t,) = S.(H} — H,) Ax?

— if the level goes up, stocking is positive.
— if the level goes down, stocking is negative.

Water received or lost

It has two origins: (1) the water which flows through the block due to
exchanges with the neighbouring blocks; this is called transit water; and (2)
the water injected or pumped by boreholes, evaporation, infiltration; this is
called transfer water.
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(1) Transit water. The flow of water from block W to block C is:

Hw — He

= T,.A
ch weAX Ax

T, is the mean transmissivity on the contact face. A very common approxi-
mation (based on regularity properties of the aquifer) is:

Twe = 3(Ty +Te)

with this approximation:

Que = 3(Ty +T,) (Hy, —H,)

Estimating the fluxes from other blocks, we have the total flux Q,,.:

Qior = %(Tg\j + Tc) (Hy —Hg) + %(Ts + T¢) (Hg —H¢)
+ %(TE +T¢) (Hg —Hg) + %(TW +T¢) (HW —H)

(2) Transfer water. The transfer water @, is:

@, = + (the sum of the injection wells’ flow rates)—(the sum of the pump-
ing wells’ flow rates) + infiltration—evaporation

From t; to t,, the amounts of transit and transfer water respectively are
Qioi(t, — t;) and Q.(t, — t;). The balance of flux is then written:

S.(HX—H,) Ax? = Qiot(tr — 1) + Q.(t, — 1))

and setting At = t, — t,, we have the discretized form of the hydrologic
equation:

H—H) 1], !
Se T T aaaP (T + o) (Hy —He) + H(Ts + Tc) (Hy —Ho)

QRc
+3(Tg + Te) (Hg —He) + 3(Tw + Te) (Hy — He)|+ Al [9.5.2]

Remark 1. (H} — H_.)/At is the mean velocity of the piezometric level
between ¢, and t,.

Remark 2. Q./Ax? is homogeneous to a flow rate per unit surface area; this
means that we homogenize the representation of the surface exchanges (in-
filtration and evaporation) and the representation of the punctual exchanges
(wells).
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Equation [9.5.2] is an approximation of [9.5.1] that is only based upon
the fact that water mass is conservative; it displays the physical meaning of
[9.5.1]. Actually some authors (Emsellem, 1970) derive [9.5.1] from [9.5.2]
by taking the limits of the various terms when Ax and At decrease to zero.

9.5.2. Boundary conditions

An aquifer is bounded and the exchanges of water with the exterior are
governed by boundary conditions, which are of two types:

(1) Boundary conditions external to the equation. These are the condi-
tions that are usually referred to, in the literature, as boundary conditions.
The most usual conditions are:

— constant potentials; these are due to ponds, lakes, streams, outcropping
of the aquifer

— at zero flux; these are due to impervious boundaries

— at a potential varying with time, such as sea-water levels in coastal aquifers.

(2) Boundary conditions that can be internal to the equation. Consider a
well; if its size is small with respect to the mesh size, its flow rate may be
considered as a transfer flow rate of its block, thus included in the equation
as some @,. In the same way, evaporation and infiltration may be considered
either as variable flux conditions or as transfer flow rates also included in the
equation. According to the problem, we have either boundary conditions or
field singularities included in the equation as a term Q..

9.5.3. A simple example

We consider the aquifer discretized in Fig. 9.5.3. The values of transmissiv-
ities, the boundary conditions and the singularities are described in Fig. 9.5.3.
The regime is permanent, i.e. time-independent.

N° of mesh Transmissivity m?/sec x1073
1 2 3 13 4 2
4 5 6 10 6 2
7 8 9 6 8 6
Fig. 9.5.3(a).

We will write the flux equations for each mesh:
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Constant potential

—
7 8 9
zero flux ? ? ? zero flux +7
n 13 13
1

Constant potential

Boundary conditions Flow rate 10_3m’/sec

(injection well)

Fig. 9.5.3(b).
lux coming - T
from
N S E W Fl‘zw
towards rate
mesh N
4 8(7—Hy) | +8(11 —H,) | +8(Hs— Ha)}] +0 = 0
5(8 —Hs) | +7(13 — Hs) +4(H6—H5)\\$8(H4—H5) =—7
6 29 — Hg) | +4(183 —Hg) | +0 \+‘4(H5—H6) = 0

We arrange the coefficients of H,, H;, H, for each equation in a table:

MeShCoeff. H, H H
4 — 24 8 0 [H,] [—144
5 8 —24 4 | Hs| =] —138
6 0 4 —10 | H ~ 70

—24 8 ol||H, — 144
8 —24 4||H;| =|—138
0 4 —10||H, — 70

The coefficient matrix of H,, Hs, H is called the hydraulics matrix or trans-
missivity matrix T.
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9.5.4. Some properties of the transmissivity matrix

In the previous example, we observe that the transmissivity matrix is diag-
onally dominant and symmetric. These are general properties.

(1) Symmetry. i and j being the numbers of two neighbouring blocks, the
flux from i to j is equal, in absolute value, to the flux from j to i. The co-
efficient of H; is equal to the coefficient of H;.

(2) Diagonal dominance. Consider the flux-balance equation at point ¢,
in a permanent regime:

Tyc(Hy —He) + Tge(Hg —He) + Ty c(Hy —He) + Tgc(Hg —H¢) = Q¢
arrange as:
TycHy + TscHg + TycHy + TpcHg— (Tne + Tse + Twe + Tee)He = Qe

It appears then that the coefficient of H. is on the principal diagonal and is
greater than or equal to the sum of the other coefficients, which are positive.

Strict inequality may occur when a block, say N, is at a constant given
potential on a boundary. H, is known and the balance-of-flux equation is
then written:

TscHs + TweHw + TecHeg — (Tne + Tse + Twe + Tec)He = Qc — TneHy

keeping only unknown quantities on the left-hand side. The inequality is
obvious.

Remark. Consider the previous example. We could have written the whole
system of equations for all blocks:

wafsg No. v o9 3 4 5 6 7 8 9

RO —
2 Hy 8
3 Hy 9
4 8H, — 94H, + 8H, + 8H, = 0
5 5H, + 8H, —24H, + 4H, + 7Hj —— 7
6 2H, + 4H, —10H, +4Hy = 0
7 H, = 11
8 Hy = 12
9 Hy = 13

This is not efficient because we have equations 1, 2, 3, 7, 8, 9 which are not
useful. We write the matrix system:
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. 0 O 0 0 0 0 0 O][H,] [~ T pressure
0\1 0 0 0 0 0 0 O0]}H, 8 | pressure
0 0\1 0 0 0 0 O O0f[|H, 9 | pressure
8 O 0\24 8 0 8 0 O||H, 0] flux
0 5 0 8\—24 4 0 7 O (Hg|={— 7|flux
0 0 2 0 4\—10 0 0 4||Hg 0| flux
0 0 0O 0 0 0\1\0 0|1 H, 11| pressure
0 0 O 0 0 0 0 L O} |Hg 12 | pressure

L0 0 O 0 0 0 O 0\1_ | Hy | . 131 pressure

This matrix is still diagonally dominant but it has lost its symmetry because
it comprises pressure equations and flux equations at the same time. This is
exactly what should not be done.

9.6. PRACTICAL USE OF MODELLING TECHNIQUES AND PRO-
GRAMMING

We have seen two types of techniques:

(1) Approximations: explicit, implicit, Crank-Nicolson or ADIP techniques
yield an estimate of C(t + At) from C(t).

(2) Procedures: point or block successive overrelaxation Gauss-Seidel or
Jacobi techniques solve a linear system of equations by iterations. Gauss’
elimination technique solves a linear system of equations by directly invert-
ing the coefficient matrix of the system.

The complete-resolution technique consists then in choosing an approxi-
mation of the transient problem. If the approximation is explicit, C(t + At)
is directly computed by a simple addition of multiplications; if the approxi-
mation is implicit (or Crank-Nicolson), a procedure has to be chosen to solve
the linear system of equations at each time-step. If the approximation is
ADIP, the tridiagonal systems in rows and columns at each time-step are
solved by the Gaussian elimination method. In the case of a steady-state
problem, of course, only a procedure has to be used.

The choice of an approximation and a procedure will depend on the geom-
etry of the domain; the ADIP will be reserved to very rectangular or convex
domains, and point-successive overrelaxation will be used in the case of com-
plex geometries. Block-successive overrelaxation can be used in the case of a
geometry that is complex along one direction and simple along the other one.

When there is a need to refine the knowledge of a section of the domain,
varying grids are introduced (Fig. 9.6.1) and point-successive overrelaxation
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is well adapted. This situation, for instance, occurs when pollution near a
pumping well is studied.

_Ft

Fig. 9.8.1. A varying grid.

As an illustration, we give three basic programmes, namely two procedures
and the tridiagonal Gauss elimination. Although they are not probably the
optimal FORTRAN writings of the problems, they can be used as a control
of exercises by the students.

The procedures are used to solve the following problems: a horizontal
aquifer is represented by the discretized domain of Fig. 9.6.2; determine
the potential knowing that the potential of the boundaries is 100 m, that
transmissivities are constant and equal to 1073 m?/sec and that there is a
central well pumping at the rate of 0.05 m?3/sec.

The regime is steady and the model is defined by [9.5.2] with H* = H,.

(1) Gauss-Seidel:

PROGRAM GAS(INPUT, OUTPUT)
METHOD OF GAUSS SEIDEL

DIMENSION T(21, 11), Q(21, 11), H1(21, 11)
*DATA INPUT*
READ 100, IMIN, IMAX, JMIN, JMAX
100 FORMAT(413)
DO 1 I=IMIN, IMAX
DO 1 J=JMIN, JMAX
T(, J)=0.001
Q(1, J)=0.
1 CONTINUE
Q(11, 6)=0.05
*INITIAL CONDITIONS*
DO 2 I=IMIN, IMAX
DO 2 J=JMIN, JMAX
H1(I, J)=0.
2 CONTINUE
*BOUNDARY CONDITIONS*
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DO 3 I=IMIN, IMAX
H1(I, IMIN)=100.
H1(I, IMAX)=100.
3 CONTINUE
DO 4 J=JMIN, JMAX
H1(IMIN, J)=100.
H1(IMAX, J)=100.
4 CONTINUE
DO 5 L=1,150
U=0.
IMI=IMIN+1
IMA=IMAX—1
IMI=JMIN+1
IMA=JMAX—1
DO 6 I=IMIL, IMA
DO 6 J=JMI, JMA
TN=0.5+(T(I, )+ T(I-1, J))
TS=0.5+(T(I, H+T(I+1, J))
TE=0.5%(T(1, J)+T(I, J+1))
TW=0.5%(T(1, J)+T(I, 3—1))
TTOT=TN+TS+TW+TE
Z=TN*H1(I—1, J)+TS*H1(I+1, J)+TE+H1(I, J+1)+TW*H1(I, J—1)
Z=Z/TTOT
*COMPUTATION OF THE RESIDUEx*
U=U+(Z—H1(1, J))*(Z—H1(, J))
H1(L, J)=Z
6 CONTINUE
1F(U—0.001)8, 8, 7
7 CONTINUE
PRINT 1000, L, U
5 CONTINUE
*RESULTS*
8 PRINT 1001
DO 10 I=IMIN, IMAX
PRINT 1002, I, (H1(1, J), J=JMIN, JMAX)
10 CONTINUE
1000 FORMAT(5X, *ITERATION*, 13, *RESIDUE#*, E15.8)
1600 FORMAT(1H1, 5X, *POTENTIAL MAP#//)
1002 FORMAT(1H, 12, 3X, 11(E10.3, 1X)//)
STOP
END
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1 2 34 S 6 7 8 9 10 n

Well (6,11)

20

21

Fig. 9.6.2.

(2) Successive overrelaxation:

PROGRAM SOR(INPUT, OUTPUT)
METHOD OF FRANKEL-YOUNG

DIMENSION T(21, 11), @(21, 11), H1(21, 11)

*DATA INPUT*

R=1.9

READ 100, IMIN, IMAX, JMIN, JMAX

100 FORMAT(413)

DO 1 I=IMIN, IMAX

DO 1 J=JMIN, JMAX

T(1, J)=0.001

Q(1, J)=0.

1 CONTINUE
Q(11,6)=0.05

271
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*INITIAL CONDITIONS*
DO 2 I=IMIN, IMAX
DO 2 J=JMIN, JMAX
H1(I, 3)=0.
2 CONTINUE
*BOUNDARY CONDITIONS*
DO 3 I=IMIN, IMAX
H1(I, JIMIN)=100.
H1(I, IMAX)=100.
3 CONTINUE
DO 4 J=JMIN, JMAX
H1(IMIN, J)=100.
H1(IMAX, J)=100.
4 CONTINUE
DO 5 L=1, 150
U=0.
IMI=IMIN+1
IMA=IMAX—1
JMI=JMIN+1
IMA=JMAX—1
DO 6 I=IMIL IMA
DO 6 J=JMI, JMA
TN=0.5%(T(I, ))+T(I-1, J))
TS=0.5%(T(I, +T(I+1, J))
TE=0.5%(T(L, J)+T(L, J+1))
TW=0.5%(T(I, J)+T(I, J—1))
TTOT=TN+TS+TW+TE
Z=TN#*H1(I—1, J)+TS*H1(I+1, J)+TE+H1(I, J+1)+TW+H1(I, J—1)
7=7/TTOT
#*COMPUTATION OF THE RESIDUE*
V=7—H1(, J)
U=U+V*V
H1(I, H)=H1(I, ) +R*V
6 CONTINUE
IF(U—0.001)8, 8, 7
7 CONTINUE
PRINT 1000, L, U
5 CONTINUE
*RESULTS*
8 PRINT 1001
DO 10 I=IMIN, IMAX
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PRINT 1002, I, (H1(L, J), J=JMIN, JMAX)
10 CONTINUE
1000 FORMAT(5X, *ITERATION*, 13, *RESIDUE*, E15.8)
1001 FORMAT(1H1, 5X, *POTENTIAL MAP*//)
1002 FORMAT(1H, 12, 3X, 11(E10.3, 1X)//)
STOP
END

(3) Tridiagonal Gauss elimination method:
The problem is to solve the system [9.3.1].

DIMENSION ALF(N), BETA(N), B(N), C(N), D(N), X(N),
ALF(1)=D(1)/B(1)
BETA(1)=C(1)/B(1)
DO11=2, N

ALF(I)=(D(I)—A(I)*ALF(I—1))/(B(I)—A(I)*BETA(I—1))

BETA(I)=C(I)/(B(I)—A(1)*BETA(I—1))
1  CONTINUE
X(N)=ALF(N)
II=N—I
DQ2I1I=1, IT
I=N—1III
X(I)=ALF(I)-BETA(I)*X(I+1)
2  CONTINUE
STOP
END

273
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APPENDIX I

BASIC FACTS OF GROUNDWATER MOVEMENT

This Appendix intends to give the basic definitions only, linked to the
practical aspects of water movement in the ground and of its measurements.
For instance, we approach the concept of ‘head” only by associating it to
the level of water in a well, which actually is the only practical way of
measuring this head in an aquifer. If the reader intends to go deeper into
the theory of groundwater movement, there are many excellent text books
on this subject that we recommend, such as Jacob Bear (1972), David Todd
(1959), De Wiest (1965), especially for the case of non-potential flow, which
we do not present here, and the general aspects of Darcy’s law.

A.1.1. Cause of groundwater movement

The driving phenomenon of waterflow in the ground is the hydraulic
potential or head. This potential is represented by the level of water in bore-
holes: the difference in head between two points is equal to the difference
of the water levels in two wells drilled at these points. Actually, the cause of
the movement is the difference of potential:

— if the fluid is at the same head everywhere, there is no flow
— if there exists a difference of head in space, water flows in the direction of
decreasing heads (Fig. A.1.1).

Flow direction

Fig. A.1.1

Hints for theory fans

Hydrostatics tells us that p; = pg(h; ~— 2,)
p being the pressure, p the density and g the gravity, h and z are defined in
Fig. A.1.2.
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hy = pi/pg + 2,

h, is the head at point 1. Actually, the head is given by the relationship:

where v is the velocity of the water. In a porous medium, v? can be neglected.
Along a streamline, we have, according to Bernoulli:

Bi—i—z, = &+22+Ah

pg pg

where Ah is the loss of head (drawdown) due to irreversible dissipation of
heat by viscosity.

Thus the drawdown is equal to the difference between the water levels,
h] - hz.

Az,n
hl
!
%
¢
/%y s
Z,

Sand saturated with
water

Reference plane

Fig. A.1.2. An illustration of the concept of head.
A.1.2. Confined and unconfined aquifers

A well is drilled into an aquifer; the drilling stops when water is reached
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for the first time:

— if the water level in the borehole is stabilized above the bottom of the

hole, the aquifer is confined

— if the water level does not rise in the borehole, the aquifer is unconfined.
The same aquifer can be confined in some areas and unconfined in others.

The fact of being confined or unconfined is a local property of the aquifer.

It is a very simple application of the principle of communicating vases

(Fig. A.1.3).

Water table

Unconfined

Confining bed
Artesian well

Confined

Fig. A.1.3. Confined and unconfined aquifer.

The water in a borehole is stabilized at a level called the piezometric level.
The surface which joins all the water levels is the piezometric surface. If the
piezometric surface is identical to the water table, it is a free surface and the
aquifer is unconfined. Otherwise the piezometric surface is above the water
table.

A.1.3. Hydraulic gradient and velocities

Hydraulic gradient

Along a horizontal streamline, we consider two points A and B and their
corresponding heads (or piezometric levels) H, and Hy. The distance
between A and B along the streamline is L (Fig. A.1.4).

The hydraulic gradient in the direction A to B is:

. Hg —H,
i = -
L
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Fig. A.1.4.

It is an algebraic number: if the hydraulic gradient is taken in the direction of
flow, it is negative because we have said that flow occurs in the direction of
decreasing heads.

The quantity H, — Hpg is called the drawdown between A and B

Velocities ‘

Several velocities can be introduced: (1) the apparent velocity is the
velocity of the general flow through a porous medium; (2) the real velocity
is the velocity of a microscopic drop in the porous medium.

Let us consider an example (Fig. A.1.5).

IS I S

ol

11

h ‘I T
(]

L

Fig. A.1.5.

AB being on a streamline, we inject a large amount of radioactive tracer into
well No. 1. After some time period T, a probe in well No. 2 records the
occurrence of radioactive water. The apparent velocity is:

V =L/T

L being the horizontal distance between the wells.

Actually, the molecules do not follow a rectilinear path in the porous
medium, their velocities are higher than the apparent velocity because the
length of the actual path is greater than L, due to the solid matrix (Fig. A.1.6).

The apparent velocity is called the macroscopic velocity V,; or mean pore
velocity V; . The real velocity is called the microscopic velocity V,, .
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&OC

Fig. A.1.6. Actual and mean paths.
A.1.4. Darcy’s law
Along a streamline we have:
where K,, is a coefficient homogeneous to a velocity. The sign comes from
the fact that the displacement occurs in the direction of decreasing heads.
Darcy’s law states that the groundwater velocity is proportional to the
hydraulic gradient.
A.1.5. Filtration rate of flow

We compute the flow rate through a ground section (Fig. A.1.7).

Fig. A.1.7. Elementary block of ground.

Consider the groundwater flow through a section of thickness e, of width [,
perpendicular to the flowlines. Assume first a much simpler phenomenon, a
continuous fluid without the porous matrix. Between times ¢, and ¢,, a
volume ¢ of fluid flows through the section, which defines a length L by the
relationship:

g = lelL
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L can be interpreted as the virtual distance travelled by the section during
time t2 - tl .
A mean velocity V, between ¢, and ¢, is then defined by:

Vu = Li(t,— 1)
and the flow rate @ through the section is expressed as:
Q = q/(ta—t)) = Vyl.e

By analogy, the flow rate @ through a section of porous medium is expressed
as:

Q = Vpl.e [A.1.1]

where V;, is the Darcy’s velocity. From the way it has been introduced, it is
obvious that Darcy’s velocity is not a real velocity of some kind, but an
abstract concept. Equation [A.1.1] defines Vj, from the measurable
quantities @, [ and e.

A.1.6. Darey’s porosity

The flow rate @ can also be expressed in terms of the macroscopic
velocity Vy; by:

where S is the area of the pores in the section.
Darcy’s porosity is defined by:

¢p = Vp/Vy
and setting K, = ¢p K, , we find another form of Darcy’s law:
VD = —KDl

and K, is called the permeability.

It should be stressed that Darcy’s porosity has a hydraulic meaning, as it
represents the fraction of porous medium which really yields water by
pressure flow. It is an effective porosity: the measurement of the percentage
of voids in a porous medium yields a real porosity ¢ greater than ¢y ; it is
explained by the occurrence of dead-end pores, adsorbed water and more
generally water linked to the solid matrix which does not take part in the
flow.
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A.1.7. Transmissivity
The real discharge of fluid is:

written as: @ = — (Kpe)li = —Tli
by setting: T = Kpe

T is the transmissivity, homogeneous to L2T !

As an example, a transmissivity of 1 m?/sec for a width [ of 1m and a
gradient i of -1, yields a flow rate of 1 m3/sec.

The transmissivity concept is generally used for confined aquifers, where e
represents the thickness of the aquifer. It allows the treatment of tri-
dimensional cases with bidimensional models, especially with regard to the
estimate of water resources; these models are less adequate to determine a
movement and the generalized Darcy’s law is then required {(§ A.1.9).

A.1.8. The storage coefficient

Unconfined aquifers

The term “‘storage coefficient’’ is used wrongly in the case of unconfined
aquifers, but anyhow, we give its usual definition in that case.

When pumping the aquifer, the piezometric level decreases from H, to
Hy (Fig. A.1.8). A volume Vy of water is extracted on section A. The
volume V, of porous medium swept by the water table is:

Vp = (Hy —Hp)-A
where A is the section area.
Vw = ¢p* Ve = ¢p(Hy —Hp) A

and as ¢, < 1, we have Vi, < V.. The storage coefficient is the effective
porosity.

Confined aquifers

The term storage coefficient actually applies only for confined aquifers.
Although in both cases, the schemes are the same, the physical mechanisms
are different.

Vw being the real volume of water extracted by sweeping a fictitious
pressure ‘“‘volume” V, (Fig. A.1.9), we define the storage coefficient S by:

Ve = SVp

S is dimensionless.
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Fig. A.1.8.

The mechanism can be explained as follows. When the piezometric level
decreases, water is less compressed, which yields a first fraction of water
V', * B being the compressibility coefficient of water defined by:

AV
B = ——V—/AP

we have: |AV| = Bl|Ap| V¢

where AV is the volume of water contained in a ground volume V = Ae,
where e is the thickness of the aquifer and A the surface area defined in
Fig. A.1.8.

Thus: V, = Bi(Hg —Hy)pglAed

where ¢ is the porosity of the aquifer. Ae¢ is the volume of pores. As pressure
decreases, the solid matrix extends and pushes out another fraction of
water V,:

V, = al(Hg — H,)pgl Ae(1 — ¢)

where « is the compressibility coefficient of the solid matrix. Ae(1 — ¢) is
the volume of the solid matrix. The total volume V of extracted water is
then:

V. =V,+V, = AlHg —H,l[¢Bpg + (1 — ¢)apgle
The storage coefficient is then:

S = [¢Bpg + (1 —¢)apgle
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Unit cross-sectional

Unit decline of area
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Fig. A.1.9. Definition of the storage coefficient.

Another useful form of the definition of S is: the storage coefficient is the
volume of water that an aquifer releases from or takes into storage per unit
surface area of aquifer per unit change in the head normally to that surface.

A.1.9. Generalization of Darcy’s law

The hydraulic gradient

Consider the piezometric level h(x, y, z) at point (x, y, 2) and a flowline
going through the points A and B of respective coordinates, (a;, a,, a3),
(b,, by, b3) in some reference system. The hydraulic gradient between A and
B is the vector defined by:

[A(by, by, b3) — h(ay, az,a3)] /(b —ay)
isg { [A(Dy, by, b3) — h(ay, ay, a3)] /(1_72 —ay)
[A(by, by, b3) — h(ay,az, a3)] /(b3 —ay)

This definition is directly derived from § A.1.3.
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If B tends towards A, iyp tends towards the vector i, .

oh ( )

—(a;, 04,0

ax 21202 03

) oh

Iy N (ala as, a3)

oy

oh

a— (ay, as, as3)
2

i, will be called the hydraulic gradient at A, grad h.

Darcy’s law

K, being the coefficient of a macroscopic velocity and K, being Darcy’s
coefficient, Darcy’s law is generalized in a first step as:
Vu = — Ky grad h
Vp —Kj, grad h

Il

and the components of vectors Vy and Vp are:

oh oh
Vs = — Ky 7 Vpx = —Kp ——
0x 0x
oh oh
oh oh
V. = —Ky Vp. = —Kp —
0z 0z

If the medium is not isotropic and homogeneous, Darcy’s law is further
generalized as:

oh oh oh

VDx = _Kxx E;Wny g_sz (T)—Z—
o = g W O
Y 7 x > 3y ¥ 9z
oh dh dh

VDz = —sz g;_sz ahi);—Kzz 5;



BASIC FACTS OF GROUNDWATER MOVEMENT 285

Remark. The most general form of Darcy’s law as used until now, applies
to non-potential flow and is written:

k
Vp = “;(gradp + pg grad z)

This form must be used when the density p is not constant, which occurs in
some pollution problems (we have called this case the ‘“‘general case” and
have given an example with salt intrusion from salt dumps).

k is the intrinsic permeability coefficient, homogeneous to L2, and u the
dynamic viscosity. If p is constant, the usual form of Darecy’s law is found:

kpg P
Vp = ———grad| —+2z| = —K, grad h
M PpE
k p
with K, = JOﬁandh = —+z.
M ps

Derivation of the hydrologic equation (Emsellem’s method)

An equation describing the movement of groundwater is derived from the
continuity equation and Darcy’s law for confined and unconfined aquifers
(De Wiest 1965; J. Bear, 1972). As an example, we give a derivation of the
hydrologic equation for a confined aquifer due to Emsellem (1971).

Equation [9.5.2] is written:

HY—H,
S
At
+(Tg + To)Hg — He) + (Tw + Te)Hy — He)l + Q/Ax?

1
= Ae? 12[(Ty + Tc)Hy —Hc) + (Ts + Tc)(Hs —He)

At and Ax tend to 0; then:

H*—H, 0
—— = (o)

At ot
H H, oh

N c_)_(c)

Ax ox
Loy vrofete Lg iyt

(N C) 2( S C Ax d 3

> =722 ()
Ax 0 0

E — q, local flux.
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Equation [9.5.2] becomes:

oh 0 ( ah) 9 ( oh
S—=—|T—|+—\T—|+gq
ot 0x 0x oy oy

oh
or: Sg; = div(Pgrad h) + q

A.1.10. Some considerations about the flow regimes

Consider a closed aquifer, i.e. an aquifer that does not receive any water
from anywhere, submitted to pumping at constant flow rates and follow the
level variations with time.

Transient Permanent t
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Y

Fig. A.1.10. Traunsient and permanent regimes.
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Fig. A.1.11. Transient and uniform regimes.

First, the level goes down according to the characteristic shape of the
transient regime, which is a propagation regime. After some time, it can be
observed that the shape of the piezometric surface no longer changes: the
aquifer goes down uniformly; its evolution at one point is coupled with its
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evolution at all other points and the draw-down velocity is uniform. The
regime is called uniform.

Evaporation

Infiltration

H

Fig. A.1.12. Cyclic regime with deficit.

Fig. A.1.13. Cyclic regime with feeding.

Assume now that rain brings a fixed quantity of water to the aquifer,
according to an annual cycle, and that this quantity of water is less than the
total output. The uniform drawdown, due to pumping, will be modulated by
the evaporation—infiltration flow rates but, as water due to rain does not
cover the output, we have a cyclic regime with deficit; otherwise we have a
cyclic regime with feeding.

The various regimes are presented in Figs. A.1.10—13.
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ELEMENTS OF GEOPHYSICS : SURFACE ELECTRICAL METHODS

Electrical-sounding techniques are widely used to determine the geometry
of aquifers, especially alluvial aquifers which offer electrically well contrasted
layers. Described in several books (Kunetz, 1966; Todd, 1959), they are very
well summarized by Ungemach (Thesis, 1975), whom we largely quote here.

The idea of prospecting the natural electrical fields from the surface is
rather old (19th century) and was called spontaneous potential or self poten-
tial (SP). Later, Schlumberger (1920) injected a continuous current into the
soil and obtained data on the nature and the structure of the subsoil from
discrepancies observed with the ideal scheme of a homogeneous and iso-
tropic soil. We shall now examine the various techniques, recalling that for a
semi-infinite homogeneous medium of resistivity p, the electrical potential
due to a point source is:

Uy = pl/2 7

where r is the distance to the source and I the intensity. The anisotropy
coefficient A is:

A= V/pelp,

where p, is the transverse (or lateral) resistivity and p, the longitudinal (or
normal) resistivity.

A.2.1. Potential method (P.M.)

At point M (AM = MB = a, Fig. A.2.1), the electric field is approximately
constant and, parallel to AB, can be expressed as:

E, = 3—15/(1 + 2%/a?)%?
o’

and at the ground surface E, = pl/m a2

The equipotential lines, obtained from potential measurements at various
points, are circular for a homogeneous soil. An increase or a decrease of the
resistivity will yield a change of the equipotential net. This change in the
ideal cases of simple geometric structures (spheres, cylinders, circular plates)
can be measured through an explicit analytical formula and type curves can
be derived.
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A z B

Fig. A.2.1.§’otential method.

A possible application of this method in the case of groundwater pollution
is the following: an electrode is put into the aquifer and sends the current,
the other electrode being put at an infinite distance (i.e. a very large dis-
tance); the first electrode represents potential 100 and the other potential O
(Fig. A.2.2).

B

>0

N

M N

A

Fig. A.2.2. An application of the potential method with an electrode at infinity.

The potentials are expressed as fractions of the potential difference U,
— Ug and can be measured in MN in two ways: (1) either a reference equi-
potential line is drawn by moving an electrode in the field to reach that value;
or (2) the potential U,, is expressed with respect to a measured value on a
standing electrode (N for instance), electrically stable (i.e. out of reach of the
perturbation). This procedure has proved successful in checking the move-
ment of an electrically well contrasted perturbation.

A.2.2. Resistivity measurements

Consider the device shown in Fig. A.2.3.

e
1 ]
A l \ 8
M N
S
A : M P N B

Fig. A.2.3. Resistivity measurements.
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AB is the emission line and MN the measurement line. The apparent re-
sistivity p,, corresponding to an integrated response of the investigated layers
for a given length AB, is:

()~ o

KAU/T

LAU

I

Pa

where K appears as a geometrical characteristic constant of the device. Also,
p, could be expressed as a function of the potential ratios in a five-electrode
device, with a moving B, as represented in Fig. A.2.3:

pa = KR

R = AUMP/AUPN
K = (AN — AP)/(AP — AM)

]

Resistivity measurements are used for resistivity profiles and rectangle
measurements.

A.2.3. Resistivity profiles
AB and MN are simultaneously moved along the profile, their lengths

being kept constant: the investigation depth, which is proportional to AB,
thus remains constant (Fig. A.2.4).

_____

L3l bt

Fig. A.2.4. Determination of resistivity profiles.
A.2.4. Rectangle measurements

Apparent-resistivity measurements are performed, for a given AB, on a
rectangular net of electrodes MN contained in a rectangle, the dimensions
of which with respect to the emission line are such that the electrical field
can be assumed constant with the exception of a few heterogeneities (Fig.
A.2.5).

This type of measurement is well adapted to the study of a very local
zone: it requires the derivation, by computation, of the coefficient K at each
measurement point and the introduction of a correction factor to normalize
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the investigation depth, for a given AB, which is maximal at the center of the
rectangle and minimal at its ends.

AB/3 AB/3 AB/3

AB/A‘ Lo
A TMONMN

| -

Fig. A.2.5. Rectangle measurements,

The displacement of the rectangle requires an overlapping of the measure-
ments and a smoothing at the interfaces, which can be complicated by elec-
trode effects.

A.2.5. Electrical soundings

Electrical sounding is a vertical exploration of the layers, with cumulative
effects, by a progressive increase of AB, the distance between the measure-
ment electrodes remaining small with respect to AB (MN < AB/5). In the
Schlumberger quadripole device (Fig. A.2.6) the variations due to the contact
of the electrodes with a heterogeneous soil are controlled by an overlapping
of the measurements for a change of AB (Fig. A.2.7).

4
‘[

Fig. A.2.6. Electrical-sounding quadripole-injection-measurement.

\

Log[2B]
oo(*f)

Fig. A.2.7. Electrical-sounding curve.

log |:>a
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AU and I are measured with a potentiometer by an opposition method
and the values of the apparent resistivity p, are put on log-log paper as a
function of AB/2. In this representation the multiplication of the values of
the resistivities or of the layer widths is given by a translation of the curve
parallel to the y-axis or the x-axis.

Electrical soundings thus yield a discrete sequence of apparent-resistivity
values as a function of the distance between electrodes and sources. The
interpretation of the measurements is a typical identification problem, which
is to find a vertical distribution of resistivities p(z) corresponding to the
measured sequence p,(r). We give now a few hints about this interpretation.

We assume a semi-infinite medium with a horizontal homogeneous strati-
fication. A layer i influences the measured response through its transverse
resistance R,; and its conductance Cj which are related to the electrical and
geometrical characteristics of the layer by the formulas:

Ry = pue;

Ci = e;/py

where p; and e;, respectively, are the real resistivities (transverse and longi-
tudinal) and the thickness of the layer i. To take into account the occurrence
of water, another parameter is introduced, called the formation factor F and
equal to the ratio of the real resistivity of the saturated layer (solid matrix
and water) to the resistivity of the water alone p, . F is a function of the
porosity of the layer. A widely used representation of this function is Archie’s
relationship:

F = pilp, = ¢

where ¢ is the effective porosity and m a coefficient depending upon the
degree of consolidation of the aquifer (1 <m <2). \

The electrical-sounding curve represents the global effect of the investigated
layers and special numerical processes have to be introduced to obtain the
spectrum of the various layers; type curves and a semi-automatic treatment
are used according to the following principles.

In a stationary regime and under the previously mentioned stratification
and isotropy (p; = p;) conditions, the potential verifies the partial-differ-
ential equation:

90U 13U 3%
T e O 1A-21]
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which has the solution:
U, (r,2) = J [4; (\) € + B;(\) e 22 Jg(\r) d\ [A.2.2]
0

where i is the layer number (1 <i <<N), r the distance to the source, z the

vertical coordinate, taken positive downwards, A an arbitrary integration

constant, J, (Ar) the zero-order Bessel function of the first kind, A; and B,

the constants computed from the boundary conditions.

The boundary conditions are:

— at the interface between layers, the continuity of the potential (U; =
U;+,) and of the normal component of flow 0U;/on = 0U;,,/on

— at the ground surface, the nullity of the normal component of flow every-
where except at the source

—in the Nth layer, of infinite thickness, the nullity of the potential.
A; and B; are thus given by a linear system of 2N equations with 2N

unknowns.

The function 4;(\)e* + B;(\)e™* is called Stefanesco’s function, S[X\, p(2)]

The ground-surface potential can be written:

Ur0) = C H + f:S 0\, p(2)} Jo(\r) dX [A.2.3]

which yields the value of the reduced apparent resistivity, defined as the ratio
of the electrical field measured at the ground surface to its theoretical value,
proportional to:

,0U
—r*—(r,0)
or

or:ipl(r) = 1+ 272 J':s [N, p(z)] M (\r) dA [A.2.4]

The function S gathers all the information about the stratification and allows
the derivation for “N layers”-type curves; for instance, four-layers-type curves
have been obtained by an expansion of [A.2.4] in a series of functions.

These type of curves can be used for identification purposes of real soils,
taking into account some limitations of the method:

(1) Equivalence principle. If a conductive layer i lies between two resistive
layers (or a resistive layer i between two conductive layers), the electrical-
sounding curve is not modified by the multiplication of e; and p; by a factor
K (or alternatively by the simultaneous multiplication of e; and division of p;
by a factor K).

(2) Suppression principle. A resistive layer between a highly conductive
layer and a highly resistive layer has almost no influence on the electrical
sounding.
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A spectral representation of an electrical sounding can be obtained by
computing the cumulated resistances and conductances defined by number-
ing the layers downwards as:

R®) = Y pier (0= 1.n)
C®) = Y el

i=1

and drawing the curve:

VR(0)ICip) = f/R:p)Ci(p)]

on log-log paper.

To determine e; and p;, supplementary data have to be used: reference
borings with a geological log or parametric boring allowing the measurement
of the real resistivity of a layer.

Two cases of interpretation may occur: (1) the field electrical-sounding curve
corresponds to an existing type of curve; and (2) there is no total corre-
spondence. A smoothing will then be introduced.

Kam)
10* ©a SRC

Soamf 10006am B @—-——
S00m] 1000{lm 220am @ -------------
s3tm 2508 m T @
m 30m AB
1 Egnm[ 150Qm § ) 7 {m)
1 10 10 10

Fig. A.2.8. Electrical-sounding curve and cumulated resistance—conductance curve.
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Fig. A.2.8 is an example of electrical-sounding curves (E.S.) and of cumu-
lated resistance—conductance curves (D.Z.).

The interpretation of the experimental curves can now be improved by
automatic treatments (Kunetz, 1966), but it should be stressed that to de-
rive resistivities from the electrical field is a rather unstable problem. A small
variation of p yields a small variation of the electrical field E, but the con-
verse is not true and unless we have perfect electrical measurements (which
is quite unreasonable), no unicity can be reached. A procedure has thus been
derived which consists in:

(1) Computing a kernel function ¢(A,p) equivalent to S, by solving an
integral equation with a second member made up of measurements. This
kernel is the Fourier transform of the sequence of the electrical images of
the source at the interfaces of elementary layers.

(2) Deriving the sequence of resistivities from ¢, starting at the ground
surface.

This procedure applied to a single electrical sounding has been extended to
correlations between electrical soundings, under assumptions of regularity
and continuity in the stratification.
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SOME ELEMENTS OF MATRIX ALGEBRA

A.3.1. The vector space R"

Consider the reference system oxyz of rectangular axes (Fig. A.3.1). On
each axis, give a vector of unit length e, on ox, e, on oy, and e; on 0z. M being
a point of the space, any vector OM can be written:
oM = aq€ey + G4€ 5 + a3€3
where the set of real numbers (a,, a5, a;) are the components of OM on the
base (el, €, 63).

By geometrical composition of the vectors a,e,, ase,, azes;, we verify that

ae; +aze, +aze; = 0 impliesthat a; = a, = a3 = 0.

We say that e, e, and e; are independent. It can be easily checked that three
vectors of origin O which do not belong to the same plane are independent.

z

2

e

e; 2, Y

)

X

Fig. A.3.1. Usual reference system.

Consider two vectors OV and OW of respective components (a;, a,, a;) and
(b1, by, b3). The scalar product of OV and OW, written OV, OW), is defined
by:

OV,0W) = a; b, +a,b, + asb,
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We say that OV and OW are orthogonal if OV, OW) =
The length of vector OV is the number L(OV) such that:

L(OV) = (a3 + a2+ ad)V? = [{ov,owm)]V?

1t is also called the norm of OV and written ||OV}.

The set of vectors OM for all M of the usual space makes up the vector
space R3 with the origin O.

All the preceding definitions can be extended to sets of vectors with the
same origin but having n components, i.e. defined by a set of real numbers
(a;, ay, ... a,). They make up the vector space R", defined by the following
operation:
sum of two vectors OM (a,, ... a,) and ON (b, ... b,)):

OM+ON = OP(a, +b,,a,+ by, ...,a, + b,)

zero vector 00(0, ..., 0)
For all real A and u, we have:

AOM = ON (Aay, ..., \a,)

(A + 1)OM = NOM + HON
NOM + ON) = NOM + AON
MuOM) = (An)OM

1-o0M = OM
The vectors e, ..., e, are independent if:
ae; t..a,, = O0=—>a, = .. =4qa, =0

A Dbasis is a set of n independent vectors and any vector of R" can be
expressed as a unique linear combination of these vectors.

n

Scalar product: OV, OW) =

;:

-

Length of OV: OV, 0V)'/? = (2 a) = oV

A.3.2. Matrices

Consider the linear system of equations:
alx! +alx?+ ... +alx" = b!
aix! +adx?+ ... +aix" = b?

dix'+abx?+ ... +abx" = bP [A.3.1]
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A matrix is a table of n columns and p rows:

a; a; a,
A g
al  ab. at

Assuming that the real numbers x!, ... x" and b',.... b” are the components
of vectors X and B of R" and R?, we say that the application of matrix A to
X yields vector B and we write the system [{A.3.1] as:

AX = B

defining AX by:

al al x! ajxt+ . . . +alx”
AX = P P = pP,.1 P
ay a;, x" ayx + . . . tax®

A applies R" into R”.
In this book, we only consider square matrices, i.e. we state n = p. A square
matrix of order n (i.e. with n columns and n rows) applies R" into R": it
transforms a vector with n components into a vector with n components.

We investigate now the meaning of the various columns of a matrix of order
n. Consider the usual space and an orthogonal system oxyz as given in Fig.
A.3.1. We have defined a base of three orthonormal vectors (e, e,, €3) and in
the reference system, the components of e 1, ¢, and e ; respectively are (1, 0, 0),
(0,1, 0)and (0, 0, 1).

Consider a matrix of order n, A with coefficient & (i =1, 2, 3 andj =1, 2, 3).
We apply A to e, and determine the resulting vector B

Ae; = B
According to [A.3.1], we have:

atx1+alx0+alx0 = b!
a?x1+aix0+aix0 = b2

adx1l+a3x0+a3x0 = b?

1

a system which yields ! = al, b2 = a? and b3 = a3.

Thus the transform of the vector e, by the matrix A is the first column of A.
The reader will easily check that the transforms of e, and e; are respectively
the second and ‘third columns of A.
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These results can be easily extended to the vector space R": the columns
of a matrix A, considered as vectors, are the transforms by A of the base
(e, -.., €,) expressed in the same base i.e.:

n
Ae; = ale, +ate,+ ... +ale, = ) ajéej [A.3.2]

Application to a change of coordinate system

As an example, we wish to rotate the system oxy around the origin of an
angle 0 to obtain OXY. The basis vectors (unit vectors) are respectively
(e,,e;) and (E,,E,). We express a vector OM in both systems, its com-
ponents being respectively (x, y) and (X, Y). From Fig. A.3.2, we have:

oM = xel‘l_yeZ = XE1+ YE2
E, = cos 0e; + sin fe,

E, = —sin fe; + cos fe, [A.3.3]

and OM = (X cos® —YsinO)e; + (X sin 8 + Y cos 8)e,

which yields the system:

Xcosf—Ysinf x
Xsin0+Ycost = vy

written under matricial form as:

[E:os 0 —sin ﬂ I:Y} [x]
= [A.3.4]
sin 0 cos 0 Y y

Comparing to [A.3.3], we see that a change of coordinate system can be
defined by a matricial system, like [A.3.4], and the columns of the matrix
are the transforms of the vectors of the old basis (here E, and E,) expressed
in the same old basis (e, e,). This result can be generalized to non-orthonormal
base changes in R".

The usefulness of the matrix theory now begins to appear: it offers a
systematic representation of a linear system of equations and provides rules
and theorems that can be used to solve the system. We go deeper into the
theory of square matrices, by introducing the sum, the product and the
inverse of matrices.

In what follows, we use Einstein’s convention: in a product of indexed
quantities, when upper and lower indices are the same letter, summation of
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E, i

N4

Fig. A.3.2. Rotation of an angle 9.

the corresponding products has to be done by varying the common index.

S aib; = ajb; (=1, ..,n)
i=1

i(p .j) (=1 D
x'all e; = x'die;
i igl ! ! J: 1’ ey 11

i=1

Consider the matrix A, of order n, given by its coefficients (a’l:) and a
scalar \; we define the product AA as the matrix with coefficients (Aa{).

Example
[1 2] [le 2)(2] [2 4}
2 x =
3 4 2x3 2x4 6 8
Consider two matrices A and B, of order n, given by their cqefficients (af)
and (b)), and a vector X of R", given by its components (x') on the basis

(e1, .y €,,). Apply A and B to X, which yields two vectors X, and X, of R?

and consider the geometrical sum Z of X, and X,. The sum of A and B is the
matrix C = A + B, of order n, defined by the relationships:

X, = AX X, = BX
Z = X+ X, = AX+BX = (A+TB)X = CX

which yields the coefficients (c{) of C, in the basis (ey, ..., €5), using the
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definition of the product of a matrix by a scalar and equation [A.3.2]:

X = x'e, X, = Ax'e; = x'Ae; = x'ale; X, = x'ble;
Z = x'afe; + x'ble; = x'(d] + b))e; = x'cle;

i = 4 i
¢t = af + b

Example

1 2 5 6
3 4 7 8 10 12
Consider now the previous matrices A and B, and the vector X; apply
A to X, which yields X, and B to X, which yields Y. The product of B by A
is a matrix D = BA, of order n, defined by the relationships

1+5 2+6] [6 ﬂ
3+7 4+8

X, = AX Y = BX, = BAX = DX

which yields the coefficients (d{) of D, in the basis (e, ..., €,,)

X = xle;, X, = xlaje; Y = x'aiB(e;) = x'ajbfe

Y = x'dfe, with df = bFd

This coefficient d¥ is the sum of the products of the elements of the line &

of B by the elements of the column i of A.
Example:

[l 2] [5 6] [1><5+2><7 1x6+2x8] [19 22]
X = =
3 4] 7 8 3xb+4x7 3x6+4x8 43 50

The sum of matrices is associative and commutative:

(A+B)+C =A+(B+C) = A+B+C
A+B =B+A

The product of matrices is associative and non-commutative:

A(BC) = (AB)C = ABC
AB #* BA

The matrix 1 of order n with 1 on the diagonal and 0 everywhere is a
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unitary matrix (or identity matrix):
1 0 . . 0
=10 .. . O
NS
Ix A= Axl|= A for any A of order n.
If there exists a matrix B such that, for a given A:
BA = AB = |
we say that B is the inverse of A and we write:
B=A"
Consider the linear system of equations:
AX = B
If there exists A™!, we have:

ATlAX = A7lB = 1IX

303

The system can be solved and its solution is X = A™!B. The methods presented
in §9.3 are numerical techniques to compute A™!. In Chapter 9, all the results
are based upon the theorem: 11 alinear system of n equations and n» unknowns
is such that its matrix has an inverse, it has one and only one solution, i.e.
there exists one and only one set of numbers (x°) such that aix’ = b’

(i=1,..,nandj=1, .., n).

We admit the result: a matrix is invertible if and only if its column vectors

are independent. An invertible matrix is said to be “regular”.

If a matrix is diagonal (i.e. all its coefficients are zero, except on the

diagonal) its inverse is readily computed:

M1
aj
ai 0 1
a3 ) a3
A = A 1 =
0 ay 0 0
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A matrix A is said to be symmetric if:

This implies a! = 0. The diagonal coefficients are zero. Symmetric matrices
are a very important family, with interesting properties. They are frequently
encountered in models of groundwater flow.

A.3.3. Determinants
Consider the system:
ax + by = « (a b)x [
or =
cx +dy B c d ( y kﬁ
We compute x by multiplying the first equation by d and the second
equation by — b, and adding the resulting equations:

il

x = (ad —fBb)/(ad — bc)
In the same way:
y = (af — ac)/(ad — bc)

We notice that the denominator of x and y is the cross-product of the
coefficients of the system matrix:

X

It is called the determinant of the system.
If the determinant is zero, the system cannot be solved in that way:

a c
ad —bc =0 = — -
b d

If a/b = c/d = o/ the equations are proportional, the system reduces to
one equation and there is an infinity of solutions given by:

x = {@¢— by)/a forany value of y.
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If a/b = c¢/d # «/f there is no possible solution. The system is impossible.
It should be noticed that the determinant is zero if and only if the column
vectors of the system matrix are proportional (i.e. if the matrix is not regular).
A determinant is written:

As for matrices, algebraic operations on determinants can be defined.
If two column vectors are exchanged, the determinant takes the opposite
sign:

a b b «a
= ad —bc = —(bc—ad) = —
¢ d d ¢

this obviously implies:

If a column vector is the sum of two vectors, the determinant can be
expanded into the sum of two determinants as follows:

a b,
+
¢ d

ate b,
c+f d

eb,
f d

as is easily computed from the cross-product (¢ + e)d — b(c + ).

A column vector may be added to another column vector without changing
the determinant:

a b, ’b bI
+ =
c d d d

ab'
c d

a+b bl
c+d d

If a column is multiplied by a scalar )\, the determinant is multiplied by A:

I?\a b
|= Mad —be) = A
Ac d

ab,
¢ d

Determinants are generalized to linear systems for n equations with n
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unknowns as follows: the determinant det (A4), also written:

1 1
1 an

Nar

det (4) =
al—al

is the number obtained by:

(1) Doing all the possible products al, a2, ... a?, of n coefficients such that
o Q5 ... &, be a permutation of 1, 2, ..., n; no «; is thus repeated.

(2) Counting the number of permutations of ¢« ... «,, i.e. the number of
exchanges of two indices «; to obtain permutation 1, 2 ..., n. If this number
is even, the product is preceded by +; if the number is odd, the product is
preceded by —.

(3) Adding all the products with their signs.

Example
1 2 3
4 5 6|=1x5x9+4x3x8+T7Tx2x6—1x8x6—4x2x9—Tx3xb
7 8 9

All the results obtained for determinants of order 2 are valid for deterininants
of order n. The most important result, for our problems, is that a matrix is
regular if and only if its determinant is non-zero. Then we know that the
corresponding linear system of equations has one and only one solution;
otherwise, it may be impossible or have an infinity of solutions. The compu-
tation of the determinant may thus be required to check the possible existence
of a solution. Another interesting feature of determinants is that they are
needed to compute eigenvalues and eigenvectors of a matrix, as defined in
§A.3.4.

Remark. In some very simple cases (two equations with two unknowns
as seen) determinants can be used to compute the solution directly. This is
almost never the case in our pollution problems.

A.3.4. Eigenvalues and eigenvectors of a matrix of order n

For any matrix M, there exist vectors V; (different from the zero vector)
and numbers A; such that:

MVi = )\iVi [A.3.5]

V; is an eigenvector of M corresponding to the eigenvalue A;.

To any eigenvector V;, there corresponds a unique value A;.

To any eigenvalues );, there corresponds one or several eigenvectors which
span a vector subspace of R”, called the eigensubspace corresponding to A;.
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A matrix of order n has at most n distinct eigenvalues. Equation [A.3.5]
can be written:

M—ND)V; =0 [A.3.6]

The components of V; being (x!, ..., x”) and the column vectors of M — A\l
being (A, ..., A,), [A.3.6] yields:

XA+ ... +x"4A, = 0
which shows that A, ..., A,, are dependent. Thus M — A;l is not regular and
has no inverse.

This implies that the determinant of M — A;l is equal to zero; thus the

eigenvalues of a matrix M are the roots of the polynomial equation in A:

al — A al . al

det(M—\l) = 0 or ' ) ' =0

4 2 4—2A 2
Example M = M—Al =
2 4 2 4 —A

det(M—N) = (4—N)2—4 =0 = (6—A)2—N)

The eigenvalues are 6 and 2. The components of the eigenvectors verify the
systems:

4dx + 2y = 6x
2x + 4y = 6y

dx + 2y = 2x
2x +4y = 2y

and the corresponding eigenvectors are all vectors proportional, respectively.

1 1
toV, = L} for eigenvalue 6 and V, = { } for eigenvalue 2. We verify that

both systems have an infinity of solutions, because M — Al is not regular.

For our problem, the interests of the concept of eigenvalues and eigen-
vectors are: (1) the possibility of simplifying the linear system of equations;
and (2) the introduction of convergence theorems for iterative procedures by
establishing simple criteria for the convergence of sequences and series of
matrices.

A linear system of equations is easily solved if its matrix is diagonal. In
§ A.3.2, we have seen that a column vector of a matrix is the transform of
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the vector of the basis expressed in the basis if, for instance, e, is also an
eigenvector corresponding to the eigenvalue A, then we have:

Ael - 7\61

and the components of Ae, in the basis (ey, €4, ..., €,,) are (A, 0, ... 0).

From this consideration, we admit the theorem: a matrix A of R" can be
diagonalized if and only if there exists a basis of R” made up of eigenvectors
of A.

Of course, diagonalization is not always possible, but a matrix can always
be put under triangular form, i.e. with either only zeros above the diagonal or
only zeros under the diagonal, and eigenvalues on the diagonal. Under a
triangular form, the system is very easily solved.

(1) if all eigenvalues of A are distinct, A can be diagonalized; and (2) a
symmetric real matrix can always be diagonalized, even if its eigenvalues are
not distinct. Furthermore its eigenvectors are orthogonal.

The convergence criteria are explained in the next paragraph.

A.3.5. Norms of vectors and matrices

In § A.3.1 we have introduced the norm of vector V (x}, ..., x™)as V| =
(x¥ + ...+ x"")V2. Actually, this is the euclidean norm of ¥ and the most
natural, directly issued from the theorem of Pythagoras. Other norms can
be introduced such as:

n

i, = X 1%l

Wieo = sup |t

All norms satisfy the relations:

V|20 and (V] = 0¥V =0
AV = IAlI¥]] for all scalars A [A.3.7]
1"V + W< ||V] + IW]] (triangular inequality)

In the same way, the norm of a matrix A is defined by the relations:

IAll>0 and |All = 0¢A =0

INAl = |AIIlA]l for all scalars A [A.3.8]
lA + Bl <Al + Bl

lABlI < [lA[liB]|
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Now consider a matrix A of order n. We shall define two types of norms
of A.

(1) We call the norm of A subordinate to the vector norm ||¥], the positive
number ||Al| defined by:

fAll = su Iavi
V;epo v

[|A|| verifies the relations [ A.3.8]. Obviously, we have:
NAVI <AVl (Schwarz’s inequality)

A matrix norm and a vector norm for which Schwarz’s inequality holds are
“compatible”.

The matrix norm subordinate to the euclidean vector norm is called the
“spectral” norm.

(2) Another norm of A, compatible with the euclidean norm of ¥ is the
euclidean norm of A defined by:

A\1/2
Al :(z lagﬁ)
ij
which cannot be subordinate to any vector norm as:
il = n%2%# 1 = 1

The euclidean norm of A is practical as it can be very easily computed.
Remark 1. If ¥ is an eigenvector of A, corresponding to the eigenvalue A,
from Schwarz’s inequality, we have:

lavil = IV <AV N <AL

The largest eigenvalue of A in absolute value (or spectral radius p) then
satisfies p < [|A ]l '

Remark 2. If A is a real symmetric matrix, its spectral radius is equal to its
spectral norm. In § A.3.4 we have said that the eigenvectors of A are an
orthogonal basis of R”. Then any vector V can be expressed in terms of
eigenvectors E; as:

vV = x'E;
AV = x'AE; = NXE;

L\ vz L\ 12
Al = sup (Z?\?xl) /(Z x) <p

From Remark 1, we have: p = A.
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Now, we admit some criteria for convergence of sequences and series of
matrices of order n:

—lim A? =0 if[All<1

p >

—Ilim AP =0 ifandonlyifp <1

p >
—— the series | + A + AP + ... converges if and only if A? = 0;it converges to
(1—a
— if any norm ||A] is less than unity, | + A + A? + ... converges; this is not
a necessary condition.
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WATER QUALITY: NORMS AND CRITERIA

International norms of water quality have been established for drinlk
water only (W.H.O., 1972); they represent the minimal norms that can
reached by all countries. As countries can reach higher figures for econom
and technical reasons, the World Health Organization has proposed Europ
norms of higher standards (W.H.O., 1971). It should be stressed that tt
norms are only recommendations and that it depends on each country
enforce them by law. The W.H.O. gives five classes of quality paramet
biological pollutants, radioactive pollutants, toxic compounds, chemical ¢
pounds which may be a health hazard and water-acceptability charact

(1) The bacteriological norms of biological pollution are based upon
occurrence of microorganisms which are not pathogenic. These normal ge
of fecal pollution are more numerous than pathogenic bacterias and they
good pollution indicators, which can be detected quite easily. These ge
are usually Escherichia coli (E. coli) and coliforms.

Any sample of 100 ml of chlorinated water entering the water distribuf
net should be free of these microorganisms. Any sample of 100 ml of r
chlorinated water should be free of E. coli and, if this condition is reali:
could contain at most 3 coliforms. All samples taken in the distribution
should be free of coliforms, which is not always possible. In individual w
and springs, an upper limit of 10 coliforms will be observed to consider
water as potable.

(2) Proposed levels of radioactive pollution are:
global alpha radioactivity 3 pCi/l
global beta radioactivity 30 pCi/l
These levels are applied to the average of all radioactivity measurement f
time period of three months.

(3) Toxic compounds. Maximum concentrations are based upon the
sumption of an average man of 70 kg consuming 2.5 liters of water per ¢
Results are summarized in Table IV.

TABLE IV

Toxic Compounds (from W.H.O., 1972)

Compound, Arsenic Cadmium Cyanides Total Lead Seleniu
expressed as mercury

Max. concentration (mg/1) 0.05 0.01 0.05 0.001 0.1 0.01
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(4) Chemical compounds which may be a health hazard. Upper and lower
concentration limits for fluorides depend upon temperature and vary between

APPENDIX IV

0.6 and 0.9 mg/l for the lower limit and 0.8 and 1.7 mg/l for the upper limit.

Nitrates (expressed as NO;) should not exceed 45 mg/l. Polycyclic aromatic
hydrocarbons are cancerogeneous and their concentration should not exceed

0.0002 mg/l. As for pesticides, no results have yet been proposed.

(5) Water acceptability characteristics have been derived from the usual

physiochemical tests of water. They are summarized in Table V.

TABLE V

Water-acceptability Characteristics (from W.H.O., 1972)

Colour Total Total
Comp ountd or (platino-cobalt Odour Turbidity gsolids pH hardness
property colour scale) (mg/1) (mg/1 CaCO,)
Max. concentration
proposed 5 units no limit 5 units 500 7—8.5 100
Max. concentration
admissible 50 units no limit 25 units 1500 65—9.2 500
Anionic Mineral . Chlorides
deergents o Tomaty mahy ot U )
(mg/1) (mg/1) ql)
0.2 0.01 0.001 75 200 0.05 0.1
1.0 0.3 0.002 200 600 1.5 1.0
Magnesium Manganese Sulfates Zinc
(mg/1) (mg/1) (mg/l of SO,) (mg/1)
< 30 if sulfate
concentration > 250 0.05 200 5.0
otherwise < 150
150 0.5 400 15
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A.D.I.P. See: Alternating Direction Implicit
Procedure
Adsorption, 6, 12

Alternate Direction Implicit Procedure. See:

Alternating Direction Implicit Procedure

Alternating Direction Implicit Procedure
116,117,120, 130, 152, 173, 253, 254,
268

Approximation (of dispersion equation)
246—261

Approximations 268

Aquifer 48

— (confined) 103, 262, 276, 281

— (multilayered) 155

— (resistivity) 104, 105, 143

— (stratified) 123

— (unconfined) 71, 276, 281

— (velocity) 278

Archie’s (relationship or formula) 104,
113, 293

Aris’ moment method 39

Asymptotic (behaviour) 42

— (regime) 43, 44, 48, 63—65

Average 9

Averaging 13, 100

— (spatial) 25

Backward difference 76, 247
Bacteriological pollution 2, 311
Balance of fluxes (theory) 261—273
Basis (of vectors) 298

Black-box (model) 133—140

Block iterative method 241—243
Boussinesq’s equation 153

Central difference 246

Characteristics (method of) 173, 256—258
Coliforms 311

Concentration 9, 21

— (mass) 9, 10

— (mean equivalent) 42,91, 119

— (microscopic) 9

— (molecular) 10

Consolidated (porous medium) 32, 34
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Consolidation 12, 53, 143

— (coefficient) 105,113

Continuity (equation) 17, 49, 50

Continuous medium 21

Continuum 9

Convection 14

Convective case 3

— (part of dispersion equation) 223

Convergence 226, 228, 231, 232, 239—241
250, 307, 310

Convolution 24, 25, 134

Cost—benefit analysis 196

Crank-Nicolson 249, 252, 268

Curvilinear coordinates 120—123

Cylindrical coordinates 66, 75, 120, 122

Darcy (equation) 49, 50

Darcy’s law 103, 279, 283—285

— porosity 280

— velocity 280

Data processing 180—187

Dead-end pores 19, 20, 280

Decision criteria 48, 171

Deconvolution 69, 70, 72, 135, 140, 181,
185

Density 9, 50, 51

— (contrasts) 36, 37

Determinant 304

Diagonal (form) 55

Diagonalization 53, 308

Diagonalized (matrix) 231

Diagonally dominant (matrix) 233, 239,
240, 267

Diffusion 5, 7, 8, 28, 31—33, 99

— (coefficient) 11, 15,17, 29, 201, 205,
213

— (equation) 16, 20, 23—25

— (numerical) 255, 256

— (operator) 205, 214

— (tensor) 11, 23

Dimensional analysis 28

Dimensionless number 27, 29

Direct procedures 243—246

Discretization 223, 258, 263
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Dispersion 5

— (approximation of the equation of)
246—261

— (coefficient of lateral) 65

— (coefficient of longitudinal) 60, 66, 68

— (coefficients) 9, 11, 17, 29, 38, 49, 53,
55, 57, 59, 64, 74, 75, 80, 82, 102, 120,
152, 157,173, 216

— (definition) 6

— (equation) 16, 20, 25, 38, 39, 41, 49, 66,
74, 80, 89, 119, 123

— (equivalent coefficient) 41—44, 91

— (intrinsic coefficient) 53

— (lateral) 7, 8, 13, 32, 36, 94, 99

— (longitudinal) 7, 29, 30, 33, 34, 94, 99

-— (matrix) 55, 128

— (mechanical) 7, 31, 33

— (model) 149

— (numerical). See: Diffusion (numerical)

— (regimes) 31—34, 52

— (scheme) 49, 50, 54, 68, 115, 124, 150,
152,165, 171,173

— (surface pollution) 190

— (tensor) 11, 16, 38, 50

— (transverse). See: Dispersion (lateral)

Dispersive case 3

Dupuit assumptions 153

Economic (study of pollution) 177

Eigenvalue 231, 232, 234, 306—310

— (largest) 234

Eigenvectors 231, 232, 306—310

Eigensubspace 232

Electrical prospecting 143

— sounding 86, 87, 289, 292, 295, 296

Emsellem’s deconvolution method
136—140

Environmental pollution 2

Equipotential-streamline system 75—81,
123,128, 130

Ergodic hypothesis 16

Euclidean norm 308, 309

Evaporation 264

Explicit 248, 250, 268

Factor analysis (of correspondences) 184,
187

Fertilizer 54

Field parameters 47, 54

Files (planning) 197

Filtering 184

Fingering 35, 100

Finite-differences 116, 117, 246—258

INDEX

Finite-elements 258—261

Flow regimes 286, 287

Fluid phase 12

Formation factor 29, 113, 293
Forward difference 247

Fourier transform 135, 201—203, 296

Galerkin’s method 258—261

Gauss elimination method. See: Gaussian
elimination method

Gaussian elimination method 76, 125, 241,
243—246, 253, 254, 268, 273

——— (FORTRAN) 273

Gauss-Seidel 236, 238, 239, 268, 271

—— (FORTRAN) 271

Gerschgorin’s theorem 233, 251—253

Grain-size distribution 12

Green function 132

Groundwater 1

— movement 275—287

Hantush function 132

Head (hydraulic) 275

Heterogeneous medium 37, 44, 68
Hydraulic gradient 277, 283

— head 275

— parameters 55

— potential 275

Hydrodynamic equation 50

Hydrologic equation 103, 188, 261—273

Immiscible {compounds) 49

— (transport) 47

Implicit 76, 125, 248, 251, 268

Impulse response 80, 134, 181, 190

— — (surface pollution) 190

Independent (vectors) 297, 298

Industrial wastes 101

Infiltration 264

Information (treatment of). See: Data
processing

Iteration matrix 227

Iterative procedures 224—243

Jacobi 235, 238, 268
Kriging 181, 186

Laplace transform 130
Level (fluid volume) 9

— (local) 9

— (macroscopic) 9,11
Linear systems 221—246
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Maragement 177, 190197

— (concepts) 190—197

Mass conservation equation 14

— fraction 10

Matrix (algebra) 297—310

— (definition) 299

— (diagonal) 303

— (diagonally dominant) 233, 239, 240,
267

— (inverse) 303

— (inversion of) 231

— (irreducible) 233, 239

— (iteration) 227

— (product) 302

— (reducible) 233

— (regular) 303

— (square) 299

— (sum) 301

— (symmetric) 267

— (unitary) 229, 303

Methodology 47—53, 100, 141, 178, 193

Metric tensor 121

Mining wastes 141

Miscibility curve 12

Miscible displacement 2, 3

— fluids 5

Model (analytical) 130

— (bidimensional) 55, 101, 102, 115—120,
131

— (black-box) 133—140

— (convective) 49, 148, 154

— (curvilinear coordinates}) 120—130

— (dispersion) 58

— (geometric) 13

— (groundwater) 187

~ (hydraulic) 187—189

— (hydroconvective) 53, 152

— (hydrodispersive) 53, 89

— (hydrological) 53, 58

— (monodimensional) 80, 130

— (monolayer) 115—118

— (multilayer) 118—120

— (multiple well) 127—130

— (probabilistic) 15

— (guantity—quality) 178

— (random capillaries) 13

— (random walk) 16—23

— (rectangular coordinates) 115—120

— (self-purification) 190

— (statistical geometric) 13

— (surface pollution) 188, 189

Molecular fraction 10
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Moments (of concentration distribution)
39

Multiple well method 78—83, 106

—— model 127—130

Non saturated flow 189
Norm (matrix) 308, 309

— (vector) 298, 308

Norms (of quality) 2, 311
Numerical analysis 223—273
— diffusion 255, 256

Oil pollution 2

Onsager’s reciprocity relationships 17, 214

Optimization 180, 186, 187

Overrelaxation coefficient 237, 238, 240,
241

Overshoot 254

Peaceman and Rachford. See: Alternating
Direction Implicit Procedure

Peclet number 29—381, 52, 53, 65, 157

Permanent (regime) 265, 286

Permeability 12, 15, 50, 565, 71, 103, 290

— contrasts 5, 53

Physical components (of a vector) 122

Piezometric level 264, 277

— potential 103

— surface 277

Planning analysis 194

Political parameters 194

Pollution (bacteriological) 2, 311

— (chemical) 312

— (control) 146—148, 161

— (definition) 1

— (environmental) 1

— (measurement) 147

—(oil) 2

— (origins) 1

— (parameters) 55

— (radioactive) 1, 167—175, 311

— (toxic) 311

— (type) 53

Pore (dead-end) 19, 20, 280

— dimensions 6

— quantities 9

Pore-size distribution 12, 32

Pore velocity 15, 21, 59, 106, 123, 278

Porosity 11, 12, 14, 32, 50, 55, 75, 80, 91
111—113, 119, 143, 280

— (mean equivalent) 91,119

— (measurements) 111—113
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Porous medium 12, 22, 29, 30—34
Potential (hydraulic) 275

— measurements 86, 87

— method 95, 289

Preferential paths 3, 100

Pressure 50

Procedures 268

Protection zone 49, 96

Protective area 156
Pseudo-differential operator 26, 200
Pumping tests 104, 155

Radial flow 66, 74, 78, 79, 82

Radioactive pollution 1

Rectangle measurements 291

Regionalized random variable 181, 182

Regularization 13, 24, 25, 100

Representative elementary volume (R.E.V.)
14, 22—25

Residence-time distribution 106

Resistance (transverse) 104, 293

Resistivity 84, 85, 93—95, 101

— (longitudinal or normal) 289, 293

— measurements 57, 82, 86, 87, 162, 290

— profiles 291

— (transverse or lateral) 289, 293

Salt water 57, 85, 161

Sanitary landfill 1, 54, 56—58, 101, 102,
158, 188

Scalar product 297, 298

Scale 8, 47, 53, 59, 167

— (global) 68, 78

— (local) 68

— {regional) 68, 100, 154

Schlumberger 94, 289, 292

— type curves 94

Screening (of information) 181

Self potential 289

— purification model 190

Single well 68—78, 83—100, 107, 110,
111, 123, 157

— — (geophysics) 83—100

— — pulse 68—78, 157

Sobolev space 200

Space (macroscopic) 23

— {microscopic) 23

Specific area 12°

—yield 153

Spectral radius 241, 309

Spherical coordinates 120, 122

Stability 34, 220—222, 250

State equations 49

INDEX

Stefanesco’s function 294

Storage coefficient 103, 124, 281, 282

Stratification 99

Stratified medium 38, 100

Streamlines 75—81

Successive overrelaxation 237—240, 268,
271

—— (FORTRAN) 271

System identification 180

Temperature 50

Tracer 2

—case 29, 32, 35, 50, 53, 65, 118, 128

— (environmental) 57,100, 158,173

— (radioactive)} 68, 69, 77, 78, 81, 157

Transfer function 134

— water 153, 188, 263, 264

Transient regime 286

Transition zone 5, 6, 12, 39, 47, 48, 61,
62, 64, 76, 162

Transit water 264

Transmissivity 71, 103, 104, 124, 181,
266—268, 281

— (matrix) 266—268

Truncation error 217, 246

Typologies 194

Unconsolidated porous medium 12,
29—31, 33, 34

Unidirectional displacement 60

Uniform regime 286

Unit response 134

Urban community 54, 56, 155

Variogram 181, 182

Velocity 6, 9—12, 15, 21, 23, 42, 59,
102—110, 123, 152, 278

— (convective) 23

— (Darey) 11, 21, 280

— distribution 12

— gradient 6

— (local) 10

— (macroscopic) 21

— (mass-average) 11

— (mean equivalent) 42, 91

— (pore) 15, 21, 59, 106, 123, 152, 278

Viscosity 28, 36, 50, 51

—ratio 36

Wastes 1, 56, 101, 141
— (disposal) 1

— (industrial) 101

— (mining) 141



