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FOREWORD

The transport and retention of water, nutrients, and inorganic and organic con-
taminants in the environment is greatly affected by physical and chemical processes
and reactions in porous media such as soils. To definitively and comprehensively
understand and model these processes/reactions, it is important that multiple
scales—ranging from the landscape to the molecular—be investigated. Over the past
decade numerous developments at multiple scales, have occurred in the soil, phys-
ical, and environmental sciences. These developments, which are discussed in this
book, include: employment of fractal and spatial heterogeneity analyses in de-
scribing transport phenomena; development of sophisticated molecular models; use
of in situ spectroscopic and microscopic techniques to elucidate reaction mecha-
nisms and models in soils; and, inclusion of time-dependent phenomena in pre-
dicting solute transport/retention in soils. This important publication presents the
state-of-the-art on physicochemical processes of water/solute transport/retention,
It brings together a rich combination of soil and environmental scientists and en-
gineers. This publication will be most useful to scientists, professionals, and stu-
dents who are interested in aqueous and terrestrial ecosystems.

DONALD L. SPARKS, President
Soil Science Society of America



PREFACE

The subject of water and solute transport in porous media is one of the most
fascinating areas of science. Tremendous advances have been recently made in un-
derstanding the soil physical/chemical processes of water and solute transport/re-
tention in soils. Recent emphasis includes water retention based on pore-scale
modeling, flow in multiregions/multidomains, scaling and heterogeneity, prefrac-
tal networks, percolation models, numerical simulations, and cellular automata. Ad-
vances in experimental methods include confirmation and measurement of ad-
sorption phenomena at the clay mineral/aqueous solution interface, surface
complexation modeling based on molecular spectroscopy and microscopy, and pre-
cipitation/dissolution. Interest in these topics led to the organization of a sympo-
sium on “Physical and chemical processes of water and solute transport/retention
in soils” held in two sessions at the 1998 Soil Science Society of America Annual
Meeting in Baltimore, Maryland, 18 to 22 Oct. 1998. This symposium was orga-
nized by Divisions S-1 and S-2.

This book contains eight chapters that represent the state of knowledge on
physical and chemical processes of water and solutes in soils. Moreover, this book
provides a review of recent knowledge of modeling the heterogeneous soil system.
In Chapter 1, a review on recent progress in modeling liquid retention and interfa-
cial configurations in variably saturated porous media is presented. Pore scale hy-
drodynamic modeling approaches for prediction of hydraulic conductivity of un-
saturated porous media are discussed. In Chapter 2, the focus is on the transport
of water and solutes in soils as a fractal porous media. Chapter 3 provides a review
of models relating solute dispersion to pore space geometry in saturated media and
a discussion of emerging areas of prefractal networks, percolation models, numerical
simulations, cellular automata, and physical micro-models. Chapter 4 focuses on
lattice-gas models for simulation of preferential infiltration in fractured media. In
Chapter 5, a solution for the convection-dispersion equation is presented for a tracer
solute subject to a periodic loading function. The focus of Chapter 6 is on nonlin-
ear-kinetic behavior of solute retention mechanisms in soils. Limitations of non-
linear and kinetic multireaction and second-order models are also presented. In
Chapter 7, parameter estimation of surface complexation models based on mole-
cular spectroscopy and microscopy (XAS and EXFS) are discussed. The scope of
Chapter 8 is on molecular dynamics simulation techniques to study adsorption phe-
nomena at the clay mineral/aqueous solution interface.

We wish to extend our deep appreciation to the authors for their contributions.
The editors also wish to thank the anonymous reviewers and the SSSA headquar-
ters staff for their efforts on this special publication.

H. MAGDI SELIM, co-editor
Louisiana State University,
Baton Rouge, Louisiana

DONALD L. SPARKS, co-editor
University of Delaware,
Newark. Delaware
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Conversion Factors for SI and non-SI Units

To convert Column 1

ATX

nto Column 2,

To ¢onvert Column 2
into Column 1,

multiply by Column 1 SI Unit Column 2 non-SI Units multiply by
Length

0.621 kilometer, km (10% m) mile, mi 1.609
1.094 meter, m yard, yd 0.914

3.28 meter, m foot, ft 0.304

1.0 micrometer, pm (1075 m) micron, Ll 1.0

394 x 102 millimeter, mm (103 m) inch, in 254

10 nanometer, nm (10~ m) Angstrom, A 0.1

Area

2.47 hectare, ha acre 0.405

247 square kilometer, km? (107 m)? acre 4.05 % 1073
0.386 square kilometer, km? (107 m)? square mile, mi’ 2.590

247 x 1074 square meter, m’ acre 4.05 x 10°
10.76 square meter, m? square foot, ft? 9.29 x 1072
1.55 x 1073 square millimeter, mm? (1073 m)? square inch, in® 645

Volume

9.73 x 1073 cubic meter, m? acre-inch 102.8

353 cubic meter, m3 cubic foot, ft? 2.83 % 1072
6.10 x 10? cubic meter, m? cubic inch, in? 1.64 x 1073
284x 102 liter, L (1073 m3) bushel, bu 35.24
1.057 liter, L (1073 m?) quart (liquid), gt 0.946
333x 1072 liter, L {1073 m?) cubic foot, ft? 28.3

0.265 liter, L. (1073 m?) gallon 3.78

3378 liter, L (1073 m?) ounce (fluid), oz 296 x 1072
2.1 liter, L (1073 m?) pint (fluid), pt 0.473
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0.893

7.77 x 1072
1.49 x 1072
1.59 x 102
1.86 x 1072
0.107

893

893

0.416

2.24

10
1000

9.90

10

1.00
2.09x 1072
1.45x 10

gram, g (1073 kg)
gram, g (107 kg)
kilogram, kg
kilogram, kg
kilogram, kg
megagram, Mg (tonne)
tonne, {

kilogram per hectare, kg ha™
kilogram per cubic meter, kg m~
kilogram per hectare, kg ha™!
kilogram per hectare, kg ha™!
kilogram per hectare, kg ha™!
liter per hectare, I. ha™!

tonne per hectare, t ha™!
megagram per hectare, Mg ha™!
megagram per hectare, Mg ha™!
meter per second, m s

square meter per kilogram, m? kg™!
square meter per kilogram, m? kg™!

megapascal, MPa (10° Pa)
megapascal, MPa (10° Pa)

megagram, per cubic meter, Mg m™>

pascal, Pa
pascal, Pa

Mass

- pound, 1b
ounce (avdp}, oz
pound, Ib
quintal (metric), q
ton (2000 1b), ton
ton (U.S.), ton
ton (U.S.), ton

Yield and Rate

pound per acre, 1b acre™!
pound per bushel, Ib bu~!
bushel per acre, 60 1b
bushel per acre, 56 1b
bushel per acre, 48 Ib
gallon per acre

pound per acre, Ib acre™
pound per acre, 1b acre”
ton (2000 Ib) per acre, ton acre™!
mile per hour

1
1

Specific Surface

square centimeter per gram, cm? g-!

square millimeter per gram, mm? g~!

Pressure

atmosphere

bar

gram per cubic centimeter, g cm™
pound per square foot, Ib fi
pound per square inch, 1b in~?

454
284
0.454
100
907
0.907
0.907

1.12

12.87
67.19
62.71
53.75

935
1.12 x 1073
1.12 x 1073
2.24

0.447

0.1
0.001

0.101

0.1

1.00

479

6.90 x 10

(continued on next page)
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Conversion Factors for SI and non-SI Units

To convert Column 1 To convert Colurmn 2
into Column 2, into Column 1,
multiply by Column 1 ST Unit Column 2 non-SI Units multiply by
Temperature
1.00 (K - 273) kelvin, K Celsius, °C 1.00 (°C + 273)

(9/5°CY+32 Celsius, °C Fahrenheit, °F 5/9 (°F - 32)

Energy, Work, Quantity of Heat

052 x 10~ joule, J British thermatl unit, Btu 1.05 x 107
0.239 joule, J calorie, cal 4.19
107 joule, J erg 1077
0.735 joule, J foot-pound 1.36
2387 x 1075 joule per square meter, ] m™> calorie per square centimeter (langley) 4,19 x 104
10° newton, N dyne 1073
1.43 % 1073 watt per square meter, W m™> calorie per square centimeter 698

minute (irradiance), cal cm™ min~!

Transpiration and Photosynthesis

360 x 1072 milligram per square meter second, gram per square decimeter hour, 2738
mgm~Z ! g dm2h!

536 x 1073 milligram (H,O) per square meter micromole (H,O) per square centi- 180
second, mg m~2 ™! meter second, pmol cm 2 s~

104 milligram per square meter second, milligram per square centimeter 10*
mgm2s! second, mg cm 2 57!

3597 milligram per square meter second, milligram per square decimeter hour, 2.78 x 1072
mg m2 s~} mg dm 2 h!

Plane Angle

57.3 radian, rad degrees (angle), ° 1.75x 1072

IAX
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Electrical Conductivity, Electricity, and Magnetism

10 siemen per meter, S m™! millimho per centimeter, mmho cm™! 0.1
10° tesla, T gauss, G i
Water Measurement
9.73 x 1073 cubic meter, m? acre-inch, acre-in 102.8
9.81 x 1073 cubic meter per hour, m3 h™! cubic foot per second, ft* 57! 101.9
4.40 cubic meter per hour, m® h~1 U.S. gallon per minute, gal min™! 0.227
8.11 hectare meter, ha m acre-foot, acre-ft 0.123
97.28 hectare meter, ha m acre-inch, acre-in 1.03 x 1072
8.1x 1072 hectare centimeter, ha cm acre-foot, acre-ft 12.33
Concentrations
1 centimole per kilogram, cmol kg ! milliequivalent per 100 grams, meg 1
100 g!
0.1 gram per kilogram, g kg™! percent, % 10
1 milligram per kilogram, mg kg™ parts per million, ppm 1
Radioactivity
27 x 1071 becquerel, Bq curie, Ci 3.7 x 1010
2.7 %1072 becquerel per kilogram, Bq kg™! picocurie per gram, pCi g™} 37
100 gray, Gy (absorbed dose) rad, rd 0.01
100 sievert, Sv (equivalent dose) rem (roentgen equivalent man) 0.01
Plant Nutrient Conversion
Elemental Oxide
2.29 P P,05 0.437
1.20 K K,0 0.830
1.39 Ca CaO 0.715
1.66 Mg MgO 0.602
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1 ) Adsorption and Capillary
Processes in Variably Saturated
Porous Media—Pore Scale
Hydrostatic and Hydrodynamic
Considerations

Dani Or and Markus Tuller

Utah State University |
Logan, Utah

Common conceptual models for liquid distribution and transport in variably satu-
rated porous media often rely on oversimplified representation of media pore space
geometry as a bundle of cylindrical capillaries, and on incomplete thermodynamic
account of pore scale processes. For example, liquid adsorption due to surface forces
and flow in thin films are often ignored. In this study we provide a review of re-
cent progress in modeling liquid retention and interfacial configurations in variably
saturated porous media and application of pore scale hydrodynamic considerations
for prediction of hydraulic conductivity of unsaturated porous media.

We propose a new framework for improved modeling of liquid behavior in
porous media based on two complementary elements: (i) a unitary approach for con-
sidering the individual contributions of adsorptive and capillary forces to the ma-
tric potential; and (ii) a more realistic model for media pore space comprising an
angular pore connected to slit-shaped spaces with internal surface area. The aug-
mented Young Laplace (AYL) equation provides the necessary representation for
combining adsorptive and capillary processes. Pore scale liquid-vapor configura-
tion, saturation, and liquid-vapor interfacial area are calculated for different po-
tentials and pore dimensions.

The pore-scale model provides the basis for development of a statistical
framework for upscaling from a single pore to a sample of variably saturated
porous medium. The statistical distribution of pore sizes is modeled as a gamma
distribution with the expected values of liquid configuration in pore space calcu-
lated from geometrical and chemical potential considerations within the statistical
framework. Model predictions compare favorably with measured retention data,
yielding similarly close fits to data as the widely used van Genuchten parametric
model. Liquid-vapor interfacial area as a function of chemical potential is readily
calculated from estimated retention parameters. Comparisons of calculated inter-

Copyright €3 2001, Soil Scicaee Socicty of America, 677 S, Scegoe Rd., Madison, WIES3711 USAL Phys-
ivad and Chemical Processes of Water and Soluse Transport/Retention in Soil. SSSA Special Publica-
tion no, SH



2 . OR & TULLER

facial area for sand with measurements obtained with surface-active tracers show
reasonable agreement. Results indicate that interfaces associated with films dom-
inate contributions of capillary menisci to the total liquid-vapor interfacial area, often
by several orders of magnitude.

The detailed picture of liquid vapor interfaces under hydrostatic conditions
provides a basis for introducing hydrodynamic considerations. The underlying as-
sumption is that the liquid configurations and interfaces remain relatively un-
changed under slow laminar flow conditions. Furthermore, network effects are ig-
nored, and only flow into the liquid cross-section is considered. These simplifying
assumptions facilitate derivation of closed form expressions for pore scale flow
processes under saturated and partially saturated conditions. The pore scale solu-
tions serve as building blocks for modeling the unsaturated hydraulic conductivity
representing flow in a porous medium sample. Insights gained from the prelimi-
nary studies reviewed in this work were instrumental in developing models for flow
in unsaturated fractured porous media with emphasis on flow on rough surfaces.

INTRODUCTION

Conventional models for liquid distribution, flow and transport in variably
saturated porous media are often based on representation of pore space geometry
as a “bundle of cylindrical capillaries” (BCC) (Childs, 1940; Mitington & Quirk,
1961; Mualem, 1976a; Hassanizadeh & Gray, 1993). Implicit in the BCC model is
the assumption that certain pore sizes are completely liquid-filled, whereas larger
pores are completely empty at a given saturation level. No provision is made for
adsorption processes nor for dual-occupancy of wetting and nonwetting phases
within the same pores. Moreover, the practical interpretation of liquid retention mea-
surements (e.g., soil water characteristic curves) for determination of media pore
size distribution relies solely on cylindrical-capillarity, ignoring the role of surface
area and adsorbed liquid films (Childs, 1940). The lack of consideration of surface
forces, the “empty-full” approach precluding dual-occupancy of pores, and the un-
realistic (surface less) cylindrical geometry were identified in reviews by Celia et
al. (1995) and Nitao and Bear (1996) as a primary hindrance to future progress in
modeling flow and transport processes in variably saturated porous media. So-
phisticated pore network models employ concepts of invasion percolation in an-
gular pore systems for modeling wetting and non-wetting phase drainage and im-
bibition driven by capillary processes (Blunt & Scher, 1995; Lenormand et al.,
1983). Berkowitz and Ewing (1998) provide a comprehensive review of percola-
tion theory and various pore network models. Flow in corners and crevices of an-
gular pores (Blunt & Scher, 1995), and in thin liquid films (Li & Wardlaw, 1986a;
Lenormand, 1990) were identified as important flow regimes in partially saturated
porous media. However, these flow regimes were not previously integrated into a
complete thermodynamic pore-scale theory that considers adsorptive surface forces
towards development of self-consistent constitutive hydraulic relationships at the
sample scale.

Tuller et al. (1999) proposed an alternative framework for modeling liquid
behavior in variably saturated porous media. This framework included two com-
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plementary elements: (i} a unitary approach for explicit consideration of the indi-
vidual contributions of adsorptive and capillary forces to matric (chemical) poten-
tial (Philip, 1977a); and (ii) its implementation within a new pore space geometry
(unit cell) comprising an angular central pore for capillary processes attached to slit-
shaped spaces with surface area for adsorptive processes. Interface science for-
malism and the concept of the disjoining pressure (Derjaguin et al., 1987) provided
the physicochemical basis for incorporation of adsorption phenomena into the
augmented Young-Laplace (AYL) equation (Derjaguin, 1957; Philip, 1977a; Novy
et al., 1989; Blunt et al., 1995). Simplifications of the rigorous AYL equation have
been instrumental in the development of practical closed-form expressions for
both saturation and interfacial area as a function of chemical potential at the pore
scale.

In a subsequent study, Or and Tuller (1999) have used the pore-scale model
to develop a statistical framework for upscaling from pore to a sample of variably
saturated porous medium. The statistical distribution of pore sizes was modeled as
a gamma distribution with the expected values of liquid configuration in pore
space calculated from geometrical and chemical potential considerations within the
statistical framework. One of the advantages of Or and Tuller (1999) framework
is the use of measurable media properties to estimate upscaling parameters. This
is accomplished by matching predicted and measured retention data subject to mea-
sured porosity and surface area constraints.

The objective of this work is to provide a review of recent progress in pore-
and sample-scale liquid retention and liquid-vapor interfacial area modeling. These
new modeling approaches for liquid configuration in porous media provide explicit
calculations of liquid-vapor interfacial area an important variable for multiphase
flow, gas exchange, and microbial habitat studies. Information about liquid con-
figuration also provides a reasonable starting point for pore scale hydrodynamic con-
siderations leading to prediction of hydraulic conductivity of unsaturated porous
media.

The review is organized as follows: first, we discuss aspects of the unitary
approach for combining adsorptive and capillary contributions, and present the new
pore scale model of Tuller et al. (1999). The upscaling scheme of Or and Tuller
(1999) for representing sample scale retention properties will be presented, followed
by illustrative examples with measured characteristic data and a discussion of crit-
ical soil parameters. The role of liquid-vapor interfacial area will be highlighted by
comparisons of model predictions with limited measurements. Finally, we intro-
duce hydrodynamic considerations of unsaturated flow in films and corners lead-
ing to prediction of hydraulic conductivity of rough rock surfaces and unsaturated
porous media.

HYDROSTATIC CONSIDERATIONS
Unitary Approach to Adsorption and Capillary Condensation

The pioneering work of Edlefsen and Anderson (1943) on mechanisms of
water distribution on soil particles provided the qualitative basis for Philip’s (1977a)
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development of a quantitative unitary approach to capillary condensation and ad-
sorption in porous media. The liquid-vapor interface is considered as a surface of
constant partial specific Gibbs free energy [or chemical potential u (Nitao & Bear,
1996)] made up of an adsorptive component (A) and a capillary component (C):

w=A(h) + C(x) [1]

with K as the mean curvature of the liquid-vapor interface, and h as the distance
from the solid to the liquid-vapor interface, taken normal to the solid surface
(thickness of the adsorbed film). Philip (1977a) has used an empirical expression
for the adsorptive component, assuming it is dependent on film thickness only:

AWy=—v R'TIh [2]

where v is a positive constant (10~1° m), R’ is the gas constant per unit mass of the
vapor (J K~! kg=") and T is temperature (K). The capillary component C is given
by the Young-Laplace equation:

C(x) = -20k/p [3]

where K is positive for an interface concave outward from the liquid, © is the sur-
face tension at the interface and p is the density of the liquid. Philip’s unitary ap-
proach was preceded by Derjaguin (1957) and others (Vershinin et al., 1966) who
modified the Young-Laplace equation by adding an adsorptive term, resulting in
an equation identical to Eq. [1] known as the augmented Young-Laplace (AYL)
equation (Novy et al., 1989; Blunt et al., 1995).

Philip’s (1977a,b; 1978) work is further extended in this study by: (i) estab-
lishing a linkage with modern interface science concepts (Derjaguin et al, 1987; Iwa-
matsu & Horil, 1996); and (ii) applying the updated theory to an entire pore space
model rather than to individual geometrical features (e.g., corners, wedges, etc.).
An important component in the updated unitary approach is the application of more
general and versatile adsorption terms based on Derjaguin’s disjoining pressure con-
cept. Such refinements are important at very low water contents when films on ad-
jacent surfaces are completely separated by a vapor phase. They also allow for di-
rect incorporation of various surface electrochemical properties that, in turn, affect
flow in thin liquid films and give rise to various viscoelectric effects.

The Disjoining Pressure and Liquid Films

In their monograph Surface Forces, Derjaguin et al. (1987) provide an in-
depth review of the behavior of thin liquid films adsorbed on solid surfaces. In the
core of modern interface science theory is the notion that surface forces modify the
intensive properties of interfacial regions relative to their bulk phase values. Der-
jaguin et al. (1987) distinguished between two types of surface forces. The first kind
includes long-range (>500A) electrostatic forces (c.g., diffuse double layer. DDL),
and short-range (<100A) van der Waals and hydration forees, responsible Tor mol-
ceular interactions and structural changes in water molecules nean the solid surface.
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The combined effect of interfacial interactions resu]%s in a difference in chemical
potentials between the liquid in the adsorbed film and the bulk phase. This differ-
ence in chemical potentials may be expressed as an equivalent interfacial force per
unit area of the interface, termed by Derjaguin et al. (1987) as the disjoining pres-
sure (II). The disjoining pressure is a function of the film thickness (4), and it can
also be viewed as the difference between a normal component of film pressure, Py
(in equilibrium with the gaseous phase Py = Pg), and the pressure in the bulk lig-
uid phase, P;.

(k) = Fy(h) —PL = Pg —PL [4]

The disjoining pressure is related to more conventional thermodynamic quantities
such as Gibbs free energy (Adamson, 1990; Nitao & Bear, 1996). Gibbs free en-
ergy () per unit area of the interface may be defined on the basis of I1(#) isotherm
for constant pressure P, temperature T, chemical u and electric potentials of the
liquid-gaseous () and the liquid-solid () interfaces as (Derjaguin et al., 1987):

G(h) = —J" TI(h)dh [5]

The value of G(4) 1s equal to the work of thinning the film in a reversible, isobaric,
and isothermal process from infinity to a finite thickness h, with I1(h) = —(0G/
oh)rp. u, we, ws- Derjaguin et al. (1987) point out that the choice of [1(A) as the basic
thermodynamic property is not a mere change of notation, but 11(%) has advantages
in cases where Gibbs thermodynamic theory is not well defined, such as, when in-
terfacial zones overlap to the extent that the film does not retain the intensive prop-
erties of the bulk phase. The use of the disjoining pressure is advantageous from
an experimental point of view because of the relative ease to account for different
contributions (e.g., electrostatic effects).

The disjotning pressure is a sum of several components (just as with soil water
potential). The major components of the I1(#)-isotherm in porous media are mol-
ecular, I1,(h); electrostatic, 11.(h); structural, I1,(%); and adsorptive IT,(h):

() = Iy(A) + T1(h) 1 (R) + I1,(A). (6]

IT,,(h)—The component originates from van der Waals molecular interaction be-
tween macro-objects (e.g., parallel clay plates). Various expressions with
I1,,(h) often proportional to 4~ were derived by Paunov et al. (1996) and
Iwamatsu and Horii (1996).

IL.(h)— The electrostatic component of the disjoining pressure is calculated from
the solution of the Poisson-Boltzmann equation for the DDL with appro-
priate boundary conditions. Approximate solutions are adequate for many
applications and are available in the literature (e.g., Paunov et al., 1996;
Derjaguin et al., 1987) often with IT.(k) e 472,

I1,(h)— Some controversy exists regarding the origin of this structural component;
some attribute it to changes in the structure (density) of water adjacent to
solid surfaces and deformation of hydrated shells, while others attribute
this force to the presence of a layer with a lower diclectrie constant near
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the surface (Paunov et al., 1996). Regardless of its exact origin, this com-
ponent is responsible for the so-called hydration repulsion that stabilizes
dispersion and prevents coagulation of some colloidal particles, even at
high electrolyte concentrations (Mitlin & Sharma, 1993), I1(h) o« A7l
(Novy et al., 1989).

IT,(h)— This adsorptive component of the disjoining pressure results from nonuni-
form concentrations in the film due to unequal interaction energies of solute
and solvent with interfaces in nonionic solutions. (This is different than
the nonuniform distribution of charged ions.) This component of the dis-
joining pressure is likely to become very important for interactions between
nonpolar molecules (e.g., nonaqueous phase liquids) that give rise to re-
pulsive forces in the liquid film [see discussion by Derjaguin et al. (1987,

p. 17D)].

Film Adsorption on Flat Surfaces and in Slit-Shaped Pores

Several physically based expressions relating the thickness of adsorbed films
to surface and liquid properties, geometry, and chemical potential have been de-
veloped (Iwamatsu & Horii, 1996). The simplest case considered here is that of a
liquid film adsorbed on a planar surface (Fig. 1-1a) because of interfacial interac-
tions induced by long-range molecular (van der Waals) forces only. The relation-
ships between the disjoining pressure I1(%) and film thickness & for the planar film
are given by (Derjaguin, et al., 1987; Iwamatsu & Horii, 1996):

k= Ag/16mpll(h)] [7]

(a) (b) (c)

et
Fig. I- . Adsorption on planar surfaces and between parallel platen (slie shigpred spreces): () single sur-
face, (h) parallel plates, and (¢) forming of a liquid neck nt sl snap-off.
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where h is film thickness, A, is the Hamaker constant for solid-vapor interactions
through the intervening liquid [for condensation Ay, < O (Iwamatsu & Horii,
1996)], and p is the density of the liquid. Constdering adsorption only (no capil-
lary interactions) we may equate the disjoining pressure with the relative vapor pres-
sure through the Kelvin equation (Adamson, 1990):

1I(h) = (RT/Vy) In(p/psy) [8]

where R is the gas constant { ] K=! mol~!), T'is the temperature (K), V,, is the molar
volume of liquid ( m* mol™"), and p/p,,, is the relative vapor pressure. Because no
other interactions are considered, I1(#) equals the chemical potential u (when ex-
pressed as J kg~!, it should be multiplied by liquid density).

A situation of considerable practical importance is that of adsorption on two
planar solid surfaces forming a narrow slit-shaped pore (Fig. 1-1b). The resulting
expressions are somewhat more complicated due to the mutual interactions between
the two plates. In this case, polymolecular adsorption of films is not dependent on
surface properties only, but also on the overlapping force fields emanating from the
facing solid surfaces. For a similar vapor pressure, film thickness in narrow slits is
larger than on a single planar surface. Derjaguin and Churaev (1976), and, more
recently, Iwamatsu and Horii (1996) provide an expression for the relationships be-
tween slit spacing H, equilibrium film thickness %, and the disjoining pressure
II(H,h):

1(H,h) = (RT/Vy,) In(p/pgay)
= Ag/(6mh*) — An/[6n(H —2h)"] + A/ [67(H — )] [9]

where Ay, 1s the Hamaker constant for solid-vapor interactions through the inter-
vening liquid and Ay, is the Hamaker constant for liquid-liquid interactions through
the intervening vapor.

The mutual attraction through the slit gap affects liquid film stability, and at
a certain critical vapor pressure (or film thickness) the two films form a liquid bridge
(Fig. 1-1¢) followed by a spontaneous filling up of the slit (assuming the film is in
contact with the bulk liquid phase). The liquid-vapor interface moves to the plate
boundaries. This phase transition from dilute vapor to a dense liquid is known as
capillary condensation and was observed experimentally with the surface force ap-
paratus by Christenson (1994) and Curry and Christenson (1996). Extensive theo-
ries for this phenomenon and its critical points are provided by Derjaguin and Chu-
raev (1976), Evans et al. (1986), Forcada (1993), and Iwamatsu and Horii (1996).
In general, slit-shaped pores fill up at a film thickness of about H/3, or when
N I(H ,h)/0h =0, such that

he = HI[2 + (=2A,, /A4 = H/3 [10]
In summary, interfacial processes lead to relatively simple algebraic expressions

tor adsorption ol Tiquid films on solid surfaces. In these examples, we have con-
sidered the simple case of long range molecular interfacial forces only. The spe-
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cific properties of surfaces and liquids are embodied in the values of the Hamaker
constant for the various interactions. Many textbooks refer to these processes as
“macroscopic”’ (Adamson, 1990). This is true from a molecular point of view; how-
ever, for hydrological applications, these are certainly microscopic adsorption
processes taking place at the pore scale.

Capillarity and Pore Shape

Inspection of thin sections or micrographs of rocks and sotils (e.g., Fig.
1-2a,b) reveal that natural pore spaces do not resemble cylindrical capillaries. Be-
cause many types of porous media are formed by aggregation of primary particles
and various mineral surfaces, the resulting pore space is more realistically described
by angular or slit-shaped pore cross sections rather than by cylindrical capillaries
(Li & Wardlaw, 1986b; Mason & Morrow, 1991). Additionally, when angular
pores are drained, a fraction of the wetting phase remains in the pore corners (Fig.
1-2c). This aspect of “dual occupancy” of the invaded portion of the tube (Lenor-
mand et al., 1983; Blunt & Scher, 1995; Morrow & Xie, 1999), not possible in cylin-
drical tubes, represents more realistically liquid configurations and mechanisms for
maintaining hydraulic continuity in porous media (Dullien et al., 1986). Liquid-filled

@ (b

Fig. 1-2. Angular pore spaces in natural porous media: () scanning election nncrapraph (SEM) ol a
soil composed ol fine-sand, silt, and clay (Blank & Fosberg, TORS), thy SEM of calcmm satueated
montmorillonite, (o) liquid retention in triangulae and eylindneal pores
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comers and crevices play an important role in displacement rates of oil (Blunt et
al., 1995) and in other transport processes in partially saturated porous media. Fi-
nally, in contrast to the “empty-full” states of cylindrical pores, angular pores are
filled or drained gradually (according to changes in potential); hence, for practical
media pore space characterization, a single angular pore may be used to represent
a range of cylindrical tubes.

Studies by Mason and Morrow (1991; 1984) and others (Li & Wardlaw,
1986b; Lenormand et al., 1983) on capillary behavior of liquids in angular tubes
provide a basis for developing relationships between liquid retention and pore an-
gularity. We have been able to simplify Mason and Morrow’s (1991) expressions
for liquid retention in triangular pores and expand the result to other polygonal pore
shapes and angularity.

The water-filled cross-sectional area Ay for all regular and irregular trian-
gles (Fig. 1-3), and for all regular higher-order polygons is given by the following
expression:

Ay, = r’F, [11]

where F, is a shape or angularity factor dependent on angularity of the pore cross-
section only (Table 1-1), and r is the radius of curvature of the liquid-vapor inter-
face dependent on chemical potential (n) or capillary pressure (p.) according to the
Young-Laplace equation,

u=-0o/(rp) or p.=-0/r [12]

where G is the surface tension of the liquid, and p is the density of the liquid. For
detailed derivations interested readers are referred to Tuller et al. (1999). Note that
in this discussion we consider capillary behavior only, ignoring adsorbed liquid
films. The point of “snap-off” during imbibition, where the liquid spontaneously
fills up the entire pore, occurs when the separate liquid-vapor interfaces touch to

Fig. I3 Water filled cross sectionul aren for an eepalioe trinngular shaped pore,



Table 1-1. Angularity factor, area factor, and drainage radius of curvature coefficient Cnt (used to determine maximum pore length L, for completely full unit cells) for
different regular polygon-shaped central pores.

Corners Angle Angularity factor F, Area factor A Coefficient C, defining drainage curvature Pore shapes
2
n y pog( 1 _maso-y) A =T cor (1_:) Co= 2 [yt VaFy 4 m]
i=1 \ tan (yi/2) 360 4 n
2(3 +3+n
3 60 WN3-n 3 (3 ++3m)
z V3

! % 4-m 1 2+n
iz 150 = 32+3) 6+V3V2+\3)m
- 2+43 3(2+3)

= The radius of curvature for imbibition, r,p, is related to g by: rigy = g [1 + VIU(F, + T)].

01

YATINL ® 40
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form a circle. This radius is simply the radius of the inscribed circle in the pore cross
section given by:

Yimb = 2A/P = P/[2F, + )] [13]

where P is the perimeter of the pore cross section. For drainage, at a certain potential
(or capillary pressure) a liquid-vapor meniscus invades the tube and liquid is dis-
placed from the center leaving liquid in the corners (Mason & Morrow, 1991). The
radius of curvature at this point, ry , is given as (Tuller et al., 1999):

rd=P/{2[Fn+n+Vn(Fn+n)]} [14]

We point out the existence of an additional potential snap-off mechanism due to pis-
ton-like advance of an invading meniscus {termed by Mason & Morrow (1991) as
the main terminal meniscus MTM] in direction perpendicular to the cross-sectional
plane of the unit cell. This snap-off mechanism is only important for very high flow
rates and when the liquid front is very well connected (Blunt & Scher, 1995).

An illustrative example of the effects of pore shape (and angularity) on im-
bibition and drainage processes is depicted in Fig. 1-4, showing marked differences
between cylindrical and angular pores (all pore cross sectional areas are equal). Lig-
uid displacement in cylindrical tubes during drainage is pistonlike, leaving no lig-
uid in the cross-section after the drainage threshold. Angular pores, however, show
that liquid is displaced from the central region first (at a radius of curvature given
by Eq. [14]), leaving some liquid in the corners. Subsequent decrease in chemical
potential results in decreasing amounts of liquid in the corners (“lower” chemical
potential or capillary pressure indicates more negative values much like the termi-
nology for the subzero temperature scale). The threshold chemical potential for dif-
ferent pore shapes with the same cross-sectional area increases (becomes less neg-
ative) with increasing angularity factor F,. The same holds for the amount of lig-
uid held in the comers.

The conditions during imbibition are slightly different. The liquid-vapor in-
terfaces in corners of angular pores grow with increasing chemical potential to the
point of “snap-off” (Eq. [13]) when the pore completely fills up with liquid. Prior
to pore saturation, the liquid vapor curvature adjusts itself to its corresponding value
for drainage (with a lower chemical potential). Again, the threshold chemical po-
tential for “snap-off” increases with angularity F,,, and the amount of liquid held
in the corners at a given chemical potential is directly proportional to angularity.
Highly angular pore shapes, such as triangular pores, retain more liquid at the same
potential than squares or hexagons. In cylindrical tubes, no liquid is held prior to
“snap-off”” which subsequently fills up spontaneously (the “empty-full” behavior).

A New Model for Pore Space Geometry

The discussions in the preceding sections illustrate several shortcomings of
cylindrical capillarics representation (BCC model), hencee the need for a more re-
alistic representation of pore space geometry. Some studies have used angular
pore systems for observation and modeling of capillary phenomena in porous
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media (Lenormand, 1990; loannidis & Chatzis, 1993; Dong & Chatzis, 1995;
Blunt & Scher, 1995). The new pore geometry proposed by Tuller et al. (1999) is
capable of accommodating adsorptive processes in an internal surface area in ad-
dition to capillarity. The proposed elementary unit cell is comprised of a square-
shaped (relatively large) pore for capillary processes connected to slit-shaped
spaces representing internal surface area (Fig. 1-5a). Though the choice of a
square-shaped pore is arbitrary (representing an intermediate angularity between
triangular and cylindrical pores), it does not affect the generality of the derivations
that are easily extendable to triangular or other higher order polygons.

Additional geometrical features, such as surface roughness, may be super-
imposed on all surfaces, and their effects on adsorption and capillarity may be cal-
culated by means of Philip’s (1978) solutions for surfaces with conical pits [see also

100

o Sw = 0.24 Sw=0.10 Sy = 0.04
S
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Tl
©
- Spontaneous Redistribution
g at Drainage .
3 Drainage
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o ~ ¢
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&
1
Triangle
Square Snap-off Imbibition
imbibition Circle

10

0.0 0.2 0.4 0.6 0.8 1.0

Relative Saturation S,,
Fig. 1-4. Capillary phenomena (imbibition and drainage) in pores with diflerent cioss section shapes

but identical pore cross-sectional area.
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Novy et al.(1989)], or more recently by solutions of Or and Tuller (2000). Differ-
ent soil textural and structural classes may be represented by adjusting pore width
(L) and the proportions of exposed surfaces (determined by the slit-width ol and
the slit-length L), or even modifying the pore shape and angularity according to
scanning electron micrographs. For example, to study liquid adsorption and capil-
lary behavior in clayey soils, a unit cell with a small pore size (e.g., L = 107> m)
coupled with a relatively large exposed surface area (e.g., oL =2 x10? m; L = 5
x 107 m) may be considered. For a sandy soil, however, the pore size is likely to
be relatively large, whereas, the surface area is small. Finally, the proposed unit cell
may serve as a building block for three-dimensional pore networks (Fig. 1-5b).
The modified unitary approach of Philip (1977a), supplemented by adsorp-
tion terms presented by Iwamatsu and Horii (1996), provides a means of calculat-
ing equilibrium liquid-vapor interfaces for various chemical potentials during
drainage and imbibition. Four major steps are discerned during the transition from
adsorption to capillary-dominated imbibition (Fig. 1-6). At low matric potentials,

Fig. | -5. () The new pore geometry muodel, () extension of the new pore geometry 1o simple three-
dimensioml pore networks with different connectivity and isotropy.
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thin liquid films coat pore and slit walls. Some liquid is held behind liquid-vapor
interfaces formed at the corners and contributes to capillary forces (Fig. 1-6a). With
increasing matric potentials, liquid films thicken to a point where the slits sponta-
neously fill up with liquid (capillary condensation, Fig. 1-6b). A further increase
in matric potential results in a further increase in film thickness within the pore, and
a reduction in the radius of curvature of liquid-vapor interfaces until they contact
and form an inscribed circle (Fig. 1-6¢). Subsequently, (Fig. 1-6d), the pore spon-
taneously fills up (“snap-off”) to a complete saturation (Mason & Morrow, 1991).

The Unitary Approach (Augmented Young-Laplace Equation)
in the New Pore Geometry

The AYL equation that forms the basis for Philip’s (1977a) approach was mod-
ified by adsorption terms proposed by Derjaguin et al. (1987) and Iwamatsu and
Horii (1996):

u = A, /(61tph®) — 20K /p [15]

This form of the AYL equation was used by Philip (1977a) to develop solutions for
liquid-vapor configurations between parallel plates, in wedge-shaped pores, cor-
ners, and for spaces between circular cylinders, circular tubes, and contacting
spheres. Liquid configuration for a given potential was calculated for different geo-
metrical features that make up a cross-section of the proposed pore space model.
Liquid behavior in the slit-shaped spaces of the new pore geometry model was cal-

(b) (c) (d)

Adsorption  Impbibition  Capillarity

Fig. 1-6. A sketch illustrating liquid-vapor interfacial configurations during transition lrom adsorption
to capillary-dominated imbibition in the proposed unit cell: (o) liguid films adsorbed on pore and slit
walls and liquid held in corners due to capillary forees at low matric potentinly, (A1) spontancous slit
(il up (capillary condensation), (¢} pore snap-olf, and (0 full unit cell.
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culated by means of Eq. [7] and [9]. (Philip’s approach does not account for sepa-
rated liquid films in a slit.) The appropriate boundary conditions were applied to
solve for the liquid-vapor interface for each geometrical feature (e.g., a specified
film thickness at the boundaries). These solutions were then combined to provide
a complete liquid configuration picture for the entire pore cross-section. For detailed
derivations of the complex AYL-equation, interested readers are referred to Tuller
et al. (1999) and Philip (1977a). All calculations were limited to the two-dimen-
sional space representing a pore cross-section (i.e., pore connectivity and other net-
work effects were neglected). Finally, we assumed continuity of all phases (wet-
ting and nonwetting) to facilitate spontaneous liquid “snap-off” and avoid air en-
trapment.

Application of the Simplified Augmented Young-Laplace Equation
in the New Pore Geometry

The complex calculations of liquid-vapor interfaces in the assumed pore
geometry based on the AYL equation (Eq. [15]) are considerably simplified by using
a superposition of adsorptive and capillary calculations for the interfaces. In the sim-
plified approach we determine the liquid-vapor radius of curvature in the corners
using the classical Young-Laplace equation » = —6/(pu) considering capillary
forces only. The curved interface is then shifted by a constant film thickness that
1s independently calculated for the same potential using Eq. [7]. Liquid vapor in-
terfaces are then assembled to obtain a complete picture for the proposed unit cell
leading to simple shifted Young Laplace (SYL)-based expressions. The conditions
for the onset of spontaneous filling of slits (termed slit snap-off) occur when the
separate films reach a critical thickness £, (Eq. [10]). The spontaneous filling of
the central pore at imbibition occurs when an inscribed circle (7;,, = L/2) is formed
(1.e., the curved liquid-vapor interfaces from the corners merge at L/2). The large
dimensional disparity between slit spacing (L) and pore size (L), ensures that slit
snap-off precedes pore snap-off during an imbibition cycle, and follows pore snap-
off for drainage conditions.

The spontaneous snap-off processes require two scenarios to be consid-
ered—oprior to and after slit filling—for calculation of pore saturation and liquid-
vapor interfacial area. Following pore snap-off the pore is completely saturated and
the liquid-vapor interface is zero. Expressions for calculating saturation, Syw(u), de-
fined as liquid area per pore cross-sectional area (these are translated to their re-
spective volumes for three-dimensional pores) for all regular polygon-shaped cen-
tral pores are given as:

(1) before slits fill (u < uc)

Lh(w)(n = 20 + 4B) — nh(W)? + r(w)*F,
20BL7 + A, L? [16]

Sw(”‘) =

(11} after slits fill (U= pe)

20317 + b L = h(w)| + Hw)2F,
21+ AL 7]

Swin) =
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where A(w) 1s film thickness, r(u) is the radius of liquid-vapor meniscus curvature,
F, 18 the angularity factor for the central pore (Tuller et al., 1999), and A, is the area
factor of the central pore. The film thickness h(p) and the radius of interface cur-
vature r(p) are derived by rearranging Eq. [7] and Eq. [12}:

h(w) = VA /(6pp) [18a]
r() = —o/(pw) [18b]

Angularity and area factors for several regular polygon-shaped central pores are
listed in Table 1-1.

Pore Scale Liquid-Vapor Interfacial Area

The liquid-vapor interfacial area relative to the entire pore cross-section is
calculated as:

(1) before slits fill (u < uc)

ABL + nL - 2F, r()

A (W) =
v () 20BL2 + A, L2 [19]
(1i) after slits fill (uw = pc)
nL—=2F, r(un)
Ay (W) =
W= Bl A, 12 120]

with n as the number of corners of the central pore, and F,, and A, the previously
defined pore shape factors.

Upscaling Considerations From Pore- to Sample Scale

Statistical Representation of Unit Cell Dimensions

The representation of liquid behavior in a variably saturated sample (~0.001
m?) of porous medium invariably involves consideration of a range of pore sizes.
An approach that has been successful with similar conceptual models is to adopt a
statistical framework whereby pore sizes (or other geometrical attributes) are rep-
resented by a statistical probability distribution. The statistical approach has been
instrumental in representing the distribution for the pore radii in the bundle of cylin-
drical capillaries model as illustrated in the studies of Laroussi and de Backer (1979)
or more recently by Kosugi (1994, 1996) who assumed log-normal distribution of
pore radii. In the proposed upscaling scheme outlined in this study we represent the
statistical distribution of central pore length (L) by a gamma distribution (Rice,
1995). The gamma distribution resembles the commonly used lognormal distrib-
ution with its positive skewness, and also facilitates derivation of closed-form ex-
pressions tor liquid retention and interfacial arca, Several other probability laws,
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including the incomplete gamma distribution (Brutsaert, 1966) or the Weibull dis-
tribution (Assouline et al., 1998) may also be considered in future studies.

The gamma density function for the central pore length, f(L), is dependent
on two parameters, & and ®:

AL) = [LYE w5 )] exp(-Liw) L=0 [21]

The parameter & is limited to integer values. Calculations involving expectations
of (L) are greatly simplified by the choice of £ = 2 that provides a balance between
flexibility and tractability (§ = 2 was used in this study). The moment-generating
function of the gamma distribution (Rice, 1995) is used to obtain expressions for
the mean m(L) and variance v(L) of L given as:

mL)=®E+1) [22a]
WL) = w2(E + 1) [22b]

We also limit the range of admissible L values for the assumed gamma dis-
tribution to values between L, and L., representing the smallest and largest cen-
tral pore lengths, respectively. The relationships between slit length and central pore
length distribution is expressed as B(L.x — L). Such inverse relationships facili-
tate the representation of clayey soils by unit cells with relatively small central pores
and large slits (on average), whereas sandy soils would be represented by larger cen-
tral pores attached to shorter slits (i.e., less internal surface area). The relationships
between pore length distribution and slit spacing is expressed as oL, Constraints
on the values of o, B, and L) are imposed based on measurable medium proper-
ties such as porosity, specific surface area, and measured liquid retention/charac-
teristic curves (as will be outlined in “Parameter Estimation and Physical Con-
straints’™).

A conceptual sketch of the proposed upscaling scheme is depicted in Fig. 1-7.
A population of gamma-distributed square pores (Fig. 1-7a) is represented for il-
lustrative purposes by 6 bins (L;—Lg). The fixed ratio between central pore length
L and slit spacing o.L results in an adjoint gamma distribution of slit spacing as de-
picted in Fig. 1-7a. The physical model predicts the shapes of liquid-vapor inter-
faces for each pore size and chemical potential u, leading to different stages of pore
tilling according to chemical potential and pore geometry (Fig. 1--7b). The fraction
of pores at each of the several filling stages is determined from the statistical dis-
tribution of pore length, L), and is expressed as the expected value of a certain
range of pore spaces to be completely or partially liquid filled. The total sample scale
saturation is calculated as the weighted sum of different pore filling stages. The re-
sulting characteristic curve is illustrated in Fig. 1-7¢ for three values of chemical
potential. Details of these calculations are discussed in the following section.

Sample Scale Saturation (Drainage Branch)

The upscaling scheme was applied to the pore scale model based on the SYL
lformulation, leading 1o the development of closed-form expressions for sample scale
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saturation as a function of chemical potential. General closed-form expressions were
derived for all regular polygon-shaped pores. The calculations are illustrated for the
drainage branch of a characteristic curve, though the results may be readily extended
to the imbibition branch. The sample scale saturation as a function of chemical po-
tential is expressed as the sum of five terms related to the expected values of five
distinct unit cell filling stages:

f(L)

Gamma Distribution for L

L5 L
flL)= W_—il i Exp(— ;ﬂ—)

with £=2

(a)

L

F

=
-

- Chemical Potential [J/kg}
k3

0.0 ) 1.0
Degree of Saturation

Fig. 1-7. A definition sketch for the proposed upscaling scheme depicting: (a) gamma distribution of
central pore lengths with £ = 2, and hypothetical six bins (note the inverse relationships between
and 1.) : (h) three different filling stages in the population of unit cells (represented by Ly 1) de-
fined at three chemical potential values py to py (dry-wet); and (¢) the resolting bypothelical char-
acleristic curve,
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Swp) = Syi() + Syo(W) + Sya() + Spa(n) + Sys(w) [23]

with:
Ly(p) Li(w)
So(w = | ALL= LJ (L2203 » Exp(~Liw)dL [23a]
Lmax 2
Hw)F,
S = W « AL)dL 23b]

Ly(w) zaBL(Lmax - L) + An L’

Fat) ZGBL(Lmax - L)

S = o« AL)dL 23
o= 0 0BLLy - D+ Ay 2 T 125l
Ly(w)
nLh(w)
S = « AL)dL 23d
il Li(w) 20BL(Loae — L) + A, L2 ) 123d]
Lmax _ _
Sus(1) = ,f AW {4P (Lmax — L) + n[L — A(W)}} e AL)dL (23c]

Ly(w) 20BL( L — L) + A, L?

The term Sy, (Eq. [23a]) is the expected value of completely filled pores. Because
saturation for completely filled pores equals one, the expected value operation
amounts to integration of the gamma distribution between the smallest central pore
dimension L,;, (the lower limit of integration depicted in Fig. 1-8), and a certain
pore size denoted by L. The upper limit L, is determined from the radius of cur-
vature at the onset of drainage in the central pore, ry (Mason & Morrow, 1991; Tuller
et al., 1999). It is often referred to as the radius of curvature at “air-entry”, and is
given by:

ry=LIC, [24]

The particular value L = L, is obtained by the substitution r4 = —o/(pp) (the stan-
dard Young-Laplace equation) using the proper value of the coefficient C, that de-
fines drainage curvature for different shaped central pores (as listed in Table 1-1)
(o yield for a given potential:

Li(w) = [-o/(pw)] C, [25]

‘The limit of integration (L) indicates that all unit cells with pore lengths L smaller
than /., will remain completely full at the given potential u.

The second and third terms (S, and S,,3) describe the fraction of unit cells
having partially liquid-filled central pores (Fig. 1-8) The term S, is used for cal-
culating the expected value of liquid retention in the central pores due to capillar-
tty only (disregarding the adsorptive part). The caleulation of S, is taken for all
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partially filled central pores between L, and largest pore length L, , the pore size
range for capillary processes at a given chemical potential . S,,; describes the con-
tribution to the sample scale saturation due to liquid retained in full slits (not con-
sidered by S,,;). It is implicitly assumed that slits remain full for all slit spacing
smaller than al., which defines slit spacing for the onset of spontaneous slit snap-
off at the chemical potential u. Spontaneous slit filling occurs when film thickness
h(w) is approximately one-third of the slit-spacing oL:

h(w) = aL/3 [26]

Rearranging Eq. [26] and substituting Eq. [18a] for #(u) yields the required upper
limit of integration L,:

Lmin
Lmin
Full Cells
o
L pu
Full Slits - .
Partially Filled
Pores .
L, o {6npp
Partially Filled
Slits & Pores
Fig. 1-8. Limiting pore size values used for determining the expected pore filling stage at different po-
tentials. These limits are expressed in terms of pore length Ioand vaey with the chemical potential

(see text for details).
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Lo(w) = (3/0)) VA, /(6mpp) [27]

Although it is unclear whether slit snap-off during drainage occurs at the same chem-
ical potential as for imbibition, we have adopted a similar expression for simplic-
ity. In any case, we expect effects of slits emptying at lower chemical potentials to
have a minor influence on the upscaling scheme due to the presence of a distribu-
tion of slit spacing in a sample.

The fourth term S, represents a minor correction due to the presence of lig-
uid film between corners within the central pore. Because this term applies between
the relatively narrow limits L, to L, it may be safely neglected for all practical cal-
culations but is presented here for completeness. The last term §,,5 calculates the
contribution (in terms of its expected value) of adsorbed liquid films lining partially
filled slits and central pores as induced by adsorptive forces only. The limits of in-
tegration are defined between L,, the onset of slit snap-off or emptying of slits dur-
ing drainage, and L_,,. Figure 1-8 is a definition sketch for the limits of integra-
tion as related to different pore filling stages. Detailed closed-form solutions for the
integrals are given in Tuller and Or (2001).

Sample Scale Liquid-Vapor Interfacial Area

Closed-form expressions for liquid-vapor interfacial area are derived in a sim-
ilar fashion as for liquid saturation. A general expression is given as the sum of two
terms subjected to identical limits of integration as depicted in Fig. 1-8:

Alv(u) = A]v](u) + AIVZ(H‘) [28]

with:

Ly(w)
nl—2F, r(n)
A= | "

Liw) 20BL(Lya — L) + Ay L?

« AL)dL [28a]

s 481, — L)+ nL — 2F,/()
Li(w) zaBL(Lmax - L) + An Lz

Apo(u) = * AL)dL [28b]

The first term describes the interfacial area per pore volume following pore emp-
tying (while slits are still liquid filled). Liquid-vapor interfaces are composed of
the curved interfaces in the corners (capillary contribution) and film interfaces in
the flat areas between corners (adsorptive contribution). The second term is for the
expected value of liquid-vapor interfacial area following the formation of liquid-
vapor interface in the slits following slit snap-off. These include interfaces in the
central pore and flat film interfaces in the slits. Detailed solutions for the integra-
tions are given in Tuller and Or (2001).

Parameter Estimation and Physical Constraints

Relationships Between Slit Space Scaling Parameters o and B. The di-
mensionless scaling parameter o0 is determined from the adjoint Gamma distrib-
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uted slit-spacing aL. The extent of overlap between central pore length (L) distri-
bution and its adjoint distribution for slit spacing (a.L) (Fig. 1-7a) plays an impor-
tant role in realistic representation of media pore space. The largest slit aperture (or
the leading edge of slit-spacing distribution) is determined by a distribution over-
lap parameter A (a fitting parameter) that relates slit spacing ratio (o) to largest (L,,,)
and mean m(L) pore lengths according to:

oL = m(L)(Liax M) ‘ [29]

According to these relationships, increasing the parameter A results in a decrease
in overlap and smaller slit spacing. The dimensionless slit length parameter 3 is a
fitting parameter and highly dependent on measured media specific surface area.

Specific Surface Area Constraint. An important requirement for model pa-
rameter estimation is that calculated sample scale specific surface area should be
within 90% of independently measured surface area. A 90% limit was chosen based
on the relatively large uncertainty in most standard methods for surface area mea-
surements [e.g., EGME method (Carter et al., 1986)]. The sample scale expected
value of specific surface area SA, is calculated according to:

L
B AB(Ly — D) + 1L
Sae= | ( Pl = L)+ 1

* f(L)dL [30]
Loin \ 20BL(L 0 — L) + Ay L? q)) f

with ¢ as the porosity of the porous medium. The dominant fitting parameter in this
expression is the slit length scaling parameter B. The derivation and a closed form
solution for the SA integral in Eq. [30] are given in Tuller and Or (2001).

Chemical Potential at Air Entry Value and Maximum Pore Length
Value. The chemical potential at the onset of drainage p, (air entry value) is often
attributed to the largest size present in the porous medium, which we denote as L,,,.
Eq. [25] 1s used to obtain the appropriate pore dimension L (uy). A small correc-
tion is introduced by calculating film thickness A(pug) lining the pore walls accord-
ing to Eq. [18a]. The resulting maximum pore size is given as:

Lmax = Ll(ud) + 2}1( ud) [31]

The minimum pore length (L,;,) was set to an arbitrary value of 10~° m in this study.
These two pore sizes define the limits of the gamma distribution. L., (or the po-
tential py at the onset of drainage) is estimated as one of the fitting parameters.

Estimation of the Effective Hamaker Constant for Solid- Vapor Interac-
tions for Different Soils. The Hamaker constant represents interactions between
macro-objects such as mineral surfaces and liquid due to short-range (<100A) van
der Waals forces (Ackler et al., 1996; Bergstrom, 1997). The presence of van der
Waals surfacial interactions in most liquid adsorption processes in natural porous
media renders the proper estimation of the Hamaker constant an important task. The
Hamaker constant for liquid-liquid interactions through the intervennig viapor is a
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well-known quantity (Ay, = 3.7 x 1072°T) (Iwamatsu & Horii, 1996). On the other
hand, estimates of the Hamaker constant A, for solid-vapor interactions through
the intervening liquid rely solely on data measured on pure mica and quartz sur-
faces (Iwamatsu & Horri, 1996; Beaglehole et al., 1991; Cury & Christenson,
1996; Ackler et al., 1996).

We propose a potential methodology to estimate an “effective” Hamaker con-
stant for soils using the single film adsorption equation (Eq. [18a]) fitted to data
obtained from the dry end of the measured characteristic curve (presumably re-
flecting conditions where adsorption dominates). The “dry end” volumetric water
content divided by the measured specific surface area provides an estimate of ad-
sorbed liquid film thickness as a function of chemical potential. The procedure for
Hamaker constant estimation is illustrated in Fig. 1-9 using water retention data
for the soils under study (Table 1-2). The results reveal that adsorption in soils with
mixed clay mineralogy may be described by a single Hamaker constant value of
Aq = —6.0 x 10720 ], The fitted Hamaker constant for the kaolinite-dominated
Salkum soil was about one order of magnitude larger or A, =—5.0 x 1071°J. Such
effects of clay mineralogy on liquid adsorption behavior are predicted by interface
science theory (Derjaguin et al., 1987). However, the adsorption picture becomes
somewhat more complex as it requires invoking electrostatic effects due to the dif-
fuse double layer (DDL). Expressions for the more general case (including DDL
effects) were developed by Derjaguin and Churaev (1976). For the sake of simplicity,
we retain van der Waals molecular interactions only, and designate the estimated
parameter an “effective” Hamaker constant reflecting bulk adsorption response,
which is likely to involve other mechanisms and more complex geometry than pla-
nar surfaces.

ILLUSTRATIVE EXAMPLES—LIQUID SATURATION
AND CONFIGURATION

Liquid Saturation

We proceed with illustrative examples for application of the proposed up-
scaling scheme to seven soil types with properties listed in Table 1-2. The closed-
form solution for degree of saturation (Eq. [23]) was fitted to measured data by op-
timizing parameters 3, ®, A, and the chemical potential g, at air entry point (that
defines L,,,,). Note that the Hamaker constant was estimated beforehand, as de-
scribed in “Estimation of the Effective Hamaker Constant for Solid-Vapor Inter-
actions for Different Soils” above. The estimated parameters were then used to cal-
culate the liquid-vapor interfacial area for each soil (Eq. [28]). We used square
shaped central pores for all soil types except the artificial sand mixture, where tri-
angular pores were applied to emphasize capillary processes over adsorption in sand.
lHowever, the closed-form solutions for retention and interfacial area were derived
lo accommodate any regular polygon-shaped central pore. Constants for various

shapes are described in Table 1-1. The values of primary physical constants em-
ployed in the caleulations and their units are shown in Table 1-3.
The van Genuchten (VG parametric model (van Genuchten, 1980) was also

fitted 1o the measured charactenstic curves; recall that the VG model and its para-
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Table 1-2. Measured soil properties.

Soil series Sand Silt Clay Clay type  SA§(m?g™') Porosity
Sandt 1.000 0.000 0.000 NA 0.01 0.35
L-soilf 0.888 0.061 0.051 Mixed 25 0.45
Royalf 0.536 0.319 0.145 Mixed 45 0.48]
Salkumi 0.190 0.585 0.225 Kaolinitic 51 0.589
Walla Wallag 0.228 0.633 0.139 Mixed 70 0.529
Millville 0.330 0.490 0.180 Mixed 73 0.47
Palousei 0.113 0.682 0.205 Mixed 97 0.559
PalouseBi 0.093 0.439 0.468 Mixed 203 0.59q

T From Kim et al., 1997.

1 From Campbell and Shiozawa, 1992.

§ Determined with the ethylene glycol monoethyl ether (EGME) method (Carter et al., 1986).

q Estimated by assuming a particle density of 2650 kg m™* and matching the gravimetric water con-
tent in Campbell and Shiozawa, 1992.

meters {Olyg and nyg) are entirely empirical. We use the results for Millville silt loam
(Or & Tuller, 1999) depicted in Fig. 1-10 to illustrate in some detail the primary
features of the proposed scheme. The calculated water characteristic curve (Fig.
1-10a) fits measured data as well as the VG model (the two curves are indistin-
guishable). An important feature of the new model is the ability to separate the in-
dividual contributions of adsorptive and capillary forces to the resulting liquid re-
tention curve. The adsorption curve (A) is represented by the terms S, and S, 5 in
Eq. [23]. The liquid retained in completely filled pores and slits (S,,; + S,3), and
the liquid retained due to capillary forces in the corners of partially filled pores (S,,)
are added to obtain the capillary curve (C). The point of crossover separates the re-
tention curve into capillary- and adsorption-dominated portions. The contribu-
tions illustrated in Fig. 1-10a should be considered as follows: for a given chemi-
cal potential p, the corresponding saturation value (thick line denoted as “New
Model”) is made up of adsorptive (A) plus capillary (C) components.

Liquid-Vapor Interfacial Area

Liquid-vapor interfacial area per pore volume (Eq. [28]) was calculated as a
function of chemical potential (Fig. 1-10b) using the parameters estimated from
the retention curve. The resulting liquid-vapor interfacial values were then multi-
plied by the medium porosity to yield interfacial area per bulk sample volume as
depicted in Fig.1--10b. The interfacial area A}, = O for p > uy (or until the largest
pore is invaded by air/vapor). At the dry end of the A,, curve the interfacial area

Table 1-3. Physical constants and dimensions used in the illustrative exampie calculations.

Mroperty Symbol Unit
Hlamaker Constant (liquid-liquid through vapor) Al 37x 10720 1]
Hamaker Constant (solid-vapor through liquid) mixedf At -6.0x 10720 [J]
Hamaker Constant (solid-vapor through liquid) kaolinitict Al =50x 100 [N
Surlace tension of waler o 0.0715 [Nm™)
Density of water p 1000 [kg m~|

FoSee Estimation of the BHective Himmaher Constant A, for PHITerent Soils™,
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approaches a constant value equal to the estimated specific surface area of the
medium, SA. (Eq. [30]). The asymptotic behavior and the attainment of a nearly
constant value occurs when only a few molecular layers of liquid are adsorbed on
the solid surface.
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Fig. 1-10, (&) Measured and fitted water retention capves, and (0 calelsted ligmd vapor interfacial

arca for Mallville silt loam soil.
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Knowledge of detailed liquid-vapor configurations enables separation of
capillary and adsorptive contributions to the interfacial area as shown in Fig. 1-11a
(note the log-log scale). We denote liquid-vapor interfacial areas associated with
menisci (curved interfaces at pore corners) as capillary contributions, and those as-
sociated with films as adsorptive contributions. The results in Fig. 1-11a illustrate
the dominant contribution of liquid films to the total liquid-vapor interfacial area
of a partially saturated porous medium (Millville silt loam). Note that the “flat” re-
gion in Fig. 1-11a (changes in SA with no change in ) reflects pore snap-off
processes.

Even for very coarse sand such as used by Kim et al (1997), the contribution
to liquid-vapor interfacial area by films () dominates the contribution by menisci
(M) as evident from the results in Fig. 1-11b (calculated for triangular-shaped pores
to accentuate capillary effects). The comparisons shown in Fig. 1-11b between lig-
uid-vapor interfacial area measurements by Kim et al. (1997) and Karkare and Fort
(1996), and model calculations (expressed as SA per bulk sample volume) are based
on retention and media parameters given in Tables 1-2 and 1-4. The measurements
of Karkare and Fort (1996) were obtained in sand with a similar particle size range
as used by Kim et al. (1997). For the reported sand specific surface area of 10 m?
kg~! (based on calculation for smooth spherical particles) (Kim et al., 1997), model
predictions slightly underestimate measured A,,. However, surface area estimates
assuming smooth spherical particles were shown by Borkovec et al. (1993) to pro-
duce significantly lower estimates than measured specific surface area (due to the
contribution of particle surface roughness). Figure 5 in Borkovec et al. (1993) shows
differences in excess of two orders of magnitude between measured SA (obtained
by various methods) and SA estimated from geometrical calculations for similar par-
ticle sizes as used by Kim et al. (1997). An increase in the value of sand specific
surface area to 50 m? kg~! (dash-dotted line) yields a great improvement in match-
ing model predictions with measurements.

The primary reason for the minor capillary contribution to liquid-vapor in-
terfacial area even in a medium with relatively large (triangular-shaped) pores and
small surface area lies in the control exerted by the chemical potential on liquid-
vapor menisci. For a given potential, meniscus curvature is constant throughout the
porous medium irrespective of pore size. This means that after pore snap-off the
capillary contribution to liquid-vapor interfacial area from small and large pores is
equal if their shapes (polygon and angularity) are similar.

The shape of the capillary portion of the liquid-vapor interfacial area for sand
(Fig. 1-11b) resembles simulation results of Reeves and Celia (1996) of interfa-
cial areas in pore networks due to capillarity only. The discussion illustrates potential
limitations in using cylindrical pore network models (Reeves & Celia, 1996) es-
pecially for studies of volatile liquids and surfactants, and other multiphase trans-
port processes where interfacial areas play a crucial role (Kim et al., 1997; Karkare
& Fort, 1996). Furthermore, the overwhelming role of adsorbed liquid films casts
doubts on several proposed constitutive relationships between capillary pressure
(saturation) and interfacial arca (Skopp, 1985; Hassanizadeh & Gray, 1993) most
ol which were based on assumed cylindrical capillary geometry in the absence of
adsorption.
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Table 1-4: Fitted parameters for the proposed model and the VG-model

Proposed Model VG-Model
Soil Series B o wi At wgk Liax SA, SAratio§  ayet vt
Jkg! m m? kg1 % (T kghy
Sand (Kim et al., 1997)t 0.275 6.73E-05 0.000 650 1900 -0.0030 0.01526 10 99.4 3.300 6.199
L-Soif (Campbell & Shiozawa, 1992) 18 500 5.71E-65  0.000 220 2100 -0.0050 0.00550 22517 90.1 2917 1.338
Raoyal tCampbell & Shiozawa, 1992) 50000 5.11E-05 0.000 170 2180 -0.0062 0.00444 40491 90.0 0.127 1.465
Salkum (Campbell & Shiozawa, 1992) 65 000 6.06E-05  0.000 170 2200 -0.0072 0.00382 50918 99.8 0.100 1.297
Walia Walla (Campbell & Shiozawa, 1992) 100 000 4.52E-05  0.000 130 2350 -0.0075 0.00367 68106 97.3 0.189 1.305
Miliville (Or & Tuller, 1999) 250 000 4.30E-05  0.000 107 2750 -0.0102 0.00271 72848 99.8 0.050 1.303
Palouse (Campbell & Shiozawa, 1992) 300 000 447E-05  0.000 105 3200 -00125 0.00220 96735 99.7 0.190 1.274
PalouseB (Campbell & Shiozawa, 1992) 2 500 000 3.34E-05  0.000 090 5000 -0.0170 0.00162 182604 %0.0 0.168 1.216

Calculated for a triangular-shaped central pore.
Fitted parameters.

27 2 DO

Ratio between model calculated and measured specific surface area.
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Table 14, showing a clear trend with values of w, and L,,,, increasing with coars-
ening of the soil texture, and the value of B increasing with increase in surface area,
as it should. The decrease in A with coarsening texture emphasizes the increasing
contribution of the central pores (small A yields extended overlap of the Gamma
distributions).

A summ?gf parameters estimated and calculated for all soils is given in

HYDRODYNAMIC CONSIDERATIONS

Motivated by the detailed picture of liquid vapor interfaces under hydrosta-
tic equilibrium we proceed with the introduction of hydrodynamic considerations.
The underlying assumption is that these liquid configurations and interfaces remain
relatively stable under slow laminar flow conditions. Furthermore, network effects
are ignored and only flow into the liquid cross-section is considered—similar to de-
rivations used in the BCC model (Milington & Quirk, 1961; Mualem, 1976a). Con-
sidering these simplifying assumptions, we develop in the following sections a
model for pore scale hydrodynamic processes starting with flow in individual geo-
metrical features of a unit cell and scaling up to represent the hydraulic conductivity
of unsaturated sample [using a statistical scaling procedure similar to the one pre-
sented in “Upscaling Considerations from Pore-to Sample Scale (Or and Tuller,
1999)”’]. Potential applications of the proposed modeling approach for estimation
of unsaturated hydraulic conductivity of rough fracture surfaces and fractured
porous media are presented.

Flow Phenomena in Angular Pore Space

A cross-section of a unit cell with triangular- or square-shaped central pore
is considered. We distinguish between three flow regimes: (i) flow in ducts and be-
tween parallel plates for completely filled slits and central pores, (ii) flow in thin
liquid films adsorbed on the flat parts of the unit cell after slit or pore snap-off, and
(ii1) flow in the corners of the central pore after pore snap-off. The onset and con-
tribution of each flow regime is dependent on the filling stage of the unit cell as de-
termined by chemical potential. Solutions of the Navier-Stokes equation for different
geometry and boundary conditions are used to obtain the average velocities in films,
corners, ducts, and parallel plates. We then use analogy with Darcy’s law to obtain
the proportionality coefficient between flux and hydraulic gradient that represents
the average hydraulic conductivity for laminar flow regimes under consideration.
In some cases we consider modified liquid viscosity in vicinity of solid surfaces
for thin liquid film flow calculations. The unsaturated hydraulic conductivity for
the entire cross-section of the unit cell is derived by averaging film and corner con-
ductivities over the associated liquid-occupied areas and dividing by the entire cross-
sectional unit cell area (pore and solid shell). Using the equilibrium liquid-vapor
interface the saturated hydraulic conductivity for a unit cell is calculated by as-
sembling solutions for the full duct (main pore) and parallel plate (slits), representing
the cell elements. Relative hydraulic conductivity as a function of pis caleulated
as the quotient of unsaturated and saturated conductivities,
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Flow in Ducts and Between Parallel Plates

Spurk (1997) derived closed-form solutions for the average flow velocity ¥
between parallel plates and in full ducts. For laminar flow between parallel plates
relationships between viscosity, geometry, pressure gradient and mean flow velocity
are given as:

v = [(aL)¥(12n0)] (- dP/dz) [32]

where 1) is the viscosity of bulk liquid, o is the spacing between the plates (i.e.,
slit spacing), and —dP/dz is the pressure gradient in flow direction z.

In this study we consider flow through ducts with triangular, square-shaped,
and higher order polygonal cross-sections. For simplicity we employ the circular
duct solution to approximate average velocities in higher order polygons (n > 4).

The average velocity in a full rectangular duct (of dimensions L; x L, with
L, > L,)is given by:

v = [LZ BJ/(4 )] (- dP/dz) [33]
with

_ L 64 3 tanh ((Ly/Ly)[n2n — 1)/2])

BS= 1
3 Ll T[S n=1 (2]’1—1)5

For a square-shaped duct the solution simplifies as L,/L; = 1.
The solution for an equilateral triangular duct is given as (Spurk, 1997):
v = [LY(80 M)] (— dP/dz) [34]

The circular duct solution related to a polygon with the same cross-sectional area
is given as (Spurk, 1997):

v =[L? A /(8 Ny )] (— dP/d7) [35]

where L is the side-length of the polygon, and A,, is the area factor defined in Table
-1 [for comprehensive derivations see Tuller and Or (2001)].

Flow in Thin Films

The flow velocity profile normal to film cross-section is obtained from a so-
iution of the following Navier-Stokes equation (Spurk, 1997):

(—dP/dz) = Mg (dVidy?) [36]

where v is the distance taken normal to the solid surface. Double integration of Eq.
| 30] yields the velocity profile normal to the solid surface:

vy = [0 2N | (—dPdz) [37]
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with & as the thickness of the liquid film. The velocity profile (Eq. [37]) may be in-
tegrated again (between zero and film thickness) and divided by film thickness A
to yield an average liquid velocity for a given chemical potential:

v =[h (W3 M)] (- dP/dz) [38]

This expression relates the film thickness & (Eq. [18a]) as a function of the chem-
ical potential p and the mean velocity, and is valid only when the liquid viscosity
1s constant throughout the film. Experimental and theoretical evidence shows a pres-
ence of a thin layer with modified viscosity close to the solid surface. Liquid vis-
cosity is elevated relative to bulk liquid due to short- and long-range interfacial forces
(Low, 1976, 1979; Derjaguin et al., 1987; McBride & Baveye, 1995). Expressions
derived by Low (1979) for viscosity profiles of water altered by interfacial forces
were recently modified by Or and Wraith (1999) to represent viscosity 1 in terms
of distance from the solid surface:

NG, 7) = Mo expla*/y7)] [Pa s] [39]

where y is the distance from the solid surface (A), T is temperature (K), and a* =
1621 (A K) is a constant modified from Low (1976). Substituting Eq. [39] into Eq.
[36] and carrying out the integrations yields an expression for average velocity con-
sidering effects of modified liquid viscosity near solid surfaces (Or & Tuller,
1999):

v = {AWV/[12 ng AW} (— dP/dz) [40]
With the function A(u) for a given film thickness A{(u):
A(W) = [4h(u)® — Sah(w)? — a®h(w)] expl-alh(w)] — [6a” h(W) + @] Ei [-alh(w)]

where Ei[x] = J*.. (er) dtis the exponential integral (Abramowitz & Stegun, 1964),
and a for room temperature (293 K) is defined as a = (a*/293) » 10710 = 5.53 »
1071 m,

The resulting average velocities for constant (Eq. [38]) and variable viscos-
ity (Eq. [40]) become indistinguishabte for liquid films thicker than about 10 nm.
We therefore use the simpler expression in Eq. [38] for films thicker than 10 nm,
and the more complex Eq. [40] for flow in very thin films.

Liquid Flow in Corners Bounded by a Liquid-Vapor Interface

Ransohoff and Radke [1988] derived mathematical expressions for average
liquid velocity in corners bounded by liquid-vapor interfaces. They used a detailed
numerical scheme to solve the Navier-Stokes equations for the assumed geometry
and boundary conditions. Their results were reduced to the general form:

v =[r(W)2/(eMy)] (- dP/dz) [41]

where € is a dimensionless [low resistance parameter dependent on the corner angle
Y (Ransohoff & Radke, 1988). The tabulated values of Ransoboll and Radke
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(1988) for for different corner angles and for zero surface shear stress (i.e., liquid-
vapor interface) were fitted with the following parametric expression (Fig.1-12):

e(Y) =expl(® +d V)1 +c )] [42]

with b =2.124, ¢ =-0.00415, and d = 0.00783 (r* = 0.995) for Y values in the range
of 10° <y < 150° (Fig.1-12).

Average Hydraulic Conductivity for Flow in Parallel Plates,
Ducts, Films, and Corners

We use the analogy between the average flow velocities calculated for pore-
scale flow regimes from the Navier-Stokes solutions (Eq. [32], [33], [34], [35], [38],
[40], and [41]) and Darcy’s law representation of the liquid flux to obtain the per-
meabilities of parallel plates, ducts, films, and corners. The analogy of pore-scale
flow processes with Darcy’s law was instrumental to compute unsaturated hydraulic
conductivity in studies by Childs and Collis-George (1950), Burdine (1953), Gard-
ner (1958), Mualem (1976a), and many others. Darcy’s law is given as:

v = /A = [Kl(pg)] (— dP/dz) [43]
where Q is the volumetric discharge rate, A is the cross-sectional area occupied by

the liquid, K is the hydraulic conductivity, and g is the acceleration of gravity. As-
suming a unit pressure gradient, rearranging Eq. [43], and inserting the solution in

10*

Flow Resistance ¢

10° ' i
0 40 80 120 160

Corner Angle [°]

e 1120 Nondimensional corer resistanee to flow as a function of corner (pit) angle y (calculated
frane tabulated values of Runscholl & Radke, TORR),
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Eq. [32], [33], [34], [35], [38], [40], and [41], yield the following expressions for
K:

Parallel plates (slits) KS =K, L? = [pgo?/(12 ny)] L? [(44]
Triangular duct KDt = Kdy L? = [pg/(80 )] L? [45]
Square-shaped duct KDg = Kdg L? = [pgBJ/(4 )] L* [46]
Circular duct KD = Kd¢ L? = [pgA, /(8 )] L? [47]
Thick film (4 > 10 nm) KF(u) = (pg/o) [h(w)2/3] 48]
Thin film (2 < 10 nm) KF(u) = (pgig) 1AW/(12A(w))] 49]
Corner KC(w) = (pgMmo) [r(n)’/e] [50]

The thickness of the adsorbed film #(u) and the radius of interface curvature r(u)
are calculated according to Eqg. [18a], and [18b].

Saturated and Unsaturated Hydraulic Conductivity for a Unit Cell

Saturated and unsaturated hydraulic conductivities for the entire unit cell is
calculated by weighting the conductivities of single elements discussed above over
the liquid occupied cross-sectional areas and dividing by the total cross-sectional
cell area (pore plus solid shell). The total cross-sectional area Ay is simply calcu-
lated by dividing the pore cross-sectional area (see Fig. 1-5a) by the porosity ¢ of
the porous medium:

Ar=[Qop + ALY/ [51]

where A, is the area factor of the central pore, listed in Table 1-1.

To calculate unsaturated hydraulic conductivity K(u) we have to take into con-
sideration the spontaneous filling (snap-off) of the slit and the central pore for im-
bibition and the spontaneous redistribution of liquid for drainage. These aspects are
extensively discussed in “Film Adsorption on Flat Surfaces and in Slit-Shaped
Pores” and ““Capillarity and Pore Shape”. The unsaturated conductivity before slit
filling is given as:

2
h(u)[ 4BL+n (L - %ﬂ KF(W) + r(u)2F,KCu)

K(w = A 52]

with KF(u) and KC(p) as the hydraulic conductivities for films and corners (Eq.
[48], [49], and [50]). Note that the thin film solution (Eq. [49]) is employed for {ilms
thinner 10 nm. Detailed derivations of liquid occupied cross-sectional arcas arc given
in Tuller and Or (2001). The unsaturated conductivity alter shit filling is given as:
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-

),
208L2KS +h(uw)n (L - %) KF(p) + r(W)2F,KC(1)

K(w = A (53]

The saturated hydraulic conductivity after main pore snap-off, when the entire cross-
section is occupied by liquid, is given as:

K. = QoPL2KS + A, L2 KD)/Ar [54]

where KS and KD are the parallel plate and duct hydraulic conductivities defined
in “Average Hydraulic Conductivity for Flow in Parallel Plates, Ducts, Films, and
Corners”. Relative hydraulic conductivity is obtained by dividing Eq. [52], [53],
and [54] by the saturated conductivity (Eq. [54]).

Upscaling From Pore- to Sample Scale Hydraulic Conductivity

The same upscaling scheme as presented in “Upscaling Considerations from
Pore- to Sample Scale (Or and Tuller, 1999)”, using a gamma distribution for the
central pore dimension L, was applied to obtain saturated and unsaturated hy-
draulic conductivities for a sample of porous medium. To obtain closed form ex-
pressions for the expected value of sample-scale hydraulic conductivity we set the
distribution parameter £ = 2. Inverse relationship between slit length and central
pore length (see discussion in “Statistical Representation of Unit Cell Dimen-
sions”) is facilitated by expressing the slit length as B(L_,,—L). The general closed-
form expression for sample-scale hydraulic conductivity is expressed as the sum
of five terms related to five distinct cell filling stages as determined by chemical
potential and geometry (snap-off mechanisms):

K(w) = Kj(w) + Kx(n) + Kz(u) + Ky(u) + Ks(u) [55]

‘The separation into five terms was necessary to distinguish between flow contributed
by films and by corners and full ducts. The integrals for the five terms may be ex-
pressed in a general form

Ly 4 3
Al +BI°+CL+D

Ki(n) = L)dL 56

W) I{L EI? + FL AL) [56]

where f(L) is the gamma density function with & = 2 (Eq. [21]), L;_ and L, are the
lower and upper integration limits, and A, B, C, D, E, and F are constants and vari-
ables listed in Table 1-5. For a detailed analytical solution of this general integral
wu refer to Tuller and Or (2001). Note that in Tuller and Or (2001) Eq. [56] was
calended to allow calculation of liquid saturation, liquid-vapor interfacial area,
medium specific surface area, and saturated and unsaturated hydraulic conductiv-
ity with a single genceral equation,

The first term K (p) is the expected value of unsaturated hydraulic conduc-
vty for completely filled central pores integrated between the minimum pore di-



Table 1-5. Integration limits, constants, and variables used in the hydraulic conductivity calculations (Eq. [56]).

Conductivity term

{Integration limitst) Al B: Ct Di E F

Koot Lnins Lingy) (A Kq-2aBK)o 200B Ly Ks O 0 0 A,-20P 20 B Ly
Ky (L, L) A Ky 0 0 0 0 A,-20pP 20 P Lo
Ky (L, L) -20B K0 200 Loy K, 0 0 0 A,-2af 2aBl..
K (Ly, Lingy) 0 0 ~4Bh(WKFW ¢ 4P Ly h(WKF(1) ¢ A,—2aB 20B Loy
Ko (L, L) 0 0 nh(WKF(W ¢ -nh(u) [2r(w)tan(y/2)] KF(p) ¢ A,-20B 2 0B Lings
Kiwis (L. Lyg,) 0 0 0 W’ F, KCw) A=20B 20 L

*Lem=10"7m; L, L, and L, are given in Eq. [31], [25], and [27].

= For K. K4. KF(p), and KC(), see Eq. {44] to [50].

9%

JITINL ® 40
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mension L,;, and the upper limit L,, which is determined from the radius of cur-
vature at the onset of drainage in the central pore (Eq. [24]). The second term de-
scribes the fraction of unit cells having full slits with integration limits L., and L,.
The upper limtt L, (Eq. [27]) is determined from the chemical potential at slit snap-
off [see discussion in “Sample Scale Saturation (Drainage Branch)”]. Flow in
films adsorbed on slit walls is accounted for in K3(u) with the integration limits L,
and the maximum pore dimension L,,, associated with the air entry value uq (Eq.
[31]). The fourth term represents the contribution of films aligning the flat parts of
the central pore (between the curved corner menisci). The limits of integration are
defined between L, and L. Finally Ks(n) calculates the contribution of corner flow
within the central pore from pore snap-off (L;) to Ly,,. An illustration about the
relation of integration limits and pore filling stages is depicted in Fig. 1-8. The con-
tribution of film flow to the overall unsaturated hydraulic conductivity is represented
by the sum of terms K,(1), Kxz(w), and K;y(n).

The expected value of sample-scale saturated hydraulic conductivity K, is
obtained by integrating Eq. [56] with variables and constants listed in Table 1-5
between L.,;, and L, (full saturation). The relative hydraulic conductivity is sim-
ply the quotient of K(u) and K.

INlustrative Examples for Pore and Sample-Scale Unsaturated
Hydraulic Conductivity

The application of the proposed hydraulic conductivity model is demonstrated
for three soils with physical properties and measured retention and conductivity data
reported by Brooks and Corey (1964) and Mualem (1976b). Saturation curves are
obtained by fitting the pore scale (Eq. [16] and [17]) or sample scale expressions
(Eq. [23]) for saturation to measured retention data [see discussions in “Applica-
tions of Simplified Augmented Young-Laplace Equation in the New Pore Geom-
etry”, “Sample Scale Saturation (Drainage Branch)”, and “Liquid Saturation”]. The
resulting fitting parameters L, ¢, and J (single cell) and the scaling parameters w,
A, ug, and B (upscaled model) are then employed to predict saturated and unsatu-
rated hydraulic conductivities at the pore (Eq. [52], {53], and [54]) and sample scale
(Eq. [55)). The resulting K(u) curves are compared with measured data and the van
Genuchten (1980) parametric model for unsaturated hydraulic conductivity.

The physical constants used in the calculations are listed in Table 1-3. Mea-
sured properties, VG-model parameters, and calculated K, values of the soils under
investigation are listed in Table 1-6. Additional examples over a wide range of soil
(extural classes are discussed in Tuller and Or (2001).

PPore-Scale Unsaturated Hydraulic Conductivity

Closed-form expressions for pore-scale saturation (Eq.[16] and [17]) for a unit
cell with triangular central pore were fitted to measured saturation data of Hygiene
Sandstone (Brooks & Corey, 1964). A triangular central pore was selected to em-
phasize capillary contributions expected for sand pore space. An elementary unit
cell with dimensions L= 0.033 mm, o= 0.0012, B = 0.0001 was found to yicld best
(it to the measured data as depicted in Fig. 1 13a. The resulting saturation curve is
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Table 1-6. Measured properties and best fit parameters for the proposed and the VG-Mualem model
for the investigated soils.

Soil Gilat loam:t: Touchet silt loam$ Hygiene sandstone§

Measurements -
K,,md"! 0.17 3.03 1.08
SAT, m? g 58 46 8

New model
B 250 000 10 Cell dimensions
) 0.000 026 0.000 007 L=0.033 mm
A 600 350 o =0.0012
g, Jkg! -0.98 -2.94 p=0.0001
Predicted K, md™! 0.054 2.33 1.59
Predicted SA,, m™ g~/ 40 31 NA
Van Genuchten-Mualem model

oyg Tkg™)! 0.233 0.051 0.081
G 1.67 7.09 10.40

T Estimated from sotl texture.
I Source is Mualem (1976b).
§ Source is Brooks and Corey (1964).

similar to curves obtained with the Brooks and Corey (1964) model, in which the
pore is completely saturated for potentials from zero to the air entry value. The cell
dimensions obtained from the saturation curve were then used for saturated and un-
saturated hydraulic conductivity calculations (Eq.[52], [53], and [54]). The result-
ing relative conductivity curve in Fig.1-13b clearly shows that soils with a narrow
pore-size distribution (e.g., sand) may be represented by a single unit cell. This of-
fers a simple and powerful tool for prediction of unsaturated hydraulic conductiv-
ity from measured retention data.

Sample-Scale Unsaturated Hydraulic Conductivity

The primary features of the unsaturated hydraulic conductivity upscaling
scheme are demonstrated for Gilat Loam (Mualem, 1976b; Bresler et al., 1971). We
use a solver tool available in most spreadsheet software to fit Eq. [23a—e] to mea-
sured saturation, applying an objective function (Or & Tuller, 1999) and con-
straints discussed in “Parameter Estimation and Physical Constraints”, to receive
a set of best fit parameters B, w, A, and ugy. Figure 1-14a reveals that the surface
area constraint (see discussion in “Specific Surface Area Constraint’”) and the rigid
shape of the gamma distribution (§ = 2) resulted in an unsatisfactory match at the
intermediate saturation range, but was in good agreement with measurements at the
wet and the dry end of the saturation curve. The VG-model was unable to match
the measured endpoints, but it was in good agreement with measurements at a sat-
uration range from 0.4 to (.75. The dotted lines show the contributions of liquid
retained due to capillary and adsorptive forces (“Liquid Saturation™).

The predicted relative hydraulic conductivity curve (Fig.1-14b) shows ex-
cellent agreement with measured data. The dash-dotted line represents the contri-
bution of film flow to the overall hydraulic conductivity. Figure 1-14b also illus-
trates the important role of film flow, whose contribution begins to dominate the
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contribution of corners and full ducts at retatively high chemical potentials in the
range of —70 J kg~!. Such film contributions are often discounted in pore scale mod-
els (e.g., Ransohoff & Radke, 1988; Dullien et al., 1986). Another interesting fea-
ture of the proposed model is ability to reproduce the s-shaped K(u) cur‘érg(on a
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log-log scale) as evidenced by measurements. Empirical models [e.g., Van
Genuchten (1980)] usually are unable to capture the film flow contribution which
alters the slope of K(u) significantly; instead they exhibit a monotonous decrease
in K(u) for potentials lower than the air entry value.

In an attempt to derive closed-form expressions for unsaturated hydraulic con-
ductivity, we were forced to fix the shape of the gamma distribution by using a con-
stant distribution parameter & = 2. This led to a reduced flexibility, especially for
soils with narrow pore size distribution. In Fig. 1-15 we show improved predic-
tions of K(u) when the distribution parameter  is left as a free parameter (using a
numerical scheme for the upscaling). The dashed line in Fig. 1-15b represents the
numerically evaluated relative saturation curve (§ = 6) that is almost indistin-
guishable from the VG-Mualem model. A summary of resulting parameters is listed
in Table 1-6.

Other Potential Applications—Unsaturated Flow
on Rough Fracture Surfaces

The approach for unsaturated conductivity outlined in previous sections was
extended to modeling the unsaturated hydraulic conductivity of rough fracture sur-
faces (Or & Tuller, 2000). Flow on rough fracture surfaces is an essential compo-
nent required for deriving constitutive relationships for flow in unsaturated frac-
tured porous media (Or & Tuller, 2001). The detailed derivations are obtained by
consideration of a dual porosity model (matrix — fracture) and the proportional con-
tributions to flow from these different pore spaces.

Considering a cross-sectional segment (unit element) of an unsaturated frac-
ture with a wide aperture (Fig. 1-16), the unsaturated conductivity as a function of
chemical potential is modeled following principles of the unitary approach as out-
lined in previous sections. The fracture aperture is assumed to be sufficiently wide
to preclude fracture snap-off (spontaneous filling of the gap) at all flow rates and
chemical potentials under consideration. The extension of the analysis to fully sat-
urated fractures is simple for a known aperture size (or a distribution of aperture
sizes). Each fracture element contains a pit representing either surface roughness
due to unconnected pits, or a connected groove on the fracture surface. Individual
pit geometry is defined by the pit’s depth L and its angle y. Pit density per unit frac-
ture surface is determined by a nondimensional parameter [3 that relates pit spac-
ing to its depth (L).

We consider the individual contributions of film and groove (corner) flow to
the total flow on the fracture surface, thereby enabling separation and identifica-
tion of flow regimes for different scenarios (fracture surface properties and chem-
ical potentials). If most of the pits are isolated, we expect the flow to be dominated
by liquid film flow. In the presence of an appreciable amount of continuous grooves,
most of the flow is expected to be in the form of “corner” flow (Ransohoff & Radke,
1988; Dullien et al., 1986). Under realistic conditions, flow in unsaturated fractures
is likely to be a result of these two processes. Analytical solutions for liquid retention
and unsaturated hydraulic conductivity on rough surfaces are derived in Or and
Tuller (2000) for a single fracture element, and for a population of clements with
a statistical distribution of their pit depth. An illustrative example for average con-
ductivity and the individual contributions of film and corner flow for a single frac-
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Fig. 1-16. (a) Conceptual picture of a rough fracture surface with (b) a definition sketch for a unit ele-
ment representing an unsaturated fracture surface with a single pit of depth L and angle y. Liquid-
vapor interfaces are functions of the chemical potential p that determines the radius of curvature in
the pit #(n), and filis thickness o). The inset represents the partially saturated porous rock forming
the fracture, water in the rock pore space is in equilibrivm with water on fracture surface,



44 : OR & TULLER

107
r— (a) — "I_Effective Film"
£ ——~ Film
— 104 - —— Corner
3 O Tokunaga & Wan [1997]
Q
% 107 - L=10"m
£ ) a0
10 - y=120
£
T
Q 10'7 T -
2 N —
e
& 10
& 4
m -
1 0-9 T T \ T f
102 101 100 107 102 103
- Chemical Potential [J/kg]
-E 10°
—_ (b) Projected Length Average K (u)
2 Al ——— Film K ()
2 3 ‘\ — — Corner K ()
©° 10° A 0 o O T[Tokunaga & Wan, 1997]
_g b\:\%o s v-bar [Tokunaga & Wan, 1997}
c
S
s 107 -
=
s
-g 11
I 10" 7]
a
o
1]
E .
> 1 0'15 T T T T
g

102 101 10° 10" 102 103
- Chemical Potential [J/kg]

Fig. 1-17. Evaluation of Tokunaga and Wan’s (1997) experimental results with unsaturated hydraulic
conductivity expressions for single element weighed by 8 = 0.1.



PROCESSES IN VARIABLY SATURATED POROUS MEDIA 45

ture element is depicted in Fig.1-17. Measurements by Tokunaga and Wan (1997)
are represented as symbols.

The results for flow on a single fracture surface are incorporated in the de-
rivation of hydraulic properties of unsaturated fractured rock mass. Liquid reten-
tion and hydraulic conductivity in partially saturated fractured porous media are
modeled in angular pores and slit-shaped spaces representing rock matrix and frac-
tures, respectively. A bimodal distribution of pore sizes and apertures accounts for
the two disparate pore scales and porosity. These considerations provide a frame-
work for derivation of retention and hydraulic conductivity functions for fractured
porous media (Or & Tuller, 2001).

SUMMARY AND CONCLUSIONS

The focus of this review was a new physically based framework for model-
ing liquid retention and liquid-vapor interfacial area in partially saturated porous
media developed by Tuller et al. (1999). The primary elements of the new frame-
work are: (1) the explicit consideration of individual contributtons of capillary and
adsorptive forces to the matric potential; and (ii) a new model for media pore space
geometry that includes internal surface area and angular rather than cylindrical pore
space. The augmented Young-Laplace (AYL) equation combines the classical cap-
illary component with an adsorptive term based on liquid-solid interfacial processes
into a unitary representation (Philip, 1977a). The disjoining pressure is the basic
thermodynamic property used to express interfacial interactions, using results from
the pioneering work of Derjaguin et al. (1987). These developments were applied
to newly proposed pore space geometry (elementary unit cell} comprising of an an-
gular central pore (for capillary processes) connected to slit-shaped spaces with in-
ternal surface area (for adsorption processes). A key development for practical use
was the simplification of the complex AYL-equation by superposition of adsorp-
tive and capillary interfaces. The results of the simplified solution, termed shifted
Young-Laplace equation (SYL), were indistinguishable from those obtained by de-
tailed solution of the AYL equation. New expressions for capillary behavior in an-
gular pore spaces further assisted in the development of extremely simple expres-
sions (“Capillarity and Pore Shape”) for calculation of saturation and liquid-vapor
interfacial area at the pore scale.

The proposed pore scale model served as the basis for development of a sta-
listical framework for upscaling to a variably saturated sample of a porous medium
(Or & Tuller, 1999), where the distribution of cross sectional pore lengths is mod-
¢led with the gamma distribution. The model calculates the expected values of var-
ious liquid configurations in pore space using geometrical and chemical potential
considerations of liquid behavior within the assumed statistical framework. Model
predictions using optimally estimated parameters compare favorably with water re-
tention measurements. Among the advantages of the proposed physically based re-
tention model is the ability to separate capillary and adsorptive contributions,
thereby enhancing the explanatory power of the model. Furthermore, liquid-vapor
mterfacial arca as a function of chemical potential (or saturation) is readily calcu-
Lated using the same parameters used for retention calculations. Both calculations
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(saturation and interfacial area) are made possible by detailed knowledge of liquid-
vapor configuration for the entire pore size population. Model calculations reveal
a dominant role of liquid films in determining liquid-vapor interfacial area.

Hydrodynamic considerations were introduced with the underlying assump-
tion that equilibrium liquid-vapor interfaces remain relatively constant under slow
laminar flow conditions. Considering cross-sectional flow only (no network effects),
unsaturated conductivity was calculated by combining the individual contributions
of flow in adsorbed liquid films and in corners of the considered pore (cell) cross
sections (Tuller & Or, 2001). The average liquid velocity for a unit pressure gra-
dient in films was obtained by solving the Navier-Stokes equation for plane flow
and including effects of modified liquid viscosity in the vicinity of solid surfaces.
The analysis and expressions derived by Ransohoff and Radke (1998) were used
to calculate liquid flow in corners bounded by liquid-vapor interface. The unsatu-
rated hydraulic conductivity for the entire cell cross-section was obtained by av-
eraging over the liquid occupied areas. The pore-scale model was scaled to repre-
sent a sample of porous medium, applying a similar scheme as introduced for lig-
uid saturation. Scaling parameters derived from the retention model were applied
to calculate sample-scale unsaturated hydraulic conductivity. Sampie calculations
for different soils clearly reveal the dominant role of film flow at lower chemical
potentials, a phenomenon often neglected in similar studies.

The potential to extend the proposed approach to model hydraulic conduc-
tivity on rough fracture surfaces (Or & Tuller, 2000), and to model the combined
matrix and fracture flow in fractured porous media (Or & Tuller, 2001) is illustrated
In examples.

The primary contributions of the new approaches reviewed are summarized:

1. A physically based unitary approach for adsorptive and capillary contri-
butions to the matric potential—including the incorporation of disjoining
pressure representation of interfacial forces was introduced.

2. A new pore geometry model was proposed for a more realistic represen-
tation of pore space of natural porous media using angular pore geome-
try and slit-shaped spaces for surface area considerations.

3. Simple expressions for capillary phenomena in angular pores based on an-
gularity shape factor F,, and curvature only, were developed.

4. Liquid-vapor interfacial area was determined for improved understanding
of microbiological and related processes in unsaturated porous media.

5. The pore scale model and the associated unitary approach were upscaled
to represent a sample of partially saturated porous medium.

6. Direct links between soil physical properties and liquid-solid interactions
were established.

7. The dominant role of liquid films in creating liquid-vapor interfacial areas
was elucidated (pending experimental confirmation).

8. The introduction of hydrodynamic considerations led to direct calculations
of unsaturated hydraulic conductivity at the pore and sample scale and pro-
vide the basis for incorporating fundamental aspects of reactive solute
transport.
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APPENDIX

o. = Dimensionless parameter relating slit spacing to the central pore dimension
B = Dimensionless parameter relating slit length to the central pore dimension
€ = Dimensionless flow resistance parameter
Mo = Viscosity of bulk liquid (kg m~! s71)
K = Mean curvature of the liquid vapor interface (Philip, 1977a)
A = Slit spacing distribution overlap parameter
u = Chemical potential (J kg™!)
g = Critical chemical potential for the onset of drainage (J kg™)
v = Positive constant used by Philip (1977a) (m)
£ = Gamma distribution parameter
I = Disjoining pressure (N m2)
p = Density of the liquid (kg m™3)
© = Surface tension at the liquid-vapor interface (N m™1)
¢ = Porosity of the porous medium
@ = Gamma distribution parameter
¥ = Corner/pit angle
A, = Pore area factor
Ay, = Hamaker constant for liquid-liquid interactions through intervening vapor (J)
Ay, = Liquid-vapor interfacial area (m?)
A = Hamaker constant for solid vapor interactions through intervening liquid (J)
A, = Liquid occupied area (m?)
a = Constant for modified liquid viscosity in vicinity of solid surfaces
C, = Coefficient for the limits of integration
F, = Angularity factor
G = Gibbs free energy (J m=2)
H = Slit spacing (m)
h = Film thickness (m)
h. = Critical film thickness for spontaneous slit snap off (m)
K,y = Saturated hydraulic conductivity (m s™!)
K(n) = Unsaturated hydraulic conductivity (m s™!)
L = Dimension of the central pore (m)
L.max = Maximal dimension of the central pore (m)
{.in = Minimal dimension of the central pore (m)
m = Mean of the gamma distribution
n = Number of corners of the central pore
P = Pore perimeter (m)
/> = Vapor pressure (Pa)
p. = Capillary pressure (Pa)
P = Vapor pressure at saturation (Pa)
R = Gas constant (J K-"mol )
R’ = Gas constant per unit mass ol vapor (J KM kg™")
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r = Radius of interface curvature (m)
rqy = Radius of interface curvature for spontaneous liquid distribution at drainage (m)
rimp = Radius of interface curvature for pore snap-off at imbibition (m)
SA = Specific surface area (m” kg™
Sw = Liquid saturation
T = Temperature (K)
V., = Molar volume of the liquid (m? mol ')
v = Variance of the gamma distribution
¥ = Average liquid velocity (m s~!)
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Fractal models have been useful in quantifying inherent soil variability and struc-
tural hierarchy. Diffusion of solutes in a fractal pore network does not obey Fick’s
law; anomalous, or non-Fickian diffusion, takes place instead. We explore (i) the
extent to which solute dispersion and horizontal water movement exhibit anomalous
behavior; and (i) the application of some simple fractal-based modeling approaches
that accommodate the anomalous transport phenomena. The literature presents solid
experimental evidence of non-Fickian sclute dispersion in unsaturated soils. The
dispersivity Dy in the advective-dispersive equation (ADE) has a power-law de-
pendence D, o< LY on the mean solute transport distance L,. The exponent ¥ var-
ied between 0.3 and 1.7 in different data sets. Water transport in horizontal columns
in some published data sets does not obey Boltzmann scaling that should occur if
the water diffusivity in Richards’ equation were scale-independent, The diffusiv-
ity D, in the Richards’ equation has a power-law dependence on the mean distance
of horizontal water transport (L,,) in form D,, = L. The exponent B varies between
(.04 and 0.91 in published data. Soil heterogeneity gives rise to scale-dependence
of transport parameters. When solute movements are spatially fractal, they can be
described by the fractional advective-dispersive equation (FADE). We applied the
FADE to two sets of solute breakthrough curves, and found an improvement in ac-
curacy compared with ADE. In the FADE, the scale effects are reflected by the order
of the fractional derivative, and the transport coefficient is not scale-dependent. The
heavy tails of the breakthrough curves were well modeled by the FADE. The
Richards equation with fractional time derivative has shown promise in simulat-
ing the horizontal water transport in soil. The anomalous transport of solutes can
be an important phenomenon to consider in estimations of the fate of agricultural
chemicals.

Copyright © 2001, Soil Scienee Society of Anierica, 677 8. Segoe Rd., Madison, WI 53711, USA. Phys-
ical and Chemical Processes of Water and Solute Fransport/Retention in Soil. SSSA Special Publica-
hion ne, 56,
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INTRODUCTION

Structural hierarchy and heterogeneity are intrinsic soil properties that have
profound effects on soil functioning in natural and man-made ecosystems. Quan-
tifying soil structural hierarchy and its effects on soil processes is both an impera-
tive and a challenge for soil physicists. Continual advances in this field benchmark
soil science history. One of the advances was the introduction of the scaling con-
cept, which showed simple and consistent ways of quantifying inherent soil vari-
ability and structural hierarchy (Nielsen et al., 1998).

Fractal Scaling in Soils

Fractal models have been useful in describing the scaling properties of soil.
This type of scaling was introduced in soil studies by Burrough 15 yr ago (Burrough,
1983a,b). It gained popularity after Tyler and Wheatcraft’s (1989) work on scaling
of soil water retention and Rieu and Sposito’s (1991) work on developing a uni-
fied approach to scaling fragmentation, soil water retention, and bulk density in soils.
Fractal geometry was developed to describe the hierarchy of purely mathematical
objects but had immediate applications to objects in the real world (Mandelbrot,
1983). Natural objects often have similar features at different scales. Measures of
these features, e.g., total number, total length, total mass, average roughness, total
surface area, etc., are dependent on the scale on which the features are observed.
Fractal geometry assumes that this dependence is the same over a range of scales,
i.e., it is scale-invariant within this scale range.

Several soil properties have been shown to obey fractal scaling. Soil particle
collections (textures) exhibit fractal scaling laws (Bartoli et al., 1991; Tyler &
Wheatcraft, 1992; Niemeyer & Ahl, 1991; Wu et al.,1993; Kozak et al., 1996; Barak
et al., 1996; Groute et al., 1998, Martin & Taguas, 1998). Fractal scaling has also
been demonstrated for collections of soil aggregates ( Young & Crawford, 1991; Per-
fect & Kay, 1991; Eghball et al., 1993a; Rasiah et al., 1996; L.ogsdon et al., 1996;
Anderson et al., 1996). Variations in soil strength can be explained using fractal scal-
ing (Folorunso et al., 1994: Pan & Lu, 1994). Soil surface roughness may be scale-
dependent according to fractal law (Huang & Bradford, 1992; Eltz & Norton,
1997; Pardini & Gallart, 1998). Pore surfaces exhibit fractal scaling when probed
with various methods (Avnir et al., 1985; Sokolowska, 1989; Pachepsky et al.,
1995a; Pachepsky et al., 1996a) and the same was found for soil colloidal con-
stituents (Senesi et al., 1996; van Damme, 1998). Branching patterns of plant roots
and mycelium also follow fractal scaling (Fitter & Strickland, 1992; Crawford et
al., 1993; Eghball et al., 1993b; Spek & van Noordwijk, 1994; Donnelly & Boddy,
1997). Fractal scaling of soil properties was summarized in several recent topical
reviews and collections of papers (Perfect & Kay, 1995; Baveye et al., 1998, p.
1-377, Anderson et al., 1998; Giménez et al., 1998; Pachepsky et al., 1999).

Soil pore arrangement, characterized with various methods, has been de-
scribed with models assuming solid particles obey fractal scaling. This type of scal-
ing was found from water retention data (Bird et al., 1996; Comegna et al., 1998;
Kravchenko & Zhang, 1998: Perfect, 1999) and from thin section data (Crawlord
et al, 1995, Oleshko, 1998), Assumption of fractal pore surluce prodoced good
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agreement with data from mercury porosimetry (Bartoli et al., 1991; Pachepsky et
al., 1995a), from thin sections (Pachepsky et al., 1996a) and hydraulic conductiv-
ity at low water contents (Toledo et al., 1990). Other authors assumed the pore space
itself to be fractal and found a reasonable agreement with water retention data (Rawls
& Brakensiek, 1995; Pachepsky et al., 1995b; Perrier et al., 1996). Computer to-
mography images presented fractal pore space structures (Zeng et al., 1996, Rasiah
et al., 1998). Macropore and crack sizes have been known to scale according to frac-
tal laws (Brakensiek et al., 1992; Peyton et al., 1994; Preston et al., 1997). Recently,
Hatano and Booltink (1998) showed that pathways of solutes in soils as revealed
by dye application data were fractal. On a smaller scale, Anderson et al. (1996) sim-
ulated the movement of solute particles in pore space digitized from soil thin sec-
tions. The pathways of the simulated particles followed a fractal model. Saturated
and unsaturated hydraulic conductivities were correctly predicted with models
having fractal scaling of pore or solid space as the underlying assumption (Rawls
et al., 1993; Shepard, 1993; Crawford, 1994; Fuentes et al., 1996; Rawls & Brak-
ensiek, 1995; Giménez et al., 1997). Recent advances in scaling soil porosity were
reviewed by Giménez et al. (1998).

Diffusion and Dispersion in Fractal Porous Media

It has long been known that, when the network of pores is fractal, diffusion
by molecular movement in this network differs from the transport in media with
properties independent of scale. In particular, diffusion of solutes in a fractal pore
network does not obey Fick’s law, and anomalous, or non-Fickian diffusion takes
place instead (Gefen at al., 1983). When Fick’s second law

dcldt = D (9%c/dx?)

is valid, the dependence of concentration on time ¢ and distance x from the source
of a solute can be expressed as a function of a single Boltzmann variable A

A= x/r'? [1]

With anomalous diffusion, the dependence of concentration on time and distance
can also be expressed as a function of a single variable {

¢ = xit" 2]

where the exponent » can be both greater than and less than 0.5, depending on the
[ractal properties of the pore network where the transport occurs (Orbach, 1986).
When n > 0.5, the diffusional spreading increases with time faster than Fick’s law
predicts. If one tries to calculate a diffusion coefficient for Fick’s law based on data
from different stages of anomalous diffusion with n > 0.5, an increase in the diffu-
sion coefficient will be found as the anomalous diffusion progresses. On the con-
trary, diffusional spreading that grows slower than Fick’s law predicts, may obey
the Eq. [2] with i < 0.5, In this case, Fick's diffusion coefficient will decrease with
time or distance of spreading,
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Adler (1996) summarized results of theoretical studies of the Taylor disper-
sion in fractal porous media and numerical experiments with Taylor dispersion of
particles in computer-generated porous space. He showed that the anomalous dis-
persion occurs when the material is fractal over all considered scales. Fickean dis-
persion was found when the material was homogeneous at the large scale, but con-
tained a fractal microstructure.

To our knowledge, anomalous molecular diffusion has not been observed in
soils and porous geologic materials. However, the dispersion of solutes, i.e., dif-
fusion-like deviation of the solute transport from uniform piston flow, has long
known to be an increasing function of the distance the solute traveled. Neuman
(1990, 1995) summarized results of numerous studies of solute dispersion in satu-
rated geologic materials and found that the solute dispersivity increased with the
scale as approximately L!-> where L is the mean transport scale. Wheatcraft and Tyler
(1988) attributed the scale-dependent dispersivities in aquifers to the fractal geom-
etry of the particle paths. Pachepsky et al. (1995a) suggested that the development
of hyperdispersive or non-Fickian solute movement in soils can be expected because
of the fractal nature of soil pore surfaces. In experiments with soil columns and in
field observations, several authors observed an increase in the solute dispersivity
as the sampling depth, i.e., mean transport scale, increased (Jaynes et al., 1988; But-
ters & Jury, 1989; Khan & Jury, 1990; Hamlen & Kachanoski, 1992; Jaynes & Rice,
1993; Porro et al., 1993; Snow et al., 1994; Zhang et al., 1994; Toride et al., 1995;
Elsworth et al., 1996).

Transport of water alone 1n unsaturated soil is more complex than solute dif-
fusion in water saturated media, because the soil water diffusivity depends on soil
water content. Soil water transport similar to anomalous diffusion has been observed
in horizontal soil columns. Ferguson and Gardner (1963) suggested that the soil
water diffusivity may be a function of distance or some other variable as well as
water content. Rawlins and Gardner (1963) found that soil water diffusivity should
be considered a function either of time or of distance. Guerrini and Swartzendru-
ber (1992) demonstrated that the diffusivity decreased according to a power law of
time as time increased. They found a solution of the equation of water transport in
unsaturated soil with time-dependent diffusivity. Later these authors suggested that
the fractional Brownian motion can be a model for such scale-dependent soil water
movement (Guerrini & Swartzendruber, 1994).

Our objectives were to: (i) inspect observations of the scale-dependent water
movement and anomalous solute dispersion in soils, and (ii) apply and discuss frac-
tal-based modeling approaches that would accommodate these anomalous trans-
port phenomena.

EXPERIMENTAL DATA
Solute Dispersion in Soil

The ADE the was first solute transport model widely and successfully used
for soils. For one-dimensional steady state flow of a non-reacting solute in a ho-
mogeneous soil fayer, the ADE is:

(Acldt) = D_(Feld’y — v (@eldy) |3)



TRANSPORT OF WATER AND SOLUTES IN SOILS 55

Here ¢ is the solute concentration, [ML=2 ], D is the solute dispersion coefficient,
[L2T], and v is the average pore-water velocity, [LT~! |. This equation describes
movement of particles participating in Fickian diffusion-like transport and simul-
taneously transported with the mean pore velocity.

As the ADE applications accumulated, it became apparent that the ADE might
not satisfactorily describe some important features of solute transport in soils. Two
phenomena were documented that could result from non-Fickian dispersion. First,
the dispersivity defined as the ratio Dg/v tended to increase as the length of soil col-
umn or the soil depth increased (Khan & Jury, 1990; Beven et al., 1993), Second,
breakthrough curves of non-reactive solutes had larger tails that those predicted with
the ADE, so that the solute appeared sooner and/or was retained in soil longer than
the ADE predicted (Van Genuchten & Wierenga, 1976).

Figure 2—-1 summarizes published results of column and field experiments in
which parameters of Eq. [3] have been estimated from measurements made at sev-
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Fig. 2 1 Observed dependencies ol the solute dispersivity on depth in soils. Data sources: ®, Porro et
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Table 2-1. Slopes of the log(dispersivity)-log(depth) dependencies found from field plot and soil col-
umn experiments.

Type of the Maximum

Data source experiment depth, cm Slope R?

Porro et al., 1993 Column 500 0513 0.660
Ellsworth et al., 1996 Field plot 170 0.540 0.990
Yasuda et al., 1994 Field plot 150 1.738 0.915
Zhang et al., 1995 Column 1250 1.491 0.948
Toride et al,, 1995 Column 24 0.256 0.929
Snow et al., 1995 Field plot 100 0.307 0.875
Khan & Jury, 1990 Column 87 0.683 0.783
Khan & Jury, 1990 Column 87 0.347 0.659
Jury, 1988 Field plot 300 1.069 0.828

eral depths in soil profiles or soil columns. Porro et al. (1993) used a 5-m long soil
column, and tritium as a tracer. Elsworth et al. (1996) reported results of a field plot
study in which solutes were extracted at 25- and 65-cm depths during an unsatu-
rated steady-state flow experiment, and the plot was excavated to 2-m depth after
the experiment. Yasuda et al. (1994) described a field plot experiment in which solute
samples were taken at five 0.3- to 1.5-m depths during a ponded infiltration ex-
periment. Zhang et al. (1994) worked with 1250-cm long horizontal sandy soil col-
umn and collected electrical conductivity data at 30-cm increments along the col-
umn during the steady state saturated flow experiment with NaCl as a tracer. Toride
et al. (1995) reported results of Shiozawa who used four-electrode sensors to mea-
sure NaCl concentrations at depths of 11, 17, and 23 cm in sand columns with sat-
urated and unsaturated flow. Snow et al. (1994) sampled bromide solution at four
depths from a 1-m long lysimeter with a layered soil that was sprinkler-irrigated
for 60 d. Khan and Jury (1990) applied pulses of CaCl, solution to Tijunga loamy
sand soil (mixed, thermic, Typic Xeropsamments) columns 20, 40, and 80 ¢cm long
with three different flow rates. Jury (1988) summarized field study in which a plot
was irrigated every second day after application of KCI. Tracer and solute con-
centrations were monitored at depths from 0.3 to 3 m.

Plots of the dispersivity found by application of the ADE to these experiments
(Fig. 2-1) show that the dispersivity can be considered as a power function of the
mean distance traveled by the solute. Table 2—1 lists the slopes of regression lines
in Fig. 2-1. The slopes vary widely, from small values of 0.2 to a relatively large
value of 1.7.

Other publications also imply that the authors have encountered an increase
of the dispersivity with depth. For example, Jaynes et al. (1988) in a field plot ex-
periment and Wierenga and van Genuchten (1989) in a column experiment observed
the increase of the dispersion coefficient with the depth while the velocity decreased.

Some authors did not find a tangible dependence between the dispersivity and
depth. For example, Khan and Jury (1990) observed an increase of the dispersiv-
ity with depth in undisturbed soil columns but not in columns with repacked soil.
Toride et al. {1995) reported an increase in dispersivity with depth in unsaturated
sand columns but not in the saturated sand columns. These findings suggest that
natural soil structure and the structure of the walter-filled space in unsaturated soils
lead to anomalous soluate dispersion.
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The ADE predicts an ideal sigmoidal shape for breakthrough curves (BTC)
from soil columns that are sufficiently long. Van Genuchten and Wierenga (1976)
pointed out the deviations from this shape in experimental breakthrough curves.
They used the term “tail” to describe the last part of nonsigmoidal breakthrough
curve that approaches its asymptotic value. Heavy tails of BTC, that is approach-
ing the asymptotic value much slower than Eq. [3] predicts, were observed by a num-
ber of authors (e. g., Nielsen et al.; 1986, Vachaud et al., 1990, p. 81-104).

Both depth-dependent dispersivity and heavy tails on breakthrough curves
indicate that anomalous dispersion takes place in soils, and that the deviations from
ideal Fickian dispersion may be specific to soil structure and degree of saturation.

Water Transport in Horizontal Soil Columns

For one-dimensional horizontal water movement in homogeneous soil,
Richards’ equation reduces to

a—ezi DW(G)a—e
Jt  OIx ox

[4]
Here Bis the volumetric water content, D, is the soil water diffusivity, [L>T~!]. This
equation, with boundary and initial conditions

0=6, x=0, 20
0=6, x>0, =0 [5]

provides the scaling law (Eq. [1]) in which the Boltzmann variable A is a function
of the volumetric water content 8 only (Philip, 1955). In (Eq. [5]), 6, and O, are the
initial volumetric water content, and the water content on the boundary x = 0, re-
spectively.

A series of experiments with horizontal water flow showed that this equation
may not adequately describe water transport so that value of A = x/#”* calculated for
the same water content at different depths and/or at different times does not remain
constant. Figure 2-2 summarizes published results of some experiments on water
(ransport in horizontal soil columns. The companion Table 2-2 contains legends
for the graphs. Nielsen et al. (1962) studied transport of water and ¢il in soil. Air-
dry soil was packed in columns. A negative pressure was held constant at one end
ol each column. The largest distance where the wetting front was observed was 50
cm. Positions of the wetting front were measured visually. Figure 2-2a shows the
dependence of A obtained for the wetting front on the distance of the wetting front
from the inlet. Rawlins and Gardner (1963) studied movement of water in horizontal
soil columns using gamma ray attenuation. The largest distance where the water
content was measured was 40 cm. Figure 2-2b shows dependencies of A on dis-
tance from inlet for various water contents'. Ferguson and Gardner (1963) studied

UThe method of calenlating valaes of A for this and foltowing datasets is given in Pachepsky and
Pl (190%),



SN PACHEPSKY ET AL.

A (mm s

1
09 - ¢
0.8 , 1 — 0.
102 103 10* 105 102 103 104 10°
Time, s

Fig. 2-2. Observed dependencies of the Boltzman variable en time in experiments with horizontal water
movement in unsaturated soil columns. Experiments: {a) Nielsen et al. (1962); (b) Rawlins and Gard-
ner (1963); (c) Ferguson and Gardner (1963); and () Smiles et al. (1978) (see Table 2-2 for the leg-
end).

movement of water in air dry soil using gamma ray attenuation. The largest dis-
tance where the water content was measured was 27.5 cm. They presented depen-
dencies of water content on time for several distances from the inlet. Values of A
for several water contents are shown in Fig. 2-2c. Smiles et al. (1978) studied move-
ment of water and solutes in sand-kaolinite mixtures. The largest observation dis-
tance was 22 cm. Figure 2-2d depicts the dependencies of A on distance from the
inlet for the experiment with water in this study.

The remarkable feature of the graphs in Fig. 2-2 is that values of A did not
remain constant as the experiments progressed. Therefore, Eq. [4] was violated.
Graphs in Fig. 2-2 are in log-log scale. Points corresponding to the same water con-
tent are on straight lines. This means that the scaling law Eq. [2] rather than Eq. [1]
was applicable in these experiments. Indeed, if straight lines in the graphs have equa-
tions log A = log £ — b log ¢, and, by definition, log A = log x — 0.5 log ¢, then log
€ =log x — (0.5-b) log t. Equating 0.5-b to n, we arrive at the scaling law given by
Eq. [2]. Table 2-2 contains values of n for the experiments shown in Fig. 2 2. Dif-
ferences between v and (1.5 are statistically significant.
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Table 2-2. Values of parameter n found from data on horizontal movement of water in soil columns.

Data source n (mean x
Seil standard error) Graph

Nielsen et al., 1962

Columbia silt loam7 wet at =50 mb 0.402 = 0.003 Fig.2-2a O
Columbia silt loam wet at —100 mb 0.425 + 0.006 Fig. 2-2a]
Columbia silt loam wet with oil at =2 mb 0.480 £ (.008 Fig.2-2a ®
Columbia silt loam wet with oil at -38 mb 0.440 = 0.003 Fig. 2-2a W
Hesperia sandy loami at —2 mb 0.440 + 0.004 Fig. 2-2a A
Hesperia sandy loam at —50 mb 0.384 £ 0.002 Fig.2-2a v
Hesperia sandy loam wet at ~100 mb 0.344 £ 0.003 Fig. 2-2a ¢
Rawlins & Gardner, 1963
Salkum silty clay loam, 8 = (.51 0.439 £ 0.007 Fig.2-2b C
Salkum silty clay loam§, 8 = 0.50 0.430 £ 0.008 Fig. 2-2b 00
Salkum silty clay loam, 6 = 0.48 0.437+£0.011 Fig. 2-2b A
Salkum silty clay loam, 6 = 0.45 0.467 = 0.009 Fig. 2-2b v
Salkum silty clay loam, 6 = 0.40 0.479 + 0,003 Fig. 2-2b ¢
Salkum silty clay loam, © = 0.05 0.461 = 0.002 Fig,2-2b e
Ferguson & Gardner, 1963
Salkum silty clay loam, 6 = 0.05 0.454 +0.002 Fig.2-2¢ ©
Salkum silty clay loam, 6 = 0.10 0.453 £ 0.002 Fig. 2-2c U
Salkum silty clay loam, 6 =0.15 0.452 + 0.003 Fig. 2-2c A
Salkum silty clay loam, 6 = 0.20 0.452 +0.003 Fig. 2-2¢ v
Salkum silty clay loam, 8 = 0.25 0.452 £ 0.003 Fig. 2-2¢ ¢
Salkum silty clay loam, 8 = (.30 0.454 £ 0.003 Fig. 2-2c ®
Salkum silty clay loam, 6 = 0.35 0.458 £ 0.004 Fig. 2-2c
Salkum silty clay loam, 6 = 0.40 0.465 £ 0.006 Fig. 2-2c &
Smiles et al., 1978
Kaoline-sand mixture, 9 = 0.06 0.455 £ 0.001 Fig.2-2d ©
Kaoline-sand mixture, 0 = 0.08 0.458 + 0.005 Fig. 2-2d L]
Kaoline-sand mixture, © = (.10 0.459 = 0.007 Fig. 2-2d A
Kaoline-sand mixture, © = (.12 0.459 + 0.009 Fig.2-2d v
Kaoline-sand mixture, 8 = 0.14 0.457 + 0.009 Fig. 2-2d ¢
Kaoline-sand mixture, 8 = 0.16 0.453 £ 0.007 Fig.2-2d ®
Kaoline-sand mixture, 0 = 0.18 0.444 £ 0.004 Fig. 2-2d
Kaoline-sand mixture, 6 = (.20 0.429 + 0.003 Fig.2-2d 4

+ Mixed thermic Xerofluvent.
T Mixed thermic Torriorthent.
§ Kaolinitic mesic Palehumult,

Some authors did not find statistically significant differences between esti-
mated value of # and 0.5 (Whisler et al., 1968; Selim et al., 1970). It was suggested
that the deviations from Boltzmann scaling in horizontal water movement may be
related to changes in bulk density (Guerrini & Swartzendruber, 1992) or to changes
in wetting front water content with time (Selim et al., 1970). An alternative inter-
pretation explains these deviations by discontinuities in water transport in porous
media ( Nielsen et al., 1962).

Distance-dependent diffusivity of water indicates that phenomena similar to
anomalous diffusion take place in soils, although the deviations from ideal trans-
port predicted by Eq. [3] may be specilic 1o soil structure.
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MODELING ANOMALOUS TRANSPORT OF WATER
AND SOLUTES IN SOILS

Empirical Approach

The simplest, purely empirtcal approach consists in an explicit incorporation
of the changes in the dispersivity and the diffusivity coefficients in transport Eq.
[3] and [4]. Jury and Roth (1990) suggested that a linear dependence of the dis-
persion coefficient D, on the depth could be included in the ADE. Zhang et al. (1994)
found this approach satisfactory for simulation of their depth-dependent dispersivity
in the column of 12.5 m length. Guerrini and Swartzendruber (1992) proposed to
treat water diffusivity as a time-dependent function, D = E(60)t*"~! where n is the
same as in Eq. [2]. Pachepsky and Timlin (1998) evaluated the water diffustvity as
a product of a local function G(0) and a scaling function taken as a power function
x P of the distance from the inlet: D, = G(©)xP. Although the empirical approach
can reproduce scaling properties of the dispersivity and diffusivity as shown in Fig.
2-1 and 2-2, it lacks a physical basis and is dimensionally incorrect. Further, this
technique is applicable only to unidirectional transport, and a change in the direc-
tion of the water flux makes the technique useless.

Volumetric or Statistical Averaging

It is a popular approach to treat scale effects on the solute dispersivity. The
stochastic convection model assumes that soil can be represented with a set of
streamtubes with lognormal distribution of the velocities (Jury & Roth, 1990). The
variance of solute concentration estimated with this model grows with the square
of the total infiltration, which is a surrogate for time as the flow progresses (Roth
etal., 1991). Adding Taylor dispersion (mixing between the tubes) transforms this
model into the stochastic ADE. The latter has a variance that grows linearly with
time and yields the Boltzmann scaling given by Eq. [1]. Ward et al. (1995) used 50
soil columns of 15-cmi.d. and were able to show that the ensemble of the columns
represented satisfactorily the solute transport over the 65-m? field plot. A log-nor-
mal distribution is often used for infiltration rates and hydraulic conductivities, so
the model grasps some essential physical features of unidimensional solute trans-
port in soil. The two scales of this model, i.e., the microscale of an individual tube
and the macroscale of averaging, are not defined clearly. In experiments of Khan
and Jury (1990), columns of the same soil having different widths exhibited dif-
ferent dependencies of the solute dispersivity on the column length. In experiments
of Parker and Albrecht (1987), soil columns differed in both length and width. The
solute dispersivity scaled as the (column length)?3. The exponent 2.3 is much
larger than in any of experiments shown in Fig. 2—-1 (see Table 2—1). A definition
of the micro- and macro-scales, as well as recommendations how to treat interme-
diate scales, seems to be needed to consider parameters of the stochastic model for
particular soil. The model remains unidirectional, and (o our knowledge, was never
tested for evaporation regimes.
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Mobile-Immobile Zone Models

The physical reason for the scale dependence of solute transport parameters
is the heterogeneity of soil. It is established in subsurface hydrology that the scale
dependence of the dispersivity arises from the way in which an individual solute
particle will gradually sample more and more of the velocity fluctuations associ-
ated with the heterogeneity of aquifer (Mishra & Parker, 1990; Beven et al., 1993).
Differences in solute transport mobilities among different parts of soil pore space
have long been recognized. Van Genuchten and Wierenga (1976) developed the first
model that explicitly described the variations in solute mobility and divided soil pore
space into two zones—mobile and immobile. This MIM (mobile-immobile) model
was remarkably successful in describing column experiments and explaining tails
on breakthrough curves. Moreover, where the ADE required the depth-dependent
dispersivity to simulate the solute transport in soil profile, the MIM model worked
with a constant (or, at least, not depth-dependent) dispersivity. Although success-
ful attempts were made to relate parameters of this model to measurable soil prop-
erties such as aggregate size (Rao et al., 1980, Montas et al.,1997), in general the
parameters, i.e., dispersivity, retardation factor, proportion of the immobile zone
in total porosity, and the mass exchange rate between the two zones, are viewed as
empirical ones. Determining parameters of this model is a nontrivial task because
the parameters appear to be strongly correlated (Beven et al., 1993; Koch & Fliih-
ler, 1993; Bronswijk et al., 1995; Montas et al., 1997). The MIM model seems to
over-parameterize the solute transport, although it represents the actual distribution
of the flow velocities in soil in a piecewise fashion with only two modes: zero and
nonzero mean. Introducing more intervals is possible and has been explored by sev-
eral research groups (Steenhuis et al., 1990; Gwo et al., 1995; Haggerty & Gore-
lick, 1995; Hutson & Wagenet, 1995). However, as more regions are used, corre-
lation among parameters increases, and it is more difficult to estimate parameters
reliably.

Fractal Motion of Particles

Statistical physics has been successfully used to derive both Richards’ equa-
tion (Bhatacharrya et al., 1976) and the ADE (Bhatacharya & Gupta, 1990). In both
derivations, the authors assumed that solute particles undergo Brownian motion,
which is an addition of successive movements that are independent and identically
distributed Normal random variables with variance that scales linearly with time.
This is a viable assumption provided that the variance is finite, and the total trans-
port length is very large compared to individual movement lengths. The latter may
be dependent on correlation length of heterogeneities in the medium.

The movement of solute particles in soils does not generally follow Brown-
lin motion because soil at any scale consists of correlated units. A particle travel-
ing faster than the mean at some instant is likely to still be traveling faster than the
mean some fater time (Benson, 1998). One may say that particles have a “mem-
ory”, and the memory of particles is the eritical feature required for the occurrence
of non-ickian diffusion (Kinzelbach, 1987). Further, the underlying distribution
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of velocity may have infinite variance (Benson et al., 1999) that preclude using
Brownian movement model. Guerrini and Swartsendruber (1994) proposed to treat
the observed water transport in soils as an integral result of fractal movement of
individual particles. Flury and Fliihler (1995) simulated solute transport in soils as
a diffusion-limited aggregation that is known to obey fractal scaling. These mod-
els satisfactorily represent observations of scale dependence in transport.

When particle movements are spatially fractal (e.g., Hughes et al., 1981), they
may be described by so-called I.évy motions rather than Brownian motions. A use-
ful analogy here is the dispersion in chaotic flow (Klafter et al., 1987). In these flows,
a particle tends to spend long periods of time trapped in vortices that are essentially
stagnant with respect to mean flow. A particle can occasionally escape and travel
with high velocity between vortices. The relatively rare, high velocity events rep-
resent particle excursion probabilities that are more heavy-tailed than the Gauss-
ian distribution, The motion increments have Lévy distributions rather than Gauss-
ian distributions.

Lévy distributions were found to be useful in the description of random
physical processes that are characterized by extreme behavior called the “Noah ef-
fect” by Mandelbrot and Wallis (1968). The family of Lévy distributions is para-
meterized with the value o specifying, in particular, the “weight” in tails of the dis-
tribution. The heavier the tail is, the higher is the probability of large deviations from
average. The Gaussian distribution is a special case of a Lévy distribution that has
o = 2. Figure 2-3 shows several probability distribution functions from the Lévy
family. As the parameter ¢ decreases from 2, Lévy distributions differ more and
more from the Gaussian distribution, and the tails of the distributions become
heavier (Fig. 2-3a). The tails of Lévy probability density functions can approach
zero much more slowly than the tails of the Gaussian density. As the argument x
becomes large, the Gaussian distribution tail decreases exponentially, while the tails
of the symmetrical Lévy density follow the power law f{x) = cx™/~% Lévy statis-
tics have been useful in description of fractal scaling in soils and in aquifers
(Painter, 1996; Pachepsky et al., 1997; Liu & Molz, 1997; Benson et al, 1999).

Fractional Convective-Advective Equation

A differential solute transport equation derived for Lévy motions would fa-
cilitate solute transport studies in the same way that the ADE facilitated applica-
tions of the Brownian motion model. Recently, Zaslavsky (1994) suggested a pro-
cedure to derive such an equation using fractional derivatives that in effect account
for the “memory” of solute particles. Zaichev and Zaslavsky (1997), Benson
(1998), and Chaves (1998) modified Zaslavsky’s procedure to account properly for
mathematical properties of fractional derivatives in the one-dimensional case. The
simplest form of the one-dimensional equation assumes symmetrical dispersion:

dc dc 1 0% 0%
—=—VvV— + - Dsf +
ot ox 2 ox* d(—x)*

6]

Here Dy [L*T'] is the fractional dispersion coefficient. ‘The superseript o0 is the
order of fractional differentiation, O< o < 2, corresponding to the pusimeter of dis-
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Fig. 2 3. Probability distribution functions for symmetric Levy distributions with («) lincar scaling and
thy probahility scaling. The curves differ in vadues of the distribution parameter .
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tributions shown in Fig. 2-3. Fractional derivatives are integro-differential opera-
tors defined as (Samko et al., 1993):

%) 1 om  emeoe
x®  T(m-a) oxm _J; (=M leGnds [7]

and

Peten) _ (<™ ™ [ |
A=) T(m-a) oxm {@ AR CU 8]

Here o is the order of the fractional derivative, oo > —1, I'( ) is the Gamma func-
tion, and m is the smallest integer larger than o. If the value of « is actually an in-
teger, then fractional derivatives reduce to well-known ordinary derivatives. For ex-
ample, when o = 2, the right-hand side expressions in Eq. [7] and [8] will reduce
to usual second derivatives. Then Eq. [6] will reduce to the common ADE given
in Eq. [3]. This is expected since the Lévy distribution with o = 2 is the Gaussian
distribution, and the particies move according to Brownian motion. We use the term
FADE (Fractional Advective-dispersive Equation) for Eq. [6], noting that only the
dispersion term is fractional. Benson (1998) has shown that the concentration
breakthrough curves obey the scaling law Eq. [2] with the exponent n = ¢o.~". Since
o < 2, anomalous dispersion can be expected, and the dispersive spreading will in-
crease with time faster than Fick’s law predicts. We note, for completeness, that the
FADE has been extended to three-dimensional transport, and nonsymmetrical dis-
persion (Meerschaert et al., 1999)

Equation [6] has analytical solutions, one of which is presented in the Ap-
pendix. It can be also solved numerically using finite differences (Benson, 1998).
An example of the application of the analytical solutions of the FADE to describe
solute transport is given in Fig. 2—4 that contains data on chloride transport in un-
saturated sand reported by Toride et al. (1995). Measured and breakthrough curves
and their fit with the ADE and the FADE at 11-, 17-, and 23-cm depths are shown.
Parameters of the ADE and the FADE were optimized using a modified Marquardt-
Levenberg algorithm?. Values of parameters and their standard errors are given in
Table 2-3.

It can be seen from Table 23 that while the ADE requires an increasing dis-
persivity with depth to simulate the data correctly, the FADE simulates the data with
a dispersion coefficient and an order of the fractional derivative (ot = 1.62) that are
not statistically different for all depths. Besides, although both the ADE and the
FADE capture the shapes of breakthrough curves, inspection of the graphs shows
that the FADE simulates the breakthrough curves in unsaturated sand better. Sta-
tistics of the model performance shown in Table 2-3 support this observation. The
root-mean-square errors are markedly lower for the FADE than for the ADE.

The null hypothesis that both models perform equally well was tested by com-
paring the mean square lack-of-fit values (Whitmore, 1991):

LT} . . - . .
“ The code is avaitable from the corresponding anthor upon request.



TRANSPORT OF WATER AND SOLUTES IN SOILS 65

=N
2
; (Ci,calc - Ci,meas)

2 =
N-P

S =

Here N is the number of measurements, P is the number of parameters of the model,
and ¢; peqs and c; o, are measured and calculated solute concentrations for the ith
observation, respectively. The presence of the number of parameters in the de-
nominator makes the mean square lack-of-fit to be an unbiased estimator of the
model’s standard error (Whitmore, 1991). To test the null hypothesis, one has to
compare the R-ratio of the mean of lack-of fit squares F = s; Apg*/s;rapg- to the crit-
ical value of the Fisher’s statistic F“—PADE» N-Ppapg? where PADE =2, and PFADE =3,
The null hypothesis can be rejected if F> Fy, p, - N-p,, - Data in Table 2—-3 show
that the F'ratio exceeds the critical value taken at the 0.05 significance level, so that
the FADE performs better.

Another set of data to compare the performance of the ADE and the FADE
was taken from the paper of Dyson and White (1987) who studied CI~ transport in
structured clay soil (calcareous pelosol) irrigated under a range of constant flow rates
from 0.28 cm h™! t0 2.75 cm h™1. Soil cores of 16.4 + 1.5 cm length were irrigated
to maintain unsaturated (0.60 cm? cm™ *)water contents in the soil columns. The sat-
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Fig. 2 4. Compurison of measured (o) and caleulated with FADE () and with ADE (--) chloride break-
thronglt curves from unsaturated sand columns, Measared vadues are from Toride et al, (199S5).



Table 2-3. Estimated parameters and performance statistics for the advective-dispersive equation (ADE) and fractional advective dispersive equation (FADE) applied to
data on Cl™ breakthrough curves from sand and soil columns.

ADE FADE
Parameters Parameters
Length, Number

Data source, soil Experiment cm  ofpoints D,em’h™! v,emh™!  RMSE o D v,emh!  RMSE Fi
Toride et al., 1995, sand Unsaturated 11 52 0.0352 0.258 0.013 1.683 0.0305 0.258 0.0087 2.16
(0.0008)7 (0.0003) {0.0358) (0.0007) (0.0002) <1.8>

Unsaturated 17 47 0.0389 0.254 0.015 1.615 0.0291 0.255 0.0076 3.79
(0.0011)  (0.0003) (0.0294) (0.0008) (0.0002) <1.8>

Unsaturated 23 53 0.0424 0.249 0.019 1574 0.0282  0.250 0.0094 3.96
(0.0015)  (0.0003) (0.0318) (0.0010) (0.0002) <1.8>

Dyson & White, 1987, clay soil ¢=0.28 cmh™! 16.4 22 2.818 0.734 0.018 1.642 1.209 0.756 0.0096 3.40
(0.147) (0.0082) (0.051) (0.150)  (0.0054) 24>

g=275cmh! 16.4 22 108.3 12.54 0.023 1.696  44.69 12.89 0.0179 1.61
a7 (0.26) (0.076) (10.03) (0.23) <2.4>

~ Standard errors of parameters estimates are in parentheses.

= F ranios are calculated as the ratios of square lacks-of-fit F = s.4pg*/s, ppg’- The square lack-of-fit s,= RMSE?[N/(N — P)]®3 where N is the number of experimental points,
P 1s the number of fitting parameters in a model, P = 2 in the ADE and P = 3 in the FADE. Critical F values are in angular brackets.
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urated water content was estimated to be 0.67 cm? cm~>. The model performance
statistics F'shown in Table 2-3 suggest better performance by the FADE as com-
pared with that of the ADE for the low flow rate experiment with ¢ = 0.28 cm h™!,
The value of F appears to be less than critical in the high flow rate experiment, so
that the hypothesis of similarity in performance between the FADE and the ADE
cannot be rejected. Estimated values of the parameter ¢ do not differ significantly
for the two flow rates.

The advantage of using the FADE to describe solute transport in soils is the
separation of the scale effect from the values of the transport coefficients. The scale
effects are reflected by the order of the fractional derivative, and the transport co-
efficients need to be found at only one scale. *

Fractional Equation of Water Transport

It is also possible (at least, in a formal way) to apply a fractional version of
Richards’ equation to simulate one-dimensional water transport in horizontal
columns. We were able to fit the FADE to data on horizontal water infiltration (data
not shown). However, the parameter ¢ had to be set to values greater than two to
fit the experimental data. This range of «is theoretically unjustified (Benson etal.,
1999; Meerschaert et al., 1999). This example serves as a reminder about the dan-
ger of drawing analogies between water and solute transport in soils, since the un-
dertying physical processes are different. “Particles” of soil water moving faster than
others are affected by the structure of pore surfaces and move in films rather than
in bulk volume by convection. One possible way to model the water transport is to
use the diffusivity model proposed by Jumarie (1992):

off  odx ox [13]

where ¥ <1 and D(0) has units L? T-Y .Such a fractional-in-time equation may also
have as an underlying physical basis the model of moving particles that are randomly
trapped for extended periods of time (Klafter et al., 1987). However, there is an im-
portant difference between particle motions resulting in Eq. [13] and in Eq. [6].
Equation [13] presumes Levy walks, 1.¢., coupling probabilities of the traveling time
and traveling distance. Equation [6] does not presume coupled distributions, and
the spatial step has not to have a Gaussian or a Levy distribution. However, wait-
ing periods of particles time have to have a power law distribution (Hilfer & Anton,
1995), and a fractional-in-time equation accounts for hierarchical scaling within the
time intervals rather than spatial scaling (Jumarie, 1992). The occurrence of rare
large movements of the wetting front in unsaturated horizontal columns was doc-
umented by Nielsen et al. (1962) who called them “jerky movements”. Zaichev and
Zaslavsky (1997) indicated that Eq. [13] may, under appropriate conditions, describe
fractional Brownian motion. This concurs with the hypothesis of Guerrini and
Swartzendruber (1994) about the applicability of the fractional Brownian move-
ment model to horizontal water transport i unsaturated soils.
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DISCUSSION AND CONCLUSION

Observations of anomalous solute dispersion and water diffusivity in soils cor-
respond well to theoretical predictions of the anomalous mass transport in fractal
media and accumulated evidence of the fractal nature of soil structure. The spatial
arrangement of particles in soils has been successfully described using mass, vol-
ume, and surface fractal dimensions. These dimensions, however, may not be rel-
evant for estimating anomalous transport in soils. The extent to which this trans-
port manifests itself must be related to scaling of pore connectivity, which does not
have a direct relationship with mass or volume fractal dimensions. Lemaitre and
Adler (1990) studied saturated viscous flows through two Menger sponges with sim-
ilar fractal dimensions and found quite different water transport properties in these
sponges. To estimate soil hydraulic conductivity, Crawford (1994) has suggested
the use of both mass fractal dimension and the spectral dimension. One method of
estimating the spectral dimension was recently suggested by Anderson et al. (1996).
It remains to be seen whether this dimension is a good indicator of anomalous trans-
port. Further, estimation of a fractal dimension is only a piece of the puzzle, since
the existence of a power law scaling does not imply applicability of a single frac-
tal model. Power law scaling can be usually interpreted using several different frac-
tal and non-fractal models, and the choice of a model depends on a hypothesis about
a process causing the observed scaling (Pachepsky et al., 1997). In a purely math-
ematical example, it is well known that the traces of a fractional Brownian motion
(fBm) and a L.évy motion (Lm) may have the same fractal dimension, but the fBm
process has Gaussian increments, while Lm has infinite variance. The two traces
could be mistaken for each other even visually (Mandelbrot, 1983; Samorodnitsky
& Tagqu, 1994). Huang and Bradford (1992) give an excellent example of applic-
ability of two different fractal models to simulate the soil surface roughness. It re-
mains to be seen whether the scaling parameters of transport processes can be re-
lated to some physical properties of soils that should underlie the occurrence of the
fractal scaling because of evidence of fractal geometry of pore space and the space
occupied by soil particles.

Diffusion and dispersion in some ideal and computer-simulated fractal porous
media demonstrates deviations from the ideal Fick’s diffusion (i.e., Grindrod &
Impey, 1993, Adler, 1996). However, this does not mean that diffusion and dis-
persion will necessarily be anomalous in natural porous media, soils among them,
that exhibit the fractal scaling only over a range of scales. As the introductory sec-
tion of this paper shows, fractal scaling of many properties is found in soils. This
implies, in particular, that the dispersion may be anomalous, and indeed data in Fig.
2—-1 show that this is often true in unsaturated soils. The dispersion in saturated soil
has been routinely found to be Fickian and the ADE was a good model. The range
of scales as measured by pore radii is much wider in saturated than in unsaturated
soils. This situation is similar to the one studied by Salles et al. (1993) who simu-
lated solute transport in a medium characterized by a double structure, i.e., spatially
periodic at large scale and fractal at the small scale. The simulations of Salles et al.
(1993) showed that in such structures the ADE is a satisfactory model, and the ratio
of the dispersion coefficient to the diffusion coefficient is a function of the Peclet
number but does not change with the traveled distance.
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Effects of the fractal nature of soil on water and solute transport can be fur-
ther complicated by the differences among fractal dimensions in soils at different
scales. Avnir et al. (1986) found at least two ranges of radii with different surface
fractal dimensions in studied soils. Dependence of fractal dimension on pore radii
was demonstrated (Wu et al., 1993: Perfect et al., 1993). Pachepsky et al.(1995a)
found three or four distinct scaling intervals with different fractal dimensions in the
range of pore radii from 4 nm to 5 wm. Fractal scaling of soil water retention is usu-
ally well pronounced at capillary potentials lower than —30 kPa. -

Although anomalous diffusion is expected in fractal pore systems, the pres-
ence of anomalous diffusion does not prove that the porous media is fractal. A het-
erogeneity along transport pathways may result in an anomalous transport regard-
less of the presence or the absence of self-similarity of the pore space (Beven et
al., 1993). The physical interpretation of Levy motions does not presume the pres-
ence of fractal scaling in the porous media in which the motions occur (Klafter et
al., 1990). The applicability of the FADE may be closely related to the distribution
of pore-water velocities. In saturated media, the presence of heavy-tailed distribu-
tions of the hydraulic conductivity directly implies the validity of the FADE (Meer-
schaert et al., 1999; Benson et al., 1999). The heavy-tailed hydraulic conductivity
distributions were found in geologic media (Painter, 1996; Benson et al., 1999).
Heavy-tailed velocity distributions can also be expected in unsaturated and struc-
tured soils, and therefore the FADE may be a useful model in these conditions.

Experimental setups limit the ranges of scales within which the transport pa-
rameter scaling showed in Fig. 2—1 and 2-2 are valid. The ranges beyond which
this scaling changes are not known. There are indications that the anomalous trans-
port in fractal media may not be a stable phenomenon. Pachepsky and Timlin (1998)
showed that instability is expected at some stage for the horizontal water transport
with the diffusivity scaling shown in Fig. 2-2. Grindrod and Impey (1993) simu-
lated solute transport in saturated two-dimensional fractal porous medium and
found that at early stages an anomalous transport occurs whereas the later break-
through is predominantly Fickian. However, Benson et al. (1999) demonstrate that
the FADE is accurate in ground water on the scale of 300 m at a field site.

The external force applied may enhance the anomalous transport in fractal
structures (Roman et al., 1989). Therefore, anomalous features can be even more
pronounced in the gravity-affected vertical water transport than in the horizontal
water transport. General considerations of Roman et al. (1989) imply that the scal-
ing variable x/f" in (Eq. [2]) should be in this case replaced by the scaling variable
x/log(t). Presence of sharp changes in soil hydraulic and transport properties that
can be encountered during vertical flow in soils may make the dispersion/distance
relations considerably more complex than they are in the media where the FADE
has been shown to be effective. The efficiency of the FADE in such situations re-
mains to be seen.

The anomalous transport of solutes can be an important phenomenon to con-
sider in estimations of the fate of agricultural chemicals. As the dispersivity, used
in the traditional ADE, grows with depth, the spreading rate and the tailing of the
solute concentrations can be larger than that estimated from short range observa-
tions. There may be a potential Tor chemicals to travel into and within the vadose
zone faster than expected from theirmovement in upper part of sotl profile. Anom-
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alous transport is an interesting issue to explore, since the movement of water and
solutes in soils with fractal properties cannot, in general, be accurately simulated
with traditional Richards’ and ADE models.

APPENDIX -

The solution of (Eq. [6]) for the initial condition ¢(x,0) = 0, x < 0 < o, and
a continuous source c(0,t) = cg, t >0, is

c(x,t) = ¢q [ 1-F, (J:C;V—I-)]

where F(v) is a standard symmetric Lévy probability distribution function for pa-
rameter o and © = [Dyf lcos(mow/2)|]* (Benson, 1998). Several methods are avail-
able for generating the standard symmetric Lévy distributions including series ap-
proximations and integrals that are easily evaluated numerically. McCulloch (1996)
lists for symmetric distribution function:

1
Fa(y) = C(a) + S—lgﬂ;i‘ﬂ { exp [—y‘*’(a*“ Ua(qn] do

where
1, a>1
Cloy=11, a<l and Uy =|sin(mod2) } -
2 cos(mQ/2)
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3 Models Relating Solute Dispersion
to Pore Space Geometry
in Saturated Media: A Review
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This review is concerned with dispersion of nonrdactive solutes in saturated porous
media. Dispersion can occur as a result of diffusion, interfacial instabilities, me-
chanical mixing, molecular size effects, and/or turbulence. The focus here is on the
combined effects of diffusion and mechanical mixing. Models that predict these
processes are either based on an assumed or empirical distribution of pore water
velocities, or derived from a geometrical representation of the pore space. Veloc-
ity-based models such as the convection-dispersion equation are widely used at pre-
sent, but lack predictive power because their parameters are generally estimated in-
versely. Geometrical dispersion models have been neglected in the past because of
difficulties in parameterizing the complex structures that occur in natural porous
media. However, recent advances in fractal geometry and percolation and network
theory may reduce these difficulties, and facilitate the increased use of geometri-
cal models in the future. Such models are attractive because their input parameters
can be determined independently from measurements of pore characteristics. Per-
tinent pore characteristics, including shape, size distribution, and connectivity are
defined, and methods of measuring them are discussed. Experimental studies re-
lating dispersion to pore characteristics are reviewed. Theoretical approaches are
presented for modeling dispersion in: (i) individual pores, (i1) media with immo-
bile water regions, (iii) spatially periodic media, (iv) capillary bundles, and (v) in-
teracting bond and site networks. In general, these models predict K* o< P*, where
K* is the dimensionless dispersion coefficient, P, is the Peclet number, and 1 < o
< 2. Pore space geometry appears to influence both the prefactor and exponent in
this relationship. Work in the emerging areas of prefractal networks, percolation
models, numerical simulations, cellular automata, and physical micromodels is re-
vicwed. Finally, some future research opportunities are discussed and approaches
lor incorporating predictions from geometrical models into macroscopic solute
transport simulations are suggested.
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INTRODUCTION

The spreading of a solute throughout a porous medium during saturated flow
is an important physicochemical process, attributable to a combination of diffusive
and dispersive mechanisms. This phenomenon has come under the scrutiny of a va-
riety of scientific disciplines, including biophysics, chemical, civil, and petroleum
engineering, hydrogeology, applied mathematics, statistical physics, and soil sci-
ence. In the area of soil science, which constitutes the disciplinary bias of this re-
view, knowledge of the spreading process is critical for predicting the fate of agri-
cultural, industrial, and naturally occurring contaminants that originate, or are
spilled, spread or stored, on or within the soil. Contaminants that are not irreversibly
adsorbed, taken up by plants, broken down, volatilized, and/or lost in runoff must
pass through the soil in order to reach groundwater and any potential receptors.

Solute transport in porous media has been studied intensively during the last
50 yr. Nielsen and Biggar (1961) described a laboratory apparatus and protocol for
conducting miscible displacement experiments. Using this basic design, many
breakthrough curves (BT'C) were determined for solutes flowing through columns
of glass beads and “disturbed” (i.e., sieved and repacked) soil samples (Biggar &
Nielsen, 1967). However, sieved and repacked samples do not have the same range
of pore sizes or connectivity that can be expected under field conditions. As a re-
sult, BTC’s for “undisturbed” cores (i.e., structured samples) are often quite dif-
ferent from those determined on “disturbed” samples under the same experimen-
tal conditions (Elrick & French, 1966; Anderson & Bouma, 1977).

Models that are used to predict transport of chemicals in soil can be grouped
into two main categories: those based on an assumed or empirical distribution of
pore water velocities, and those derived from a particular geometric representation
of the pore space. Velocity-based models are currently the most widely used pre-
dictive tools. However, they are unsatisfactory because their parameters generally
cannot be measured independently and often depend upon the scale at which the
transport experiment is conducted. The focus of this chapter is on pore geometry
models for chemical transport. These models are not widely used today. However,
recent advances in the characterization of complex pore structures means that they
could provide an alternative to velocity based-models in the future. They are par-
ticularly attractive because their input parameters can be estimated from indepen-
dent measurements of pore characteristics. They may also provide a method of in-
versely estimating pore characteristics from solute transport experiments.

Some geometric transport models are based on solid characteristics rather than
on properties of the pore space itself. By assuming a particular packing arrange-
ment it is possible to infer the pore space geometry from information on the size
and shape of the solid particles (Coelho et al., 1997). While this approach may be
applicable to sieved and repacked soil columns, it is often inappropriate for undis-
turbed samples, with pore characteristics that depend more on soil structure than
on soil texture. Thus, models to predict solute dispersion from the properties of par-
ticles in packed beds (e.g., Aris & Amundson, 1957; Koch & Brady, 1985; Ras-
muson, 1985) are not the main focus of this review.

Solute dispersion is highly dependent upon water content (Beven et al.,
1993; Matsubayashi ¢t al., 1997; Haga ¢t al., 1999) und ion adsorption Kinetics
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(Brusseau & Rao, 1989; Sugita & Gillham, 1995). To facilitate the establishment
of direct relations between pore characteristics and solute spreading, only the trans-
port of conservative, nonreactive chemicals, under steady-state, saturated flow
conditions will be considered here. Transient flows de-couple the relationship be-
tween solute dispersion and pore space geometry (Sobey, 1982, 1985). Although
many soils are only saturated for relatively short periods of time, solute spreading
under saturated conditions is a very important process because a large proportion
of the total annual movement of water and solutes through the vadose zone can occur
during these events. Moreover, solute transport under saturated conditions in
groundwater systems is a critical process affecting many environmental contami-
nation and water supply problems. Although only nonreactive transport will be con-
sidered, it should be noted that transport parameters derived for nonreactive solutes
are often used, in conjunction with experimentally determined or literature-derived
adsorption coefficients, to predict the transport of reactive chemicals such as heavy
metals and pesticides.

The literature on solute transport in porous media is voluminous. For a gen-
eral introduction to this subject the reader is referred to Leij and Dane (1989), El-
rick and Clothier (1990), and Jury and Fliihler (1992). Sahimi (1993) has reviewed
some of the advances made in modeling solute transport within complex pore
structures, Of the numerous older review articles, those by Bear (1969) and Fried
and Combarnous (1971) are especially thorough, and are still relevant today. Other
important contributions that discuss aspects of pore geometry as related to solute
transport include those by Greenkorn and Kessler (1969), Rose (1977), Brusseau
and Rao (1990), and Celia et al. (1995). In addition, several books are relevant to
this topic, including those by Bear (1972), Dullien (1992), Adler (1992), and
Sahimi (1995).

This chapter is organized as follows. First, velocity-based solute transport
models will be reviewed, and their parameters defined. The different mechanisms
contributing to the spreading of a conservative nonreactive solute in saturated soil
will then be presented. Next, pore characteristics relevant to solute transport will
be defined, and methods of measuring them discussed. Experimental studies relating
pore characteristics to solute dispersion will be reviewed. The remainder of the chap-
ter will be devoted to theoretical models for solute transport based on various pore
characteristics. These models will be presented in order of increasing complexity
in their representation of the pore space geometry. Emerging areas of research will
be identified. Finally, relationships between solute spreading and pore character-
istics will summarized, and the predictive potential of pore-based transport mod-
els will be discussed.

VELOCITY DISTRIBUTION MODELS

Velocity-based models use the distribution of pore water velocities to predict
the spreading of a solute in time and space. No attempt 1s made to directly link the
distribution of pore walter velocitics or solute spreading to characteristics of the pore
space. As aresult, the model parameters must be either estimated inversely (Parker
& van Genuchten, 1984 Toride ¢t al., 1998) or inferred from the hydraulic con-
ductivity-water content function (Steenlis ¢f al., 1990; Scotter & Ross, 1994},
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The convection-dispersion equation (CDE) is the most widely used of the ve-
locity distribution models. For steady state, one-dimensional water flow, the CDE
for a nonreactive solute can be written as (Fried & Combarnous, 1971),

aC 0%C oC
% g L, &
Jt dx? ox [1]

where C is concentration of solute in the soil water, 7 is time, x is distance, K is the
diffusion-dispersion coefficient, and v is the mean pore water velocity. Analytical
solutions to Eq. [1] have been derived for a variety of initial and boundary condi-
tions (van Genuchten & Parker, 1984).

Equation [1] assumes the porous medium is homogeneous and isotropic
(i.e., K and v do not vary in space or with direction), that flow is laminar, and that
individual solute molecules sample a normal (Gaussian) distribution of pore water
velocities in a time-independent fashion (the ergodic hypothesis) (Sposito et al.,
1979). It can be shown (e.g., Bear, 1961) that the v and K in Eq. [1] are related to
the mean (u) and variance (62) of a normal distribution of distances traversed by
the solute over the time increment Az by,

v = wAr (2]
and
K = 622At [3]

The tensorial nature of K in multidimensional forms of Eq. [1] is discussed by Bear
(1961) and Scheidegger (1957). For purposes of this review, only longitudinal dis-
persion will be considered; i.e., spreading parallel to the mean direction of flow.

The generally good agreement between predictions made using the CDE and
miscible displacement experiments performed on repacked, structureless materi-
als has led to widespread adoption of this model. As a result, solute spreading is
commonly quantified in terms of the CDE parameters K and v. The dimensionless
diffusion-dispersion coefficient, K*, which provides a measure of the role of me-
chanical mixing in solute spreading relative to diffusion, is defined as (Fried & Com-
barnous, 1971),

K* = K/D (4]

where D is the molecular diffusion coefficient for the solute species. Another di-
mensionless parameter that is widely used in solute transport studies 1s the Peclet
number, P, which is written as (Fried & Combarnous, 1971),

P,=vi/D (5]
where ¢ is a characteristic mixing length, commonly taken to be the mean pore or
particle radius in experiments involving homogeneous porous media. lFor hetero-
gencous porous media, however, ¢ is not casily defined. As aresult it is often re-

placed by L., a characteristic measurement scale, corresponding to the column
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length in laboratory miscible displacement experiments. Bolt (1979) suggested that
the P, defined in this way be called the Brenner number.

The P, like K*, provides a measure of the relative importance of convective
transport as compared to diffusive transport. The Peclet number as used here and
in most of the solute transport literature is a somewhat unusual dimensionless pa-
rameter in that it does not serve to non-dimensionalize a governing equation. van
Genuchten and Wierenga (1986) use P, = vL/K to non-dimensionalize the CDE,
but this differs from the Peclet number used in this review because it does not ex-
plicitly consider diffusion and because L is the length of the system under study
rather than some microscopic characteristic length.

Assuming K* is directly proportional to P, and equating Eq. [4] and [5] re-
sults in ¢ = K/v. For this special case, the ¢ parameter is commonly referred to as
the dispersivity. In numerical transport modeling, the grid size is used as { in order
to define a grid Peclet number, which must be kept small to minimize numerical
dispersion.

The definitions presented in Eq. [4] and [5] are ubiguitous in the solute
transport literature. They are based on v and K from the CDE. In this chapter, the
use of aiternative transport models based on different assumptions will be ex-
plored. Thus, it is useful to redefine v and K in terms of the experimentally deter-
mined BTC, which is independent of the assumptions inherent in the CDE (Skopp,
1984). The empirical v, v/, can be calculated from the first time moment [z, = Z;
Ci(Dt/Z;C{(1)] of the BTC (Jury & Sposito, 1985),

Vl = L/ t 1 [63]
or from,
Vv = q/o 16b]

where g is the Darcy velocity and 6 is the volumetric water content, which is equal
to the total porosity in the case of saturated systems. It is interesting to note that
practitioners often use an “effective” water content significantly lower than 6 in es-
timating the solute velocity (Bear, 1972). This is equivalent to excluding immobile
water from the transport process.

The empirical K, K/, can be calculated from the first (¢;) and second [z, =
¥,CADt2/Z,Ci(£)) time moments of the BTC as follows (Jury & Sposito, 1985),

K = M
2t¢ 171

By substituting Eq. [6] and {7] into Eq. {4] and [5] we obtain definitions of
K* and P that are independent of the CDE. Thus, when these parameters are men-
tioned in the context of non-Gaussian models for solute transport, it should be un-
derstood that it is the empirical versions that are being referred to.

In addition to the CDE, several other velocity-based models exist in the
solute transport literature, including the fractional CDE (Benson, 1998; Pachepsky
1 al,, 2001), mixing cell models (Irissel & Poelstra, 1967a,b:; Bolt, 1979), multi-
cgion models (Gwo et al,, F95; Hagperty & Gorelick, 1995; Bai & Roegiers,
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1997), kinematic wave models (Charbeneau, 1984; Germann et al., 1987), and trans-
fer function models (Jury, 1982; Jury et al., 1986). As with the CDE, the parame-
ters of these models cannot be explicitly related to pore characteristics. In contrast,
the empirical velocity distribution models developed by Scotter and Ross (1994),
Durner and Fliihler (1996), and Montas et al. (1997a) permit the prediction of solute
spreading from independently measured soil physical properties. In these models,
the steady saturated flow solute BTC is derived by relating the empirical distribu-
tion of pore water velocities to the hydraulic conductivity-water content function,
k(B) (Steenhuis et al., 1990). Thus, for the case where k(0) is predicted by the Camp-
bell (1974) water retention function, the effluent BTC for a step change in influent
concentration from C =0 to C = Cj at time ¢ = 0, is (Scotter & Ross, 1994),

C ¢ —[1/(2bc+2)+1]
= =1-12b.+3)—

Co t [8]
where £ is the time taken for one water-filled pore volume of solution to pass through
the soil column, and b, is the exponent in the Campbell (1974) water retention func-

tion,
0 (w)ﬂ%
esat - a [9]

where 0, 1s the volumetric water content at saturation,  is the liquid potential,
and y, is the air-entry value. Predicted solute breakthrough curves for different water
retention curves are illustrated in Fig. 3—1. The smaller the Campbell b, parame-
ter, the later the first appearance of the solute in the eftfluent (Fig. 3—1B).

The Scotter and Ross (1994) model provides a means of predicting the solute
breakthrough curve directly from the water retention curve or vice versa, without
establishing any intermediate relationship between the distribution of pore water
velocities and pore space geometry. However, the model generally over-predicts
the measured BTC following the first appearance of solute in the effluent (Scotter
& Ross, 1994). Using a more sophisticated approach, Montas et al. (1997a,b) were
able to accurately predict 8 out of 10 previously published steady flow solute
BTCs with independent parameters estimated from the k(8) function.

DISPERSION PROCESSES

Solute dispersion is the net result of various mixing processes that operate
over different spatial and temporal scales. Differential spreading of a conservative,
nonreactive tracer can occur as a result of diffusion, interfacial instabilities, me-
chanical mixing, molecular size effects and/or turbulence. Flow in porous media
can generally be treated as laminar, although it is possible that turbulent effects occur
in large pores and/or fractures given certain flow boundary conditions. If turbulence
is present, laminar flow models may over-predict discharge. Mixing due to turbu-
lent eddy migration will not be considered here. The reader is reterred (1o Greenkorn
and Kessler (1969) for a discussion of this topic,
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Fig. 3—1. (A) Campbell (1974) water retention curves for different values of b, (#) Corresponding solute
breakthrough curves predicted with Eq. [8].

Diffusion

Solute diffusion is the simplest spreading mechanism in porous media and
has been extensively studied (e.g., Fried & Combarnous, 1971; Havlin & Ben-Avra-
ham, 1987). Diffusion occurs as a consequence of random thermal motion (also
called Brownian motion), and repeated collisions and deflections of individual mol-
ccules in a fluid. This nuxing process occurs whether or not there is any convec-
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tive flow through the medium. When two miscible fluids are brought into contact,
concentration gradients are established, and solutes tend to diffuse down these gra-
dients. The net effect is a tendency to equalize the spatial distribution of diffusible
components in any mixed or multicomponent system. In bulk water this mixing
process is typically described by Fick’s second law of diffusion (Fried & Com-
barnous, 1971),

%€ _pvec

ot [10a]
where V?is the Laplace operator,

3

=1 g2 [10b]

and x; represent the spatial coordinate axes. For diffusion of solutes in a saturated
porous medium, the effective diffusion coefficient, D, 1s generally less than D for
the following reasons,

1. liquid water occupies only a fraction of the total volume,

2. the connections between pores are tortuous, and increase the mean path
length for diffusion,

3. interactions occur between solute molecules and the solid phase, and

4. changes in the physical properties of water close to solid surfaces.

As a result, for a conservative solute, D, can be written as (Sposito, 1989),

D, = Doif [11]

where ¢ is the porosity and f1is the tortuosity, defined as the mean flow path length
divided by the sample length. Friedman et al. (1995) have examined the influence
of pore space geometry on D, using capillary network models.

From the Einstein relation, the mean square displacement of a diffusing
species at time ¢, <x?(1)>, is related to its effective diffusivity by (Sposito, 1989),

<x? ()>
De~ — [12]

Recent advances in percolation theory and fractal geometry have demon-
strated that D, is not a constant when diffusion occurs as a result of fractional Brown-
ian motion, i.e., anomalous diffusion (Sahimi, 1993). The time-dependent diffusion
coefficient, D(r), for anomalous diffusion in two-dimensional free space is given
by (Mandelbrot & Van Ness, 1968),

D(r) = D24 [13]

where d is the fractal dimension of the diffusing particle’s trajectory. Note that £(1)
=D whend, = 1.5; i.c., classical Brownian motion can be considered i special case
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of fractional Brownian motion. Note also that D(¢) has dimension L> 7?24t that is
not dimensionally consistent with the diffusion equation when d, # 1.5. An alter-
native approach that retains dimensional consistency while incorporating such
anomalous behavior is the fractional CDE (Benson, 1998; Pachepsky et al., 2001)
based on fractional calculus.

The anomalous diffusivity described by Eq. [13] is due entirely to the frac-
tal nature of the diffusing particle’s trajectory in free space. In fractal and multi-
fractal porous media, the diffusing particle’s trajectory is further constrained by the
geometry of the pore space (Cushman, 1991; Giona et al., 1996; Lovejoy et al.,
1998). As a result, when fractional Brownian motion occurs in a two-dimensional
fractal porous medium, D, becomes scale-dependent, as described by the follow-
ing equation (Orbach, 1986; Crawford et al., 1993),

D(x) = D x?dm=du/d, [14]

where D.(x) is the scale-dependent D,, and d,, is the mass fractal dimension (de-
fined under “Pore Characteristics”) of the porous medium within which the diffusing
particle is confined. Note that D (x) = D, when d, = d,,,. Again, this D, is generally
not dimensionally consistent with the standard diffusion equation.

Anderson et al. (1996) used Eq. [14], in conjunction with digitized images
of thin sections, to investigate the influence of pore space geometry on diffusion
in soil systems. Giona et al. (1996) applied renormalization analysis to study dif-
fusion and convection on fractal media. Coppens (1997), Santra et al. (1997), and
Levitz (1998) have studied the effects of geometrical confinement on diffusion in
the Knudsen regime, in which particle collisions with a fractal internal surface dom-
inate over particle-particle collisions.

Interfacial Instabilities

Fluid properties must also be considered in any mixing process. Interfacial
instabilities, or fingers, are driven by differences in liquid density and/or viscosity
when two fluids are accelerated in a direction perpendicular to their interface. The
density difference provides unbalanced acceleration forces, while the different
viscosities account for unequal drag forces (Biggar & Nielsen, 1967). Fingers de-
velop in response to small perturbations. In flow through natural porous media, these
perturbations are continuously generated by physical heterogeneities, such as dif-
ferences in pore geometry (Shikaze et al., 1998), and/or spatial variation in per-
meability (Moissis & Wheeler, 1990; Liu & Dane, 1997).

Fingering can cause the displacing solution to run ahead of the average dis-
placement front when a concentrated solution displaces a more dilute one during
vertical saturated flow (Mulqueen & Kirkham, 1972). Density differences as small
as 0.0002 g cm™ have been shown to significantly alter the shape of the break-
through curve, and thus estimates of K (Rose & Passioura, 1971; James & Rubin,
1972).

The most important carly work on interfacial instabtlities is that of Saffman
and Taylor (1958) who considered the stability of an interface between two im-
miscible (Tuids moving vertcally through a porous mediunt. Wooding (1959,
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1962a,b) and Bachmat and Elrick (1970) investigated free convective mixing of two
miscible fluids, that are initially at rest in a saturated column. Biggar and Nielson
(1964), Krupp and Elrick (1969), and Rose and Passioura (1971) extended this work
to miscible displacement experiments with a uniform velocity distribution. Stock-
man (1997) and Perea-Reeves and Stockman (1997} used cellular automata to show
the increases in dispersion that occur as a result of fluid buoyancy differences. Re-
cently, Bués and Aachib (1991) have established a stability criterion for miscible
displacement processes that is defined as a function of two dimensionless numbers,
G* and Rm*. The G* parameter reflects the ratio of gravitational forces to viscos-
ity forces, while the Rm* parameter is a modification of the Rayleigh number, which
is normally used to determine the onset of convection in heated fluids. Additional
research i1s needed to assess whether these stability criteria are applicable to struc-
tured porous media as well as to incorporate the impacts of interfacial instabilities
in solute transport models.

Molecular Size Effects

Different-sized nonreactive solutes may experience differential spreading in
a porous medium due to molecular sieving and/or differences in their diffusion co-
efficients. Large solute molecules are more likely to be excluded from small pores
than smaller molecules. The diffusion coefficient for a given solute is a function
of solute properties such as size or molecular weight. Thus, solute size can affect
the diffusive transfer of molecules between regions of mobile and immobile water.
Breakthrough curves obtained with solutes of different sizes may be useful for char-
acterizing the pore-size distribution (Hu & Brusseau, 1995; Baltus, 1997).

Mechanical Mixing

Mechanical mixing is caused by the convective flow of a fluid through a
porous medium. It occurs at microscopic, mesoscopic, and macroscopic spatial
scales, corresponding to the intrapore, interpore, and Darcian flow regimes, re-
spectively. At the microscopic scale, mixing occurs within individual pores due to
variations in velocity as a function of distance from the solid surface. For a straight
cylindrical tube, the relationship between the velocity distribution, v(y), and the ra-
dial distance from the center of the tube, y, is given by Poiseuille’s law (Kutilek &

Nielsen, 1994),
2
viy)=2v | 1- y—zw |
r [15]

where r is the tube radius.

Mixing due to the microscopic distribution of pore water velocities, known
as hydrodynamic dispersion, is illustrated in Fig. 3-2. Figure 3—2A shows the pore
water velocity profile, v(y) for Poiseuille flow in a uniform capillary tube of radius
r. Additional spreading can occur due to the irregular shape of natural pores as com-
pared to ideal cylinders (Fig. 3-2B).

At the mesoscopic scale, differential mixing occurs between individual pores
because of differences in pore size and connectivity (Fip. V1) Dillerences in mean
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pore water velocity resulting from differences in the radii of uniform capillary tubes
are illustrated in Fig. 3-3A, while Fig. 3—3B shows the dispersion that results from
flow paths splitting at a junction of three uniform capillaries with the same radii.
From Poiseuille’s law it is easy to show that v o 72, Thus, on average, solute par-
ticles in large pores will travel greater distances than those in small pores over the
same time interval. Because of connections between pores, streamline directions
tend to vary with respect to the mean direction of flow. In addition, incomplete con-
nectivity results in autocorrelation of flow paths, i.e., some flow paths become in-
accessible to a fluid element once it has entered a particular pore network. Disper-
sion can also occur in response to recirculation of fluid due to local flow restric-
tions (Greenkorn & Kessler, 1969). It is the combined effects of microscopic and
mesoscopic mechanical mixing processes that are commonly observed with short
columns in the laboratory.
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Fig. 3-3. Differential plug flow due to: (A) differences in tube radii, and (B) tube interconnectivity.

Solute spreading also occurs at the macroscopic scale due to heterogeneous
permeability fields. Figure 3—4 shows examples of predicted flow lines for spatially
periodic and fractal distributions of intrinsic permeability. Dispersion occurs as a
result of the spatial variation in flow caused by regions of differing permeability.
Macroscopic estimates of dispersivity obtained by fitting the CDE to experimen-
tal breakthrough curves tend to increase as a power law function of the length scale
over which the transport experiment is conducted (Anderson, 1984; Neuman,
1990; Gelhar et al., 1992). This is because the solute plume experiences increas-
ing variation in the permeability field the further it travels from the source. The frac-
tional CDE appears to account for this phenomenon (Benson, 1998).

Most research on macroscopic dispersion has focused on the prediction of
solute spreading from knowledge of the spatial distribution and covariance of the
log-transformed saturated hydraulic conductivity, In(k,,). Theoretical models have
been developed for exponential and fractal autocorrelation functions (Gelhar & Ax-
ness, 1983; Dagan, 1984, 1994; Koch & Brady, 1988; Kemblowski & Wen, 1993,
Neuman, 1995; Zhan & Wheatcraft, 1996; Hassan et al., 1997). While these mod-
els may explain the scale-dependency observed in dispersivity, they lack predic-
tive power because multiple spatial measurements ol intk, ) are necded and such
data are not casy to collect. Morcover, they are macroscopic averages that depend
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IKig. 3—4. (A) Steamlines in a spatially periodic &, field (Philip, 1986), (B) streamlines in a prefractral
ko field (Wheateraft et al., 1991). The direction of flow is from left to right in both cases.

on the existence of some representative elementary volume (REV), and have not
been directly related to pore geometry.

It is not generally possible to separate out the effects of diffusion, interfacial
instabilities, and mechanical mixing on solute spreading. However, in any study of
the relationship between pore characteristics and solute dispersion, mechanical mix-
ing must be maximized relative to diffusion, and the properties of the displacing
and displaced fluids should be maiched as closely as possible to avoid interfacial
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Fig. 3-5. Empirical relationship between the dimensionless longitudinal dispersion coefficient and the
Peclet number (Fried & Cornbarnous, 1971).

instabilities. It is also important to maintain steady state flow conditions. Scotter
and Raats (1968) and Sobey (1982, 1985) considered convective dispersion in
porous media subjected to oscillating flows. The oscillatory nature of the flow
regime effectively de-coupled dispersion from pore space geometry. In essence,
channel geometry, flow rate, and oscillation frequency interacted to induce vortex
formation even though the flow was laminar. Transient flows, which are not con-
sidered elsewhere in this review, but are undoubtedly a feature of some natural sys-
tems, are likely to enhance dispersion as compared to steady flows.

Experiments on packed beds (as summarized by Fried & Combamous, 1971,
Rose, 1977; Sahimi, 1993) indicate that there are five different dispersion regimes
(Fig. 3-5). For P, < 0.3 (Region I) convection is so slow that diffusion completely
controls the mixing process. Region I (0.3 < P, < 5) is a transition regime in which
the contributions of diffusion and convection are approximately equal and additive.
In Region II1 (5 < P, < 300) convection dominates dispersion, but the contribution
of diffusion cannot be neglected. Over the range 300 < P, < 10° (Region IV) mix-
ing occurs primarily due to convection. For P, > 10° (Region V) flow is turbulent
for many fluids, and Darcy’s law is no longer valid. This regime is rarcly encoun-
tered in soils. From the above discussion it is clear that studies that seck to estab-
lish relattonships between pore characteristics and solute dispersion need to be fo-
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cused on Regions IIT and 1V, i.e., within the range 5 < P, < 10°. Unfortunately, ex-
perimental data similar to those in Fig. 3-5 are not available for more heterogeneous
porous media. Furthermore, it is not clear that P, can be explicitly defined for such
media due to the lack of a well-defined characteristic mixing length, 0.

PORE CHARACTERISTICS

This section focuses on pore characteristics relevant to solute transport. Soil
structural form is often described in qualitative geometrical terms, such as “very
coarse prismatic” or “medium subangular blocky” (Soil Surv. Div. Staff, 1993),
While observed differences in the shapes of solute breakthrough curves can be re-
lated to such descriptions (e.g., Anderson & Bouma, 1977; Vervoort et al., 1999),
they are generally unsuitable for inclusion in quantitative transport models. Here
we present some geometrical and topological approaches for characterizing irreg-
ular pore structures, and briefly discuss methods of measuring key parameters.

Soil pore space is three-dimensional. However, because of methodological
constraints, data are often collected in one- or two-dimensions. For some charac-
teristics it is possible infer three-dimensional estimates from data collected in
lower dimensions using stereology. Readers are referred to Weibel (1987) and
Ringrose-Voase and Nortcliff (1987) for more details on this subject.

Total Porosity

The total porosity, ¢, is defined as the volume fraction of pore space in a
porous medium. It is related to the bulk density (py,) as follows:

¢ =1-(py/Ps) [16]

where p; is the particle density, often assumed to be equal to that for quartz (i.e.,
2.65 g cm™3). The total porosity contains no information about the size, shape and
arrangement of pores. In addition, it is a macroscopic variable that depends on the
existence of a representative elementary volume. However, it is easily measured
and can be theoretically and experimentally related to pore connectivity, and thus
to dynamic properties such as k, (Sahimi, 1993; Giménez et al., 1997a). As result,
some researchers have sought to link variations in ¢ with macroscopic dispersion
in heterogeneous porous media (e.g., Warren & Skiba, 1964; Lin, 1977). Hassan
et al. (1998) report that a positive correlation between ¢ and &, decreases macro-
scopic dispersion as compared to the uncorrelated case. It should be noted that for
K* oc P, the dimensionless dispersion coefficient is inversely proportional to 6,
which is equal to ¢ in saturated systems; this can be shown by equating v’ in Eq.
[6b] with v in Eq. [5] and assuming a constant flux and characteristic length.

Shape

A wide variety of geometrical constructions have been used, both separately
and in combination, 1o mmaodel the shape of soil pores (Fig. 3 6). Van Brakel (1975)
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Fig. 3—6. Cross-sections through various geometric pore models: (A) uniform capillary, (B) indented
capillary (cylinders with different radii), (C) indented capillary (sphere with cylinders), {2} sinusoidal
capillary, and (E) prefractal capillary.

has presented a systematic inventory of the different Euclidean models that have
been proposed. The cylinder (Fig. 3—6A) is the simplest and most widely used pore
shape model (e.g., Klinkenberg, 1957; Marshall, 1958). More sophisticated Eu-
clidean models include periodically constrained capillary tubes (e.g., Hoagland &
Prud’homme, 1985) and spheres with cylindrical appendages (e.g., Chatzis & Dul-
lien, 1985; Ferrand & Celia, 1992). These models (Fig. 3-6B-D) all include the con-
cept of pore bodies being separated from other pore bodies by local minima in the
pore size, known as pore throats (Dullien, 1992). In a network representation of
porous media, the pore bodies correspond to the sites or nodes of the network, and
the pore throats to its bonds (Sahimi, 1993),

Several indices are available for characterizing the extent to which natural
pores deviate from the idealized Euclidean models discussed above. The simplest
of these is the circularity or compactness, C, defined as (Schwartz, 1980):

C=4m (A/P?) [17]
where A is cross-scctional arca, and P is perimeter. For a circle, C'= 15 for irregu-

lar shapes, Cdecreases as the wregularity increases. Other methods ol character-
izing (wo-duncenstonal pore outlines, mcluding chart compirisons, aspect ratios,
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elongation, and Fourier analysis, have been reviewed by Murphy et al. (1977),
Ringrose-Voase and Bullock (1984), Orford and Whalley (1991), and Horgan
(1998).

Fractal geometry, as expounded by Mandelbrot (1983), allows for a more de-
tailed representation of natural structures than conventional Euclidean geometry.
As a result, fractal models are becoming increasingly popular for simulating soil
structure and rock fractures (Thompson, 1991a; Sahimi, 1993; Giménez et al.,
1997a; Baveye et al., 1998; Anderson et al., 1998; Pachepsky et al., 2000). True
fractals can exist only as mathematical constructs, since they are physically un-
bounded. In contrast, a prefractal, which exhibits fractal scaling over a certain range
of scales, is characterized by well-defined upper and lower scaling limits. There are
several types of prefractal geometric models that are applicable to natural porous
media, including surface and mass prefractals.

Surface prefractals are most appropriate for modeling the irregular shape of
pore surfaces. Schwartz et al. (1989) were the first to simulate pore surface rough-
ness using a surface prefractal model. Fig. 3—6E shows a cross-section through a
prefractal capillary similar to their original model. The prefractal cross-section in
Fig. 3-6E has a fractal scaling ratio, b, of 3, a boundary fractal dimension, d,, of
1.465, and was iterated to the i = 4 level.

A number of different methods are available for obtaining prefractal pore
shape characteristics (Sahimi, 1993; Russ, 1994). We will focus on adsorption and
image analysis, since these are the most direct and widely used methods. Avnir et
al. (1983) and Pfeifer and Avnir (1983) pioneered the development of adsorption
techniques to characterize pore surface properties. Their original idea was that dif-
terent-sized molecules could be used as yardsticks to measure the area of a prefractal
surface as a function of the size of the yardstick. Monolayer coverage (that is typ-
ically determined from an adsorption isotherm) for various species with different
molecular surface areas, @, can then be shown to satisfy the relation,

n, o< 952 [18]

where n, is the number of adsorbed molecules and d, is the surface fractal dimen-
sion. Avnir et al. (1985) later extended the method to describe adsorption of a sin-
gle molecular species on aggregates from different size fractions. This approach has
been applied to a wide variety of rock and soil materiais, with estimates of d, falling
in the expected range from 2 to 3 (Avnir et al., 1985).

Image analysis of soil thin sections is the other method that is commonly used
for characterizing pore shape. Because of measurement constraints, these analyses
are generally conducted in two dimensions, and thus it is the boundary fractal di-
mension that 15 used to quantify pore surface roughness (Kampichler & Hauser,
1993; Anderson et al., 1996; Pachepsky et al., 1996). The d, is defined by the fol-
lowing equation (Mandelbrot, 1983),

L(e)=L,e'% [19]

where 7.(€) is the measured Iength using a yardstick of normalized length €, and L,
is the measured length when £ is equal 1o unity. Assuming an isotropic pore sur-
Lace, d, can be computed from o, using the simple relationship, o, = o, + | (Man-
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delbrot, 1983). Allen et al. (1995) have reviewed the different techniques that are
available to estimate d,, from two-dimensional images of pore shapes.

Size

Size can refer to volume, area, or length, and therefore pore-size distribution
may be defined in terms of any one of these properties. In practice, the definition
of size adopted is highly dependent upon the method of measurement. For exam-
ple, the area size distribution of pores is often measured by image analysis of soil
thin sections, while water retention data are usually interpreted in terms of the dis-
tribution of pore diameters (Bullock & Thomasson, 1979). For consistency with the
definition of the Peclet number, we have chosen to define size in terms of length,
L. Dullien (1991) has proposed the following interrelationships between the different
definitions of size: L = V/S in three-dimensions or L. = A/P in two-dimensions, where
Vis volume, S is surface area, A is cross-sectional area and P is perimeter. These
relations can be used to compare pore-size distributions measured using different
methods.

The characteristic length of a pore will depend upon the model of pore shape
adopted. Only a few Euclidean shapes can be represented by a single characteris-
tic length (diameter and edge length for spheres and regular polyhedra, respectively).
For irregularly shaped pores no single measure of size is possible, and some form
of averaging procedure must be employed. For example, star length is the expected
value of the length distribution obtained by placing a point at random within a pore,
and measuring the distance to the nearest solid surface in one or more randomly
chosen directions (Serra, 1982).

Established methods of measuring the size distribution of pores in rocks and
soils include water retention, mercury porosimetry, inverse flow procedures, and
image analysis (Lawrence, 1977; Dullien, 1992). Methods based on nuclear mag-
netic resonance (NMR), small angle scattering (SAS), and computer assisted to-
mography (CAT scanning) are also being developed. The reader is referred to An-
derson and Hopmans, (1994) and Sahimi (1995) for more information on these
newer techniques.

In the water retention (e.g., Childs, 1940; d’Hollander, 1979) and Hg
porosimetry (e.g., Washburn, 1921; Nagpal et al., 1972) methods, length is mea-
sured as an equivalent cylindrical radius, 7., that is calculated according to the fol-
lowing relationship,

. 2¢ cosv
R {5 [20]

where @ is the liquid-vapor interfacial tension, v is the liquid-solid contact angle,
g 1s the constant for gravitational acceleration, p, is the liquid density, and v is the
hydraulic head. Although widely used, Eq. [20] suffers from the same limitations
as other idealizations based on non-interacting capillary bundles (see “Geometric
Dispersion Models™). Alternative models for estimating size distributions of pore
bodies and throats are discussed by Sahimi (1993) and Celia et al. (1995). A sim-
ple illustration of the differences between methods based on . [20] and those based
on network modeting is given by Zhou and Stenhy (199.3),
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Another measure of length is the equivalent hydraulic radius, r;,, determined
inversely from saturated or unsaturated flow experiments. By comparing Darcy’s
equation with Poiseuille’s law, and invoking a capillary bundle model, one obtains
the following definition of r, (Kutilek & Nielsen, 1994),

BNk ) 12
= | —

op1g [21]
where 1 is the dynamic viscosity. Equation [21] can be used to estimate r}, from mea-
surements of k., and ¢. This approach is most applicable to systems dominated by
pores of uniform size and shape. Dunn and Phillips (1991) have investigated the
influence of systematic variations in pore shape on estimates of r, obtained with
Eq. [21]. Philip (1987) proposed an alternative definition of #, based on the macro-

scopic capillary length parameter (L) determined by fitting an exponential func-
tion to the unsaturated hydraulic conductivity-water potential curve,

= @/pigL, [22]

With tension infiltrometers it is possible to estimate L. and thus r, from field mea-
surements of three-dimensional, unconfined, unsaturated flow (White & Sully,
1987).

Image analysis of digitized thin sections is perhaps the most direct method
of quantifying pore-size distributions. This approach involves four steps: thin sec-
tion preparation, imaging, thresholding, and quantification. Murphy (1986) has sum-
marized the basic methods of thin section preparation. Moran (1994) has reviewed
issues related to data acquisition and processing. Recently, McBratney and Moran
(1993) and Moran and McBratney (1997) have proposed a conceptual model for
simulating gray level images of pore-solid structure based on fuzzy random sets.
Binary images are derived from gray-level images by thresholding, a process by
which pixels that are lighter or darker than a given value are assigned to the void
and solid phases, respectively. The pore size distribution is then obtained directly
from the digitized image. Several working definitions of length are available for
this purpose, including the Feret diameter (Murphy et al., 1977) and the one-di-
mensional star length (Serra, 1982; Moran & McBratney, 1992). The mathemati-
cal set operations of erosion, dilation, opening, and closing can be used to resolve
questions of pore connectivity prior to measuring the length of individual pores
(Vogel, 1997; Horgan, 1998).

Binary soil images are readily analyzed using fractal techniques, including
the box counting, chord length, and autocorrelation methods (Thompson, 1991a;
Garrison et al., 1992, 1993; Sahimi, 1995). The basic objective of such analyses is
to characterize the porous medium in terms of the mass fractal dimension, d,,, as
defined by the following equation (Mandelbrot, 1983):

N(g) = N,gdm [23]

where N(e) is the number of boxes of length € not containing pores, and N is the
number of boxes not containing, pores when £ is equal to unity. Estimates of o, ob-
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tained by applying Eq. [23] to two-dimensional images of natural porous media
range from 1.22 to 1.85 (Giménez et al., 1997b). Spatial variability in the pore-size
distribution can be quantified through the use of multifractal spectra (Saucier &
Muller, 1993; Muller, 1996). Fractal analyses have also been employed to para-
meterize the pore-size distribution inferred from water retention and mercury
porosimetry measurements (e.g., Friesen & Mikula, 1987; Brakensick & Rawls,
1992; Perfect, 1999). Discrepancies between estimates of d,, obtained by these dif-
ferent methods have been discussed by Crawford et al. (1995) and Bird and Dex-
ter (1997).

Use of Eq. [23] automatically implies a power law distribution of pore sizes.
A variety of other distribution functions, including the log-normal, incomplete
Gamma, and Weibull distribution functions, have also been used to characterize nat-
ural pore-size distributions (e.g., Brutsaert, 1966). Furthermore, it is possible to pa-
rameterize the pore size distribution without resorting to a particular distribution
function model using moment analysis (Brutsaert, 1966; Powers et al., 1992).

Arrangement and Connectivity

The spatial arrangement and interconnectivity of the pore space in rocks and
soils can be characterized using principles derived from topology. Topological prop-
erties of structures are invariant under any deformation of their embedding space,
and can be related to Euclidean geometrical shapes through the Gauss-Bonnett the-
orem (Kreyszig, 1959; Alexandroff, 1961). Topologically, the solid and void phases
in a porous medium are conjugate; i.e., it is possible to infer the topology of the solid
matrix from measurements made on the pore space, and vice versa. Several mea-
sures have been used to characterize the topology of natural porous media; these
can be classified as either static or dynamic measures.

The simplest static property is the mean coordination number, <Z>, which is
loosely defined as the average number of pore throats per pore body (Dullien, 1991).
For spatially periodic systems, such as cubic packing of uniform spheres, it is rel-
atively easy to determine <Z>. Methods of estimating <Z> for more heterogeneous
porous media are reviewed by Sahimi (1995).

More detailed information about the topology of a porous medium can be ob-
tained from its Betti numbers. Many different Betti numbers can be defined, and
for two structures to be topologically equivalent all of their Betti numbers must be
equal (Alexandroff, 1961). For applications in the earth sciences, however, it is usu-
ally sufficient to consider only the zeroth (By) and first (B,) Betti numbers (Mac-
Donald et al., 1986a,b; Scott et al., 1988a,b). The By is a topological measure of
the number of isolated pores within the solid matrix, while the B, (also called the
genus) equates to the number of independent pathways between two points in the
pore space. The Euler-Poincaré number, £,, defined as B, minus the number of solid
islands within the pore space, can be used as an estimate of B; in images of two-
dimensional sections through three-dimensional structures (Chen & Yan, 1988;
Vogel & Kretzschmar, 1996). The E, provides a static measure of pore connectiv-
ity; the more negative the value, the greater the connectivity. The /;, can he deter-
mined from image analysis of serial thin sections (Vogel, 1997) or from a pair of
closely spaced parallel sections known as a dissector (Vogel & Kretzschmar, 1990),
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Estimates of E, vary with pore size and thresholding level (Moran & McBratney,
1997; Vogel, 1997).

Betti numbers can be applied to prefractal systems. For example, Fig. 3-7
shows two deterministic Sierpinski carpets with the same mass fractal dimension,
d, = 1.896 and Euler-Poincaré number, E,, = 0. The two constructions are topo-

(B)

Fage 370 Bxamiples of Sievpisho carpers watly the saome fractal dimension tef,,, 1.8920), and different
serath Bett nmbers
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logically very different. This is because By = 1 for the generator employed in Fig.
3-7A, as compared to B, =9 for the generator in Fig. 3—7B. Values of B and E,
can be expected to change as a function of iteration level, particularly in the case
of randomized prefractals. Further research is needed on the theoretical nature of
these relations. Alternatively, it may be possible to apply iterated function systems
(Bamnsley & Demko, 1985) to deduce the fractal generator for a given system and
then use Betti numbers to quantify its topology. The clustering of voids in prefractal
porous media has also been characterized by a measure known as lacunarity, A(g)
(Mandelbrot, 1983; Voss, 1986). The A(g) can be derived from the fluctuations that
occur around the power law relationship of Eq. [23] (Gouyet,1996). The A(e) is pe-
riodic in log(e) for deterministic prefractals obtained by iterating a generator, and
aperiodic for randomized prefractals. Zeng et al. (1996) showed that A(e) was a more
sensitive parameter than d,, for identifying differences in small-scale soil bulk den-
sity data collected with x-ray computed tomography.

While static properties are widely used to characterize pore space topology,
dynamic approaches are more directly relevant to transport in porous media. Ma
and Selim (1994) used the CDE, fitted to tritium BTCs, to estimate tortuosity (f)
inversely for various repacked soil materials. Silliman and Wright (1988) utilized
a Monte Carlo approach to investigate the existence and structure of continuous flow
paths in variable kg, fields. Eggleston and Pierce (1995) developed a method,
based on the principles of dynamic programming, to determine f from digitized im-
ages of soil thin sections. Pathways for flow were identified by minimizing a re-
sistance factor, which in this study depended only on path length. Tortuosity was
then calculated from the mean primary path length divided by the image length. The
Jfcomputed in this way is closely related to the spreading dimension, a parameter
commonly used to characterize connectivity in fractal systems (Gouyet, 1996).

EXPERIMENTAL STUDIES

Relatively few experimental studies have been conducted in which the solute
breakthrough curve and pore characteristics were determined on the same undis-
turbed samples, thereby permitting the establishment of empirical relationships. In-
stead, the majority of studies have been on packed beds (see e.g., Passioura & Rose,
1971; Jensen, 1983; Han et al., 1985). Since it is the geometrical characteristics of
the solids or aggregates that are measured in this approach rather than the pore char-
acteristics, the resulting relationships are not directly applicable to undisturbed het-
erogeneous porous media. Studies on packed beds with constructed macropores of
varying size and shape (Kanchanasut et al., 1978; Li & Ghodrati, 1997) and on mi-
cromodels (see “Emerging Areas”), may provide more information on the rela-
tionship between solute spreading and pore space geometry, but are subject to sim-
ilar criticisms regarding their applicability to natural systems.

For heterogeneous porous media, Anderson and Bouma (1977) observed
greater CI~ dispersion in undisturbed soil samples with subangular blocky struc-
ture as compared to prismatic structure. Walker and Trudgill (1983) reported sig-
nificant correlations between solute transport parameters and several pore geom-
ctry variables measured by image analysis of soil thin scections, Gist et al. (1990)
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showed that tracer dispersion in consolidated rocks was a function of the width of
the pore-size distribution determined by mercury porosimetry. Soil dispersivities
have also been related to the width of the pore size distribution, as inferred from
the slope of the water retention curve (Vervoort et al., 1999).

Several authors have investigated the relationship between pore structures re-
vealed by dye staining patterns and solute transport parameters. Seyfried and Rao
(1987) and Vervoort et al. (1999) report increasing solute dispersivity with de-
creasing percentage dyed area. Percentage dyed area can be thought of as a flow-
weighted measure of pore size and connectivity, with small values corresponding
to high macropore connectivity and vice versa. Hatano et al. (1992) investigated
the relationship between solute dispersion and the fractal geometry of dye staining
patterns. These authors conducted Cl™ miscible displacement experiments on undis-
turbed soil columns that were later destructively sampled, and their mass and sur-
face fractal dimensions were determined by image analysis of methylene blue dye
stains. An empirical equation was obtained by regression analysis relating the
Brenner number for Cl~ breakthrough to both the mass and surface fractal dimen-
sions of the dye stained pore space.

GEOMETRIC DISPERSION MODELS

These models will be presented in order of increasing complexity in the rep-
resentation of pore space geometry, from individual uniform pores to interacting
nonuniform pore networks.

Discrete Pore Models
Uniform Shape

The simplest discrete pore model is a straight cylindrical capillary tube of ra-
dius r and length / (Fig. 3-6A). Expressed in axisymmetric, cylindrical coordinates,
the CDE for this model, incorporating Eq. [15} is (Taylor, 1953):

oC 3*C 10C 0%C y2 ) aC
— =D | —= + - + = | -2v |l=-=|—=
ot dy? ydy  ox? r? ) ox [24]

where D is assumed to be independent of C. While numerical techniques have been
cmployed to solve Eq. [24] directly (Ananthakrishnan et al., 1965; Nunge & Gill,
1970), no exact analytical solutions are available. However, by applying the lim-
iting condition V48 << P, << 4//r, and assuming that longitudinal molecular diffu-
sion is negligible, Taylor (1953, 1954) was able to reduce Eq. [24] to:

d<C> LK 82<C>_v d<C>
ot ox? ox [25]

where <C> is the mean solute concentration at distance x, K = DK*, and

AL (1/48) P} [26]
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where { = rin Eq. [5]. Gupta and Bhattacharya (1983) obtained a similar result using
Markov process theory. In contrast to Eq. [24], Eq. [25] can be readily solved an-
alytically. The solution for a step increase in solute concentration was derived and
experimentally verified by Taylor (1953).

Equation [25] assumes diffusion takes place according to the standard Fick-
ian model, i.e., Eq. [10]. Compte and Camacho (1997) studied the alternative case
of a fractal time random walker, i.e., Eq. [13], being dragged by a solvent flowing
through a uniform cylindrical capillary tube. The resulting longitudinal dispersion
was not the same as the standard asymptotic behavior obtained for a Brownian
walker.

Using the method of moments, Aris (1956) was able to generalize Eq. [25]
for a straight tube with an aperture of arbitrary cross-section. His expression for the
dimensionless dispersion coefficient is:

K*=1+vP2 [27]
where 7 is a dimensionless number that depends upon the shape of the aperture. For

an elliptical aperture, with major and minor semi-axes of @ and b respectively, and
¢ =ain Eq. [5], vy 1s given by (Aris, 1956):

Y= - (24-24(1 - ba®) + 5 (1 - B1a®)?
#\ u-nd-ve (28]

Note that when b = a, ¥y = 1/48, as it should for a circle. Equation [27] also applies
to unidirectional flow between parallel flat plates, and can be used as a model for
solute dispersion in rock fractures. Setting ¢ in Eq. [5] equal to the separation dis-
tance between two plates, it can be shown that y = 1/210 (Aris, 1959a; Wooding,
1960). This result has been confirmed by numerical simulations (Koplik et al., 1993)
and lattice-gas automata (Perea-Reeves & Stockman, 1997).

Variable Shape

Natural systems rarely contain perfectly uniform, regular voids. A regular
shape model may be unrealistic for macropores and fractures with irregular walls.
Thus, it is useful to examine the impact of systematic variations in channel diam-
eter on solute dispersion. Variable shape models are attractive for simulating pore
scale dispersion because a single unit cell is often able to capture a wide range of
transport processes, from convection in the center of the channel to diffusion in back-
water zones near the apex (see Fig. 3-2B). Furthermore, the macroscopic behav-
ior of such models can be predicted from well-defined geometric parameters.

Hoagland and Prud’homme (1985) presented a method of moments analysis
of dispersion in a single sinusoidal capillary tube with solid walls (Fig. 3—6C). Their
geometric model is defined by the wave length (x), the amplitude (&) and mean ra-
dius (<r>) of the sine wave (z) that describes the aperturc wall:

c=<r> |+ sin2rads)] [29]
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Using Eq. [29] the following analytical solution was obtained for the dimension-
less dispersion coefficient assuming long wavelengths and high Peclet numbers:

K*:——1—|:1+-]ié+£ ﬁ4+—5—é’16:|+ — 1 [1 +3§12+—3§14:|P,3
(1 + %2y 2 8 16 48(1 + 8°/2) 8
[30]

where ¢ = <r> in Eq. [5]. It should be noted that for a straight tube with a = 0, Eq.
[30] properly reduces to Eq. [26]. For 0 < & < 1, dispersion is enhanced in the si-
nusoidal tube as compared to a straight tube. Equation [30] was confirmed for large
Peclet numbers by comparison with results from a numerical Stokes solver
(Hoagland & Prud’homme, 1985). Similar numerical simulations were reported by
Cao and Kitanidis (1998a,b). Sobey (1982, 1985) extended the numerical approach
to predict dispersion in symmetric and asymmetric sinusoidal capillaries during os-
cillatory flows.

Gill and Ananthakrishnan (1966) and Azzam and Dullien (1977) have nu-
merically simulated flow in an indented cylindrical tube, with periodic step increases
and decreases in radius r along its length / (Fig. 3-6B). By assuming water in the
indentations is completely immobile, Turner (1958) and Aris (1959b,c) were able
to formulate a two-region geometric capacitance model for solute dispersion in this
system. By further assuming a parabolic velocity profile within the mobile water
region, Aris (1959b) showed that the K* for this region is given by Eq. [27], with
¢ =rin Eq. [5] and,

_1+6f+11p°
48(1 + B)? [31]

where 3 is the volume of indentations (or immobile water) per unit volume of main
channel (or mobile water). Equation [31] reduces to 1/48, the prefactor in Eq. [26],
when 3 = 0, and predicts increased dispersion relative to the uniform case, when 3
is large. This trend is physically reasonable since the solute spends more time in
the increased stagnant pore space. Predictions using Eq. [27] and [31] agree very
well with numerical simulations of dispersion in indented capillaries as long as the
elapsed time is sufficiently large (Gill & Ananthakrishnan, 1966). Aris (1959a) and
Tsuda et al. (1991) have modified this approach to predict dispersion within cylin-
drical and parallel plate systems, in which the indentations merge to produce a con-
tinuous immobile water zone of uniform thickness immediately adjacent to the chan-
nel walls. Recently, Perea-Reeves and Stockman (1997) investigated dispersion in
an alveolated channel with lattice gas cellular automata.

It is possible to incorporate fractal concepts into the indented capillary model
described previously. Rotation of the cross-section shown in Fig. 3—6E about its cen-
tral axis generates a three-dimensional prefractal capillary tube. The factor y for
this capillary tube is given by:

I+6pB,+ 11B2
48(1 + B,))? [32]

where 3, is the (otal volume of indentations per unit volume of main channel after
niterations ol the frnctid pencrator, delined by:
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1 (dg2)i-dy
= Bp2

o= B0 21 b [33]
in which B is the Euclidean immobile-mobile water ratio for the first indentation
as previously defined, b; is the fractal scaling factor, i is the iteration level, and d,,
is the boundary fractal dimension. The series summation in Eq. [33] rapidly con-
verges and gives a constant value of B, > forn >> 1, e.g., for ¢, = 1.465 and b; =
3, the limit is B, = 2.25B. As a result of this increase in B, longitudinal dispersion
is slightly enhanced in the prefractal capillary as compared to the indented capil-
lary. However, this increase is much less than the increase in dispersion that occurs
in response to the appearance of the first indentation relative to the uniform capil-
lary tube. This can be seen by comparing K* at n = 1 (the indented capillary) with
K* at n >> 1 (the prefractal capillary) in Fig. 3-8; the corresponding value of K*
for a uniform capillary is approximately 3. This analysis considers only the volume
of the fractal indentations and does not address the likely impact of surface rough-

ness on solute dispersion.

Random and/or natural surface roughness has been incorporated into mod-
els to predict solute dispersion. Koplik et al. (1993) numerically simulated solute
dispersion in flow through a single two-dimensional channel bounded by parallel
plates in which one face presented random rectangular irregularities perpendicu-
lar to the direction of flow (Fig. 3-9). They observed a tenfold increase in K* be-
tween the smooth plate case and the maximum roughness case. Keller et al. (1999)
have developed a method of predicting solute breakthrough in natural fractures based
on geostatistical and small perturbation analyses of the aperture size distribution.

16
1.465
14 -
1.262
¥ 12
B=1
10 | Pn=10
b= 3
8 1 T I
1 4 7 10 13 16

n

Fig. 3 -8. Dimensionless dispersion coeflicients as a function of iteration level for two prefractal cap-
illaries.
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The dispersivity of a naturally fractured granite predicted using this approach was
within a factor of two of the experimentally determined value.

Prefractal surfaces are a logical extension of the relatively simple Euclidean
geometrical structures discussed above. Thompson (1991b), and Amadei and II-
langasekare (1994) conducted numerical simulations in fractures with prefractal sur-
faces. However, it is difficult to identify any clear relationship between the surface
fractal dimension and solute dispersion from these studies. Thompson (1991b) em-
ployed two surfaces with the same fractal dimension (d; = 2.5) and different sepa-
ration distances. Amadei and Illangasekare (1994) used pairs of surfaces with dif-
ferent fractal dimensions. Working in two dimensions, Gutfraind et al. (1995)
found little dependence of K* on the boundary fractal dimension, apparently be-
cause of inappropriate scaling of the different fracture profiles.

Geometric Capacitance Models

Capacitance models are a special case of multiregion velocity distribution
models, in which the liquid phase is divided into two distinct (mobile and immo-
bile) regions. The CDE for solute transport within the mobile region can then be
written as (Coats & Smith, 1964; van Genuchten & Wierenga, 1976):

2 . .
W _ o PCu ag(e_)ac

o™ o 0, ot [34]

where the subscripts m and im refer to the mobile and immobile liquid regions re-
spectively. Equation [34] can be solved analytically without making any assump-
tions about the spatial arrangement of solids and voids (e.g., Skopp et al., 1981).
Geometric capacitance models represent a class of parameterizations of Eq. [34]
in which the mobile and immobile liquid regions are explicitly defined in terms of
pore space geometry. The majority of these models are for packed beds of uniform
porous spheres (Passioura, 1971; Rao et al., 1980a,b; Rasmuson & Neretnieks,
1980). While it is possible to extend this approach to nonuniform and nonspheri-
cal aggregates (Rao et al., 1982; van Genuchten & Dalton, 1986; Gerke & van
Genuchten, 1996), its predictive capability is limited. This is because the relation-

P V9 Profile of the invegulie channel snthe study by Koplik et al. (199 3),
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Fig. 3-10. Uniform capillary tube surrounded by an annular porous matrix.

ship between properties of disturbed aggregates and pore characteristics in the undis-
turbed state is far from clear.

Geometric capacitance models based on macropore geometry offer more
promise for predicting solute transport in structured soil and fractured rock systems,
The indented capillary tube model (Turner, 1958; Aris, 1959b,¢) was discussed pre-
viously. This model assumes that the aperture walls are solid. A similar model can
be derived for a uniform tube with porous walls (Fig. 3—10). In this case, solute
spreading will occur as a result of convective-dispersive transport in the main
channel and diffusive exchange with the surrounding matrix. Analytical solutions
of Eq. [34] for this condition are available for a variety of macropore shapes and
arrangements (Grisak & Pickens, 1981; Tang et al., 1981; Sudicky & Frind, 1982;
van Genuchten et al., 1984; Rowe & Booker, 1989). Solute transport in uniform
rectangular and cylindrical channels with simultaneous matrix diffusion has also
been modeled numerically (Scotter, 1978; Grisak & Pickens, 1980; Bobba, 1989;
Sudicky & McLaren, 1992). These studies show that diffusion through pore walls
contributes significantly to dispersion. For the 120-um fracture studied by Grisak
and Pickens (1980), matrix porosities as low as 0.05 resulted in an almost 50% re-
duction in C/C, 4 d after a step change in concentration at a flow velocity of 0.75
m d~!, as compared to complete breakthrough for the nonporous matrix (Fig.
3-11).

Spatially Periodic Models

Spatially periodic porous media are made up of structural elements whose
arrangement in space is completely described by a single unit cell (similar to the
representative elementary volume concept of Bear, 1969), that is then repeated ad
infinitum (Adler, 1992). The structural elements can be discrete voids in a contin-
uous solid phasc or vice versa. The simplest spatially periodic models are comprised
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Fig. 3—11. Effect of matrix porosity on solute BTCs obtained for a 120-um fracture at a distance of .76 m
(Grisak & Pickens, 1980),

of repetitive arrays of Euclidean geometric structures (Fig. 3-12). However, ir-
regularly shaped structural elements are also possible (Fig. 3—13).

A fundamental characteristic of spatially periodic systems is the existence of
a group of translational symmetry operations, by means of which the repeating pat-
tern may be brought into self-coincidence. The translational symmetry of the array,
expressing its invariance with respect to parallel displacements in different direc-
tions is represented by a lattice. This lattice consists of an array of evenly spaced
points (Fig. 3—13), such that the structural elements appear the same and in the same
orientation when viewed from each and every one of the lattice points. Another im-
portant property of spatially periodic arrays is the existence of two characteristic
length scales, corresponding to the average microscopic distance between lattice

circular
capillary
tube

Fapo 302, Examples ol spatially periodie media compnsed of paratle] planes and capillary tubes (Bren-
ner, 14980)
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Fig. 3-13. A spatially periodic medium comprised of two irregular particles. The lattice points delin-
eate a unit cell that is invariant with respect to parallel displacements in different directions (Bren-
ner, 1980).

points, and the length of interest, respectively. Application of this type of model to
transport problems requires that the latter length be much greater than the former
one to ensure mesoscopic homogeneity.

Brenner (1980) has explored the subject of solute dispersion in spatially pe-
riodic porous media in considerable detail. Brenner’s analysis makes use of the
method of moments developed by Aris (1956) and later extended by Horn (1971).
Carbonell and Whitaker (1983) and Koch et al. (1989) have addressed the same
problem using the method of volume averaging, whereby mesoscopic transport co-
efficients are derived by averaging the basic conservation equations over a single
unit cell. Numerical simulations of solute dispersion, based on lattice scale calcu-
lations of the Navier-Stokes velocity fields in spatially periodic structures, have also
been performed (Eidsath et al., 1983; Edwards et al., 1991; Salles et al., 1993). These
stimulations are discussed in detail in the “Emerging Areas” section.

In general, the results of these studies agree well with experimental data for
packed beds. This is because the analysis of solute dispersion in spatially periodic
media is relatively straightforward when the analytical or numerical calculations
are applied to simple Euclidean structures, such as a square array of uniform cylin-
ders. In principle, a unit cell can contain many different sized elements of arbitrary
shape (Fig. 3—14). However, the resulting analysis is much more complicated (e.g.,
Plumb & Whitaker, 1988). As a result, spatially periodic models are mostly used
to predict solute dispersion in packed beds of uniform particles. Moreover, because
of their repetitive nature and restrictive characteristic lengths, they arc unsuitable
for modeling natural porous media with evolving heterogeneities. In this respect,
they are similar to geometric capacitance models discussed carlier.
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skewed towards the largest pore sizes. In contrast, experimental determinations of

pore-size distribution based on the capillary bundle concept invariably exhibit the
opposite trend (e.g., Nagpal et al., 1972). This discrepancy suggests that the as-
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Fig. 3—15. Capillary bundle model (Carbonell, 1979),

sumption of a normal pore-water velocity distribution in the CDE may be erroneous
and/or that the representation of natural porous media as equivalent capillary bun-
dles is unrealistic. Turner (1958) proposed a theoretical model for inversely esti-
mating the pore-size distribution of a capillary bundle by measuring effluent con-
centration as a function of time in response to a sinusoidally varying input con-
centration. To our knowledge his model has never been tested.

Lindstrom and Boersma (1971) pioneered the prediction of breakthrough
curves from equivalent cylindrical pore size distributions, determined by either the
water retention or mercury porosimetry methods. The model developed by these
authors includes the effects of both intra- and interpore dispersion. In general, dis-
persion due to differences in tube size has a much greater influence on the shape
and position of the breakthrough curve than mixing within tubes due to microscopic
velocity profiles (Rao et al., 1976). For completeness, however, it is preferable to
include both effects. Lindstrom and Boersma (1971) defined a CDE for each tube,
so that C/C, for the bundle as a whole is given by:

C  ZLACIC)
Co j'v=1 A; [35]

where & is the solute concentration in the jth tube-size increment, N is the total num-
ber of increments, and A; is the fraction of the bundle occupied by the jth tube-size
increment. The resulting system of equations is then solved numerically, with the
relative contribution of each tube-size increment to the total displacement deter-
mined from the empirical frequency distribution of pore sizes.

A similar theoretical approach. with the CDE applicd to cach noninteracting
tube size increment. was proposed by Carbonell (1979), In this method, however,
the mesoscopic dispersion coellicient was determined by tihing the moments of
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Fig. 3-16. Concentration as a function of dimensionless time for a capillary bundle with a normal dis-
tribution of radii and different coefficients of variation (Carbonell, 1979).

the individual concentration profiles, and averaging them over all pore classes. As-
suming laminar flow, the resulting expression for K* is:

2 2 2
1% FioF vt or Far
K¥t=14 — 402 , Y% _2_l:_2_8 _r6:|
48D%  r} D rf Ly [36]
where v is the area-averaged pore water velocity, ¢ is time, and r,, is the nth moment
of the pore size distribution as defined by,

N

r, = (1/N) ):l, rn=1,2,3... (371
where N is the number of pore classes. Assuming a normal distribution of pore sizes,
the predicted effects of different coefficients of variation ({) on the spread of a solute
pulse at a given depth are illustrated in Fig. 3—16. The spread of the pulse is greatly
magnified as the spread of the pore size distribution, as represented by {, increases.

The predictions of capillary bundle models have been shown to agree rea-
sonably well with experimental data for packed beds of uniform particles (Carbonell,
1979). However, breakthrough curves computed using this approach appear to un-
derpredict the time of arrival of the peak of the solute pulse in undisturbed soils (Rao
ctal., 1976; Bouma & Wosten, 1979). This may be due to discrepancies between
measured and actual pore size distributions, inappropriate representation of the re-
Litionship between P, and K* within individual pores, or the assumed lack of in-
lerconnectivity between pore channels (Lindstrom & Boersma, 1971, Rao et al.,
1976).
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Carbonell (1979) and Neretnieks (1983) have extended the classic capillary
bundle approach to noninteracting, uniform rectangular parallel plates, of infinite
extent and variable width. A contrasting approach was proposed by Tsang and Tsang
(1987). These authors generated a bundle of statistically equivalent noninteracting
one-dimensional channels with the same mean volume, but with variable aperture
widths. Solute dispersion takes place due to the resulting distribution of channel
residence times during steady state flow. In a subsequent paper Tsang et al. (1988)
parameterized the variation in aperture widths along individual channels in terms
of the log-normal frequency distribution. Solute dispersion increased as the geo-
metric standard deviation was increased, while keeping the Peclet number constant.
The same model was also used inversely to estimate aperture variability from the
solute BTC.

Network Models

Network models are closely related to percolation models, which are dealt
with under “Emerging Areas”. Sahimi (1995) and Berkowitz and Ewing (1998) have
traced the development of both types of model, and have summarized the links be-
tween them. For the purposes of this review, a network is defined as a system of
interconnected elements well above the percolation threshold (i.e., there are many
connected paths through the network). Network models can be categorized as: (i)
uniform shape and uniform size distribution (Fig. 3—17A), (ii) uniform shape and
variable size distribution (Fig. 3—17B), and (iii) variable shape and variable size dis-
tribution (Fig. 3-17C).

Uniform Shape and Uniform Size Distribution

Consider a random network of interconnected nonporous cylindrical capil-
lary tubes of uniform radius » and length /. The tubes are connected with one an-
other at their ends, and several tubes may start or end at these junctions (Fig. 3—-17A).
Thus, the path of a solute molecule introduced into the network can be regarded as
arandom walk in which the distance, direction, and duration of each step are ran-
dom variables. This idea was first explored by de Josselin de Jong (1958), whose
expression for K*, based on a probabilistic analysis of the random walk, is:

K* = (1/6) P, [f + (3/4) + E] [38]

where ¢ =11in Eq. [5], f is a function of the distance traveled by the solute plume,
and E is Euler’s constant (=0.577). Note that for any given travel distance, K < v
in this system, as compared to K =« v2 for a single uniform capillary tube (see Eq.
[26]). Torelli and Scheidegger (1971) obtained a similar result for a random maze
network. Both models neglect the contribution of molecular diffusion and assume
a uniform microscopic velocity distribution within individual tubes. Thus, their ap-
plicability is restricted to large Peclet numbers.

Saffman (1959) developed a more general network model that accounted for
interactions between molecular diffusion and fluid convection within individual
tubes. Using the same random walk approach as de Jossetin de Jong (1958), he ob-
tained numerical approximations of K* for various limiting conditions, including
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molecular diffusion dominant, molecular diffusion and convective dispersion of
equal importance, and convective dispersion dominant. In a later paper (Saffman,
1960), he extended the range of conditions considered through an alternative analy-
sis based on Lagrangian correlation functions. For the P, range of interest, i.e., 1
<< P, << 8(1/r)*, his approximate numerical expression for K* is (Saffman, 1960;
Rose, 1977),

D, P 3, ) P, (r)? 17} 4
K¥= = full 7% 1 Z-n | _ Zn L - =L =
D+6|:n(2) 8(1) 2] "9 [39]

where  =1in Eq. [5]. Saffman’s model predicts dispersion coefficients over a wide
range of Peclet numbers, agreeing well with experimental results for packed beds

(A)

(B)

(©)

Ly 8 17 Network models comprised ol tAy uniform cylindrical bonds, (#) variable eylindncal bonds,
and (O varable cylindreeal hoaedand <phencal sites tadapted from Berkowitz & Ewing, 1998),
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of spherical particles (Rose, 1977). The predicted values of K* are relatively in-
sensitive to v/l when the latter is <1/3.

Torelli- (1972) introduced particle tracking for simulating solute dispersion .
in network models of porous media. The particular model used by Torelli (1972)
was a two-dimensional square lattice of uniform capillaries, with a specified num-
ber of bonds removed at random. A more sophisticated model was employed by
Schwartz et al. (1983). In the particle tracking approach, pressure potential distri-
butions and velocity profiles within individual tubes are established by numerically
solving a steady-state flow equation. Rules must also be established for solute mix-
ing at channel intersections (Park & Lee, 1999). For example, solute particles ap-
proaching the intersection illustrated in Fig. 3—18 can move in one of three possi-
ble directions. In complete mixing, each direction has the same probability (Fig.
3—18A). In streamline routing, the direction is determined by the relative magni-
tudes of flow away from the intersection (Fig. 3—18B). Breakthrough curves are sim-
ulated by monitoring a large number of reference particles released into the network
at the upstream boundary. The results of Torelli’s (1972) simulations, which ignore
mixing due to diffusion, can be summarized as K o< v!-?, which is intermediate be-

1=
Fig. 3—18. Examples of fluid behavior at an intersection: (A) complete mixing and (#) streamline rout-

ing (Park & Lee, 1999),
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tween the two extremes of microscopic dispersion (K o v?) and mesoscopic dis-
persion (K o< v). Koplik et al. (1988) pointed out that tracking any finite number of
particles is subject to limitations because low velocity paths tend to be insufficiently
sampled.

Uniform Shape and Variable Size Distribution

These network models are comprised of different-sized, interconnected ele-
ments of uniform shape (e.g., Fig 3—17B). The configuration of elements within the
network can be either systematic or random. Marle and Defrenne (1960) were the
first to use this type of model to predict solute dispersion. Their network was a mod-
ified capillary bundle model with regularly spaced interconnections between par-
allel tubes of radii | and r,. This model does not consider diffusion. Spreading of
a solute in the model is given by:

2 2042
Snls 1 1 i /7’2 " 0_2 ([0)
Ay rP+rd 1 +rir [40]

() =n

where n is a large number of interconnections, [ is their separation distance, 6%(?)
is the variance at time ¢, and 0°(Z) is the variance at initial time, #,. Subsequently,
Simon and Kelsey (1971, 1972) investigated dispersion in interconnected capillary
tubes of different sizes arranged in square, diamond, and single and double hexag-
onal patterns. Robinson and Gale (1990) used physical and numerical models to
analyze the transport of a conservative solute in diamond lattices with different in-
tersection angles and channel radii. Interacting capillary bundle models have also
been developed without explicit reference to the spatial arrangement of their in-
terconnections (e.g., Steenhuis et al., 1990; Grindrod & Impey, 1993; Skopp & Gard-
ner, 1992).

While the above models represent an improvement over classical capillary
bundle models, they cannot reproduce the geometrical heterogeneity of natural
porous media. As a result, several authors have tried to derive more sophisticated
models based on random capillary networks.

Mandel and Weinberger (1972) proposed a two-dimensional network model
for solute dispersion based on an irregular hexagonal lattice of intersecting capil-
lary tubes of variable orientation, length, and cross-sectional area. The velocity dis-
tribution within individual tubes was neglected, and complete mixing was as-
sumed at each node. A probabilistic analysis of this model, based on the Eulerian
point of view, resulted in an expression for longitudinal dispersivity. Comparison
ol breakthrough curves computed using this approach with those predicted by the
model of de Josselin de Jong (1958), which assumes elements of uniform length
and cross-sectional area, indicates significant differences only at the extremes of
the distribution curves (Mandel & Weinberger, 1972).

Bear (1969, 1972) developed a dispersive flow model based upon the idea
of building a continuum at the mesoscopic scale by statistically averaging micro-
scopic quantities over a representative elementary volume, defined with respect to
porosity. This gecometric model 1s an assemblage of randomly interconnected tubes
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of varying radius r, length /, and orientation. Averaging the resulting mass conser-
vation and transport equations, yields the following approximate expression for K*
(Bear, 1972; Rose, 1977):

K* ~De + P, [1 +—2— + 4 (512)2:]_1
D P, P, \ <r> [41]
where <r> is the mean pore radius, and <I> = { in Eq. [5] is the mean microscopic
characteristic length. Bear’s model is valid for a wide range of Peclet numbers, but
is most sensitive to the value of </>/<r> over the range 1 < P, < 1000. It is in rea-
sonable agreement with Fig. 3-5 assuming </>/<r> =1 (Bear, 1969).

Haring and Greenkorn (1970) developed an alternative statistical model for
predicting dispersion in a network of randomly intersecting tubes. In this model,
both [ and r are assumed to be random variables distributed according to the beta
probability distribution function, with parameters b, and a.,b,, respectively. Har-
ing and Greenkorn’s (1970) expression for K* is:

1 (g +D(a+b+2) Pln[gz(al+bl+2)2 w}
? 2 (q+ 1) <>

K* =

12 (@ + Diay + by + 3)J2 [42]

where ! = <[> in Eq. {5} and J is a function of g, and b,. Equation [42] is consistent
with Saffman’s (1960) model for uniform-sized, interconnected tubes when a, a,
>> 1 and b,b, = 0. Pakula and Greenkorn (1971) estimated a, and b, from water
retention experiments, and fitted a; and b, by comparison of Eq. [42] with experi-
mental data obtained for a given Peclet number. Predictions of K based on these
parameter estimates were of the same order of magnitude as experimental disper-
sion coefficients determined at other Peclet numbers. Despite its promise, this
model was later retracted because of an apparent error in equating the ensemble av-
erage pore water velocity with the spatial average pore water velocity (Guin et al.,
1972).

Sahimi et al. (1983) extended the particle tracking method developed by
Torelli (1972) to simulate dispersion of a nonreactive tracer in a random tube net-
work of different-sized elements. In their model, one first determines the flow field
in the network. A pressure gradient is applied across the network, and the mass of
fluid reaching any given node is treated as a conserved quantity. The mean flow
rate within each tube is calculated by numerically solving Poiseulle’s law for the
resulting distribution of nodal pressures. A large number of tracer particles are then
randomly introduced into the network at the upstream plane. Complete nodal mix-
ing and zero nodal residence time are assumed. The K is computed from the first
passage time distribution of particles as they arrive at the downstream plane using
Eq. {3]. Sahimi et al. (1983} showed that K depends linearly on v for this system,
which is thus appropriate for simulating pure mechanical dispersion at the meso-
scopic scale. Sahimi and Imdakm (1988) modified the original algorithm to allow
for particle diffusion among streamlines and into dead end tubes. As soon as dif-
fusion times were included in the total travel time of the particle, the linear depen-
dence of K on v was destroyed, and K o v'2, as was found by Torelli (1972).

Sorbic and ClifTord (1991) used a Monte Carlo method o incorporate diffu-
sion into a network model. Good agreement was found between their method and
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experimental data presented in the literature over a wide range of Peclet numbers.
In the mixed regime where convection dominates, but diffusion is not negligible,
K increased faster than linearly with fluid velocity. For K o< v*, their results indi-
cate .19 <a < 1.25.

de Arcangelis et al. (1986) proposed another network model for solute dis-
persion based on the analogy between Poiseuille’s law for fluid flow and Ohm’s
law for random resistor networks. Steady-state electrical currents are used to de-
fine the flow field of the background fluid that carries the tracer. Equation [1] is
specified for each tube, and the first passage time distribution is computed using
an efficient algorithm in the Laplace-transform domain. This approach, which is
most appropriate for well-connected networks, gives the probability distribution for
a random walk model in which there is a different time for each step, and where
each step represents the continuum solution of the traversal time problem for each
bond. Applying the technique to a square lattice of interconnected capillary tubes
with cross-sectional areas uniformly distributed in the interval [1 —Q /2,1 + € /2],
where QQ determines the degree of disorder in the system, de Arcangelis et al. (1986)
were able to predict the entire nonlinear relationship between K* and P, as a func-
tion of Q (Fig. 3-19).
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Recent particle tracking simulations in soil network models indicate that solute
dispersion is more sensitive to the water retention curve than to the particular com-
bination of pore-size distribution and topology that determine its shape (Vogel,
2000). Numerical particle tracking techniques have also been used to simulate solute
dispersion in fractured media. Examples for two-dimensional randomly intersect-
ing fracture networks include the models developed by Hull et al. (1987), Smith
and Schwartz (1984), Robinson and Gale (1990), and Clemo and Smith (1997). Re-
cently Nordqvist et al. (1996) and Margolin et al. (1998) have extended this approach
to three-dimensional fracture networks.

Variable Shape and Variable Size Distribution

Wendt et al. (1976) proposed a model for solute dispersion in heterogeneous
porous media based on nonequilibrium thermodynamics. Their model, which al-
lows for both variable pore shape and size distribution, is constructed from paral-
lel arrays of interacting pores arranged in series. The relative error introduced by
assuming the medium can be described by an equivalent uniform pore-size distri-
bution was shown to be small.

Chatzis and Dullien (1977) were the first to use tubular bonds and spherical
sites to simulate pore throats and bodies respectively, in network models of porous
media. Previously, intersections (sites) were assumed not to have any volume. In
their model, individual elements are represented as cylindrical tubes with spheri-
cal indentations in the middle (Fig. 3—-17C). Bond lengths and bond and site radii
can be drawn from independent distribution functions, or as is more common, cor-
related with each other so that only one distribution function is required (loanni-
dis & Chatzis, 1993).

Dullien (1992) and Ferrand (1992) have applied numerical particle tracking
methods to compute dispersion coefficients for such networks. In the study by Fer-
rand (1992) the conductivity of each bond was calculated using an expression that
included entrance and exit effects as fluid moves between larger sites and narrower
bonds, as well as the resistance of the bond itself. The lattice dispersivity was shown
to increase linearly as the geometric standard deviation of the bond-size distribu-
tion was increased. Although not widely used at present, this modeling approach
offers much promise for future research on the interplay between pore shape and
size distribution in determining the relationship between K* and P,

EMERGING AREAS

A number of new approaches to the problem of evaluating dispersion at micro-
and mesoscopic scales have appeared during the past 10 to 15 yr. In particular, cel-
lular automata modeling, advances in numerical simulations, improved physical mi-
cromodels, and the development and application of fractal and percolation concepts
are significant steps. Most of these approaches are outgrowths of the computer rev-
olution that took place over the same period. In fact, the development of more for-
mal mathematical foundations for some of these approaches has tollowed their im-
plementation on compulers.
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Prefractal Networks

Fractal models for soil structure and rock fractures are becoming increasingly
popular (e.g., Sahimi, [993; Baveye et al., 1998). The primary appeal of these mod-
els is their ability to parsimoniously parameterize complex structures. Scale sym-
metry or scale invariance, in which an object is at least statistically the same after
magnification, is a fundamental property of fractals and can also be observed in nu-
merous natural phenomena. Thus, it is logical that some investigators have exam-
ined theoretical transport in known prefractals.

Adler (1985) considered Taylor dispersion in fractal capillary networks in-
cluding a “tree” and a Sierpinski gasket. Dispersion on the tree was solved exactly
while a numerical computation was necessary for the Sierpinski gasket. The net-
work tree that Adler considered had every branch splitting into two branches at each
vertex. Depending on the value of a parameter I', either more (I' > 1), less (I'< 1),
or the same (I" = 1) volume is available to the moving fluid at each vertex. Conse-
quently, for I" > 1, the velocity in each branch decreases as the solute progresses
through the network. In this case particle position, x(¢), (starting at x = =0) is given

by

log(gtlogI' + 1)
log I [43]

x(1) =

where ¢ is the flow of fluid into the ‘trunk’ of the network tree. The first moment
of the probability density follows a logarithmic increase with time. The mean
squared displacement, which is related to the dispersivity, quickly reaches a con-
stant value in this case.

When I" < 1, the velocity in each new level of branches increases and both
moments show an exponential decay with time. Adler (1985) indicated that this type
of behavior had not been previously reported. For I' = 1, the first moment scales
as ¢ and the second moment as 72 + £, which is consistent with Taylor behavior for
spatially periodic media (Brenner, 1980).

By specifying the fluid outflow at two of the three external vertices of a Sier-
pinski gasket-like network of capillaries (Fig. 3-20), Adler (1985) showed that the
internal flows on each of the branches could be computed using Kirchoff’s Law.
The ratio of the outflows is given by.a parameter A. Adler (1985) demonstrated the
seemingly paradoxical result that the anisotropy introduced by A does not affect the
flow in the interior of a large network of this construction. Consequently, Taylor
dispersion in such a network was not expected to be sensitive to A. A numerical so-
lution was used to determine particle transport in a network consisting of 27 trian-
cular elements. Graphs of the time evolution of the first and second moments were
presented but no fitted functional representations were provided. The overall con-
clusion was that Taylor dispersion is nearly independent of the flow field when the
size of the network is large enough.

Ross (1986) investigated transport in randomly located and ortented fractures.
Fach fracture is assumed to be filled with a porous material and is assigned a finite
arca, and a transmissivity (7= fracture width x &, of filling material) in propor-
ton to its width., Ross presents a miodel based on random walks that accounts for
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A=0 A=0.2

N=2

Fig. 3-20. Flow in a Sierpinski gasketlike network of capillaries as a function of iteration level (N) and
the A parameter {Adler, 1985).

the observed relationship between apparent dispersivity and the physical scale of
the solute transport system. He points out that because the water velocity in a frac-
ture is in general different from the mean water velocity of the entire network, a
particle’s motion can be described as the sum of a uniform drift and a random watk
component. The random walk is made up of straight steps that represent the parti-
cle’s residence in a fracture “zone”. A fracture zone is defined as the planar area
of a fracture bounded by intersecting fractures of the same or greater transmissiv-
ity. The linear dimension of a zone is h. The number density function of zones of
linear dimension 4 is defined as N(h), so that N(h)dh is the number of zones per unit
volume with linear dimension between & and h + dh. The density function N(4) is
assumed to be a power law N(h) «< h™P, where p is related to the fractal dimension
(Mandelbrot, 1983). Due to the definition of a fracture zone described above,
longer fractures are generally more transmissive and an equation of the form 7(h)
o< 4 can be applied. Assuming g = 1 leads to a linear relationship between the stan-
dard deviation of particle position and the distance traversed.

Redner et al. (1987) evaluated pure mechanical dispersion (no diffusion) in
a self-similar hicrarchical model of a porous medium. They expected their model
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to be useful in percolation networks near the percolation threshold where the fluid
path is fractal (see “Percolation Models” below). Two regimes of behavior were ob-
served depending on the value of an asymmetry parameter that controls the width
of the distribution of transit times in the network. In the first regime, spreading oc-
curred at the same rate as the rate of downstream convection (i.e., K* o P). In the
second regime, dispersion is dominated by small amounts of tracer moving through
the slowest bond in the network and is greatly enhanced.

Mazo (1998) studied Taylor dispersion in fractal media and found that the pro-
portionality constant between the spatial spreading of a solute pulse and the time
depended on both the fractal dimension of the medium and the dimension of the
random walk through it. In normal diffusion the average particle position <x>> is
directly proportional to the time. Diffusion in fractal media is anomalous with <x>>
proportional to 7%, where 4, is the random walk dimension.

Mazo (1998) points out that when the time is sufficiently long that diffusing
particles can sample the entire velocity distribution (e.g., the entire cross-section
perpendicular to flow in a capillary tube), the velocity distribution of each particle
is the same as that of the distribution of velocities in the flow. In an unbounded flow
regime, an infinite time would be required and anomalous dispersion results.

On the basis of a number of assumptions, Mazo (1998) derives an expression
for the effective dispersion coefficient in terms of the velocity profile, system
geometry, etc., that reduces to Taylor’s (1953) formulation for dispersion in a cap-
illary (i.e., where the dimensionless velocity distribution is given by Eq. [15]). Using
this approach dispersion for other velocity profiles can be calculated, although no
other examples are presented.

Percolation Models

Percolation models are typically based on a network of bonds and sites,
which can be thought of as pore necks and pore bodies, respectively. The relation-
ship between percolation models and network models is discussed by Berkowitz
and Ewing (1998). In general, percolation models are simply less well connected
than network models and the focus of percolation model studies is on transport
processes near the percolation threshold.

In two dimensions, the simplest percolation models consist of a uniform array
of squares where some fraction of the squares are randomly chosen as conductive
pores and the remainder are considered nonconductive solids. Conductive bonds
of zero volume occur where adjacent pore sites share edges. In this case, the frac-
tion of conductive pores is the porosity. This type of connection to adjacent pores
has a coordination number of four in two dimensions. Alternatively, conductive
bonds can also be specified where a diagonal pair of pore sites share single points
at their corners (coordination number 6 in two dimensions). Generalization to
three dimensions is straightforward.

Extensive empirical studies of percolation networks have revealed “univer-
sal™ critical percolation thresholds (p.). That is, for percolation to occur across a
network, some critical proportion of the squares (or blocks in three-dimensions) must
be pores. In two dimensions, g, - 0.59 for conductive bonds at all shared edges
(Sahimi, 1995). In three dimensions, s considerably smaller. Measurements have
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0=0.7

Fig. 3-21. Percolation into random uncorrelated media with varying site occupation probabilities (areal
porosities). Solids are black. Continuity of major percolation paths from upper boundary indicated
by shading.

also shown that the connected path through a percolation network (the “back-
bone”} s fractal when the porosity is near p.. Pores connected to this path are part
of the “sample spanning” or percolation cluster. Note that near p,, there are many
dead-end pores connected to the backbone.

Figure 3-21 illustrates site percolation into the top of 70 by 70 arrays of sites.
'The percolation process can be thought of as describing the migration of a conser-
vative solute applied to the top boundary. Each of the four networks shown has a
different porosity. Below the percolation threshold at ¢ = 0.5 (Fig. 3-21A), no con-
nected pathways extend appreciably into the array. Close to the percolation thresh-
old (¢ =p.=0.59, Fig. 3-21B) an open pathway exists between the upper and lower
boundaries of the network. Pores connected to the path are known as the percola-
tion cluster. At higher porosities (Fig. 3-21C,D), most of the array is included in
the percolation cluster.
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Table 3—1. Universal constants for percolation networks (Sahimi, 1993).

E Ba T PBe dy di
2 5/36 4/3 0.48 01/48 1.64
3 0.41 0.88 1.05 2.52 1.8

+ Sample spanning cluster.
1 Backbone.

The correlation length &, is defined as the average distance between two sites
that belong to the same cluster. According to Sahimi (1995), for length scales L >>
&, the percolation system is macroscopically homogeneous and can be modeled with
the CDE. For length scales [, << L << §;, where , is the length of a bond, the per-
colation system is macroscopically heterogeneous and fractal.

In addition to the percolation threshold, there are a number of additional uni-
versal properties of percolation networks near p. These include (Sahimi, 1993):

1. the correlation length, &, e< (¢ — p) "

2. the accessible fraction of open pores (i.e., open pores connected to the sam-
ple spanning cluster), X* o< (¢ — p)PA oc & Pa%

3. the fraction of open pores in the backbone, XB o (¢ — p)PB o ép‘ﬁB“

4. fractal dimension of sample spanning cluster, d = E — Bo/T

5. fractal dimension of backbone, d = E — Bg/T

where E is the topological (conventional)} dimension of the network, and the val-
ues of the universal constants for two- and three-dimensional systems are summa-
rized in Table 3-1. These properties are independent of the details of the percola-
tion network. For example, the fractal dimension of the sample spanning cluster is
the same on square, triangular, honeycomb, Voronoi, and other two—dimensional
lattices (Berkowitz & Ewing, 1998).

It is possible to extend standard percolation networks to the case where the
porous medium is a prefractal. Such models may allow more realistic simulation
of dispersion in heterogeneous porous media. Figure 3-22 illustrates the percola-
tion network approach applied to randomized Sierpinski carpets with the same scal-
ing factor (b; = 10) and iteration level (i = 2), but slightly different fractal dimen-
sions (d,, = 1.778 and 1.748 for Fig. 3-22A B, respectively). This results in different
total porosities (¢ = 0.64 and 0.6864 for Fig. 3-22A,B, respectively). Percolation
across the carpet occurs when the porosity exceeds the percolation threshold for
these structures. Percolation generally occurs through large pores interconnected
by small pores. Expressed in terms of d,,,, percolation thresholds for prefractal porous
media increase with increasing by and i (Sukop et al., 2001).

Berkowitz and Ewing (1998) discuss continuum percolation, which differs
Irom percolation on lattice networks. The important differences are:

1. the number of connecting bonds per site is variable
2. bond lengths vary
3. bond directions vary

Figure 3-23 illustrates a continuum percolation network composed of randomly ori-
cnted fractures, Such networks might betier represent structured soils than standard
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lattices. In this type of network, the site occupation probability (or porosity) ¢ used
previously loses meaning and a new parameter must be defined. Berkowitz and
Ewing (1998) demonstrate that the number of bonds per site (or number of inter-
secting segments per segment), denoted by B, and the critical number of bonds per
site (B,.) are appropriate substitutes for the ¢ and p. respectively of lattice networks.

Berkowitz and Ewing (1998) also describe distinctions between three types
of percolation: ordinary, invasion, and invasion with trapping. In ordinary perco-
lation, sites contain tracer simply on the basis of their connection with the source.
Figures 3-21 and 3-22 are examples of ordinary percolation. In invasion percola-
tion, sites fill with tracer in the order determined by the size of pore necks. Inva-
sion percolation and invasion percolation with trapping apply primarily to multi-
phase conditions (e.g., infiltration of water into soil containing air, or water/oil sys-
tems) and are not considered further here.

Luxmoore and Ferrand (1993) pointed out that pores that belong to the sam-
ple spanning cluster but not the backbone can be thought of as containing stagnant
“backwater” zones. Thus, empirical determination of the proportions of backbone
and “backwater” porosity in random and nonrandom pore percolation networks
could be quite useful. They anticipated that percolation modeling would play an
important role in understanding the effects of transient pore scale processes on solute
transport.

On the basis of random walk arguments, Koplik et al. (1988) show the rela-
tions K* cc P, K* o< P, In P,, and K* o< P? for: (i) a bundle of uniform stream tubes
that meet at perfect mixing chambers separated by a characteristic length [, (ii)
nonuniform bond transit times, and (iii) the presence of dead-end pores, respectively.
The relationship K* «< P2 is also obtained for percolation networks near the perco-
lation threshold when the characteristic length is the percolation correlation length
and the molecular diffusion coefficient is adjusted for the presence of the percola-

tion network.

¢=0.6864
Fig. 3-22. Percolation into randomized Sicrpinski carpets with: (A) porosity = 0.64, and (B) porosily

=0.6864. Solids are black. Continuity of major percolition paths fronn upper boundary indicated by
shading,
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Koplik et al. (1988) extended the concept of a random walk in a disordered
porous medium to account for local fluid velocities by using a CDE with either a
diffusion coefficient or a Taylor dispersion coefficient to simulate transport inside
each bond of a bond percolation network. This incorporates the convectional bias
in the network tubes while retaining unbiased, purely diffusional behavior in the
dead-end pores. Using a probability propagation algorithm, they were able to solve
for the first-passage probability. According to Koplik et al. (1988), this type of prob-
ability propagation is superior to computations that follow the paths of individual
particles because low velocity paths, which dominate the higher order moments,
tend to be insufficiently sampled in finite simulations.

Working with a small hypothetical network that includes a single dead-end
pore, these authors present an argument showing that, at high Peclet number, the
mean transit time is the total pore volume divided by the flux. This is equivalent to
computing the average velocity as the areal flux q divided by the water content (or
porosity for saturated materials) (Eq. [6b]). The implication is that all of the pore
water contributes to the average transit time, irrespective of its veloctty. This is due
to the cancellation of the effects of the probability of entering a particular portion
of the medium and the travel time through that portion; the entrance probability is

Fip. 3 23, Continmnn percoluhon network comprised of randomly oriented fractures (Berkowitz &
Fwing, THUR),
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proportional to velocity while the travel time is inversely proportional to velocity.
For this system, K* = f, P} where f, is the relative volume of dead-end space and
the characteristic length is the length of the dead-end pore. Extension of this model
to include multiple dead end pores of differing volumes shows that the largest dead-
end pores have the most significant effect on the higher order moments.

Koplik et al. (1988) considered flow rates in percolation networks from zero
(pure diffusion) to extremely high (the convective limit where the average transit
time varies linearly with 1/v). The results obtained for many network realizations
were averaged. In the case of 2 x 2 and 3 x 3 network lattices, all possible config-
urations could be evaluated and hence, the exact averaged transit time moments
could be determined. These authors found that anomalous diffusion occurs on net-
works at the percolation threshold at zero flow. Hence, the CDE does not apply in
this case. Koplik et al. (1988) demonstrate that the moments of the transit time dis-
tribution for transport near the percolation threshold scale universally.

Yanuka (1992) considered convection-dominated flows on two-dimensional
percolation networks. A flow realization was obtained by randomly assigning con-
ductivities to each bond in the network, imposing a pressure gradient across the net-
work, and solving for the flow throughout the network. Two cases were considered;
in the first, all bonds between sites were considered open while in the second, the
probability of an open bond was near the percolation threshold. Random walks
through the networks were weighted by the flow in each bond. In the first case, K
is constant and in the second, K o <x>'2 as observed previously.

Berkowitz and Braester (1991) presented sirnilar results for fracture networks.
Beginning with a regular network of orthogonal, equal length fractures whose
apertures followed a lognormal distribution, they created a network near the per-
colation threshold by removing the fractures having the smallest apertures. A pres-
sure drop was imposed across the network by fluid injection at constant pressure
in the center of the domain, and maintaining a constant pressure at the perimeter.
Flow in each fracture was calculated with the Hagen-Poiseuille law and flow in the
network as a whole was computed by requiring a volume balance at each node. Par-
ticles were then tracked along random walks directed by the relative flow in two
or more fractures in which flow is away from a node or fracture intersection. Close
to the percolation threshold, this procedure gave <x*> o '3, which corresponds
closely to the theoretical relationship for length scales shorter than the REV scale
and no transverse molecular diffusion. They point out that, because <x*>> increases
faster than linearly with time, dispersion in their network cannot be simulated as a
Fickian diffusion process. Sahimi (1993) distinguishes between fractal transport in
which <x?> increases slower than linearly with time and superdiffusive transport
where <x?> increases faster than linearly with time. We suspect that there may be
a close relationship between the fractional CDE (Benson, 1998) and the superdif-
fusive case.

Numerical Models and Particle Tracking
Solution of the Navier-Stokes equations of fluid flow is possible using nu-

merical methods. In porous media, considerable simplification is often possible be-
cause velocities are generally low and Now is confined 1o the sl spaces between
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pore walls. Early examples of the application of numerical solutions of flow in
porous media were limited to solutions of flow in highly idealized pores (Anan-
thakrishnan et al., 1965; Nunge & Gill, 1970; Stark, 1972; Azzam & Dullien, 1977).
Solutions for idealized pores can be linked together to simulate spatially periodic
media. Because of the explosion in computing power and improvements in nu-
merical methods, numerical solutions of the Navier-Stokes equations subject to more
complex boundaries that were once considered intractable can now be computed
(e.g., Koplik, et al., 1993).

Cao and Kitanidis (1998a,b) used finite element methods to simulate flow in
sinusoidal and indented pores. They reduce the Navier-Stokes equations to the steady
Stokes form by considering that the flow is slow and close to no-slip boundaries
and by assuming that inertial terms are negligible (i.e., low Reynold’s Number). In
addition, it is assumed that the reaction to an external impetus is rapid. Hence, time
derivatives can be neglected. The simplified equations are:

vy . dvy ~0
dx  dy [44]
dy _ d%v, 9%,
ST (axz ’ aﬁ) [45)
Lo (P o
ay ox>  dy? [46]

in which v, and v, are the velocities in the x and y directions respectively. The first
equation 1s the incompressibility condition, and the second and third are momen-
tum conservation equations. These equations are linear so that if (vy, vy, ¥) is a so-
lution, then (avy, avy, ay + b) is also a solution. This means that they have the same
behavior as the macroscopic Darcy’s equation; an increased head gradient results
in a proportional increase in flow velocity. Cao and Kitanidis (1998a,b) use a hi-
erarchical multigrid solver to compute the solutions to Eq. [44] to [46]. Three two-
dimensional cases were considered: a “sharp” single sinusoidal pore, a “flat” dou-
ble sinusoidal pore, and a double indented pore. In the “sharp” sinusoidal pore
(length/average width = 1.25 — 1.5), there is a backwater zone that is connected to
the main flow only by diffusion. In the flatter pores (length/average width = 2.5),
no backwater zones are apparent. Backwater zones with much stronger circulation
in them were predicted for the indented pore.

With complete solutions of the velocity distributions in individual pores, solute
transport in a series of linked pores could be computed explicitly. This was done
for the sharp sinusoidal pore (length/average width = 1.5), in Cao and Kitanidis
(1998a). Cao and Kitanidis (1998a) point out that, when the Peclet number is
large, strong concentration gradients between main flow zones and backwater
rones can develop and be sustained at the front and back of a migrating solute pulse.
Lising ahomogenizition technigue, they were able to estimate the macroscopic dis-
persion coetficient for o spatinlly periodic array of pores from the solution to a steady
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Table 3-2, Prefactor ¢ and exponent o in K* = ¢cP,* for different ¢ and packings (Edwards et al., 1991).

Square array Hexagonal array
(0] c o c o
0.804 0.109 1.734 0.0594 1.820
0.599 0.109 1.789 0.0650 1.765
0.400 0.174 1.760 0.0319 1.659
Avg. 0.130 1.761 0.0520 1.748

convection dispersion equation for a single pore. The results of this approach com-
pared favorably with direct numerical solutions of transport in the pores.

FEidsath et al. (1983) used finite element methods to numerically investigate
dispersion in two dimensional, low Reynolds number flow through spatially peri-
odic arrays of cylinders with a porosity of 0.37. They found that o = 1.7 in K* o<
PZ. Edwards et al. (1991) also used finite element methods to compute the longi-
tudinal and transverse dispersion coefficients for a two-dimensional, spatially pe-
riodic array of cylinders. Their results differed from the results of Eidsath et al.
(1983), possibly due to differences in the details of the numerical methods.

Edwards et al. (1991) found that the longitudinal dispersivity increased at a
rate less than proportional to P2, although P? dependence was reached asymptoti-
cally for large Peclet numbers. Packing of the cylinders had the strongest impact
on solute spreading, with arrangements that lead to more curvature in the stream-
lines having lower longitudinal dispersivities. Reducing the total porosity in a
square array of cylinders caused an increase in dispersivity that was attributed to
increased velocity gradients between the cylinders as porosity declined. The pack-
ings (staggered and hexagonal) that have more tortuous flow paths showed reduced
dispersivity on reducing the porosity. Edwards et al. (1991) also found that K* could
be fitted to a power-law function of the Peclet number. The exponents and prefac-
tors for different packings and porosities estimated by least squares regression are
listed in Table 3-2. The effect of the Reynolds number was also considered; lon-
gitudinal dispersivity increased with increasing Reynolds number.

Salles et al. (1993) determined the dispersion coefficient as a function of Peclet
number for spatially periodic assemblages of deterministic, fractal, random, and re-
constructed porous media unit cells. Dispersion was computed by numerically
solving a vectorial steady-state convection diffusion equation. For the spatially pe-
riodic media considered, the long-time behavior was shown to be Gaussian (i.e.,
to follow the CDE). However, they suggest that the pre-Gaussian transient may per-
sist for a very long time, and that experimental samples used to estimate the dis-
persion are generally too small.

Giona et al. (1995) studied diffusion in the presence of a constant convective
field in percolation clusters with stochastic differential equations and a coupled exit-
time equation. On the basis of numerical studies on percolation clusters near the
percolation threshold, they found that the volume-averaged exit time as a function
of P, did not follow the normal relationship (in which it is proportional to 1/P,) but
instead increased monotonically with P,,. Their approach neceds generalization to
more realistic convective fields. They also present exit-time analyses for transport
on diffusion limited aggregates and in deterministic fractals,
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Numerical models have also been applied to simulate macrodispersion in spa-
tially variable &, fields (e.g., Thompson & Gelhar, 1990; Moissis & Wheeler, 1990;
Wheatcraft et al., 1991). This “Darcian” approach requires averaging of flow over
some Representative Elementary Volume (REV).

Moissis and Wheeler (1990) used finite element methods to compute unsta-
ble, miscible displacement in &, fields where In £, followed an isotropic normal
distribution with a mean In kg, = 0, variance 62, and a correlation length &. Insta-
bilities in the flow leading to fingering were due to viscosity differences between
the displaced and displacing fluids. The distribution of permeabilities near the in-
flow end of the simulation domain determined the location, initial number, and
growth rates of the fingers. Highly correlated permeabilities caused fewer fingers
to form initially, and their numbers were further reduced by mergers as displace-
ment progressed.

Thompson and Gelhar (1990) investigated transport in similar three-dimen-
sional spatially correlated In k, fields. The flow problem was solved using an it-
erative seven-point finite difference scheme. The solute transport was evaluated
using random walk particle tracking methods, with a large number of particles
moved in discrete time steps by convective and diffusive forces. The results indi-
cated that the longitudinal dispersivities grew at a rate proportional to the standard
deviation of the In k. field to the 1.3-power.

Wheatcraft et al. (1991) considered flow and solute transport in a medium
composed of high and low kg, distributed according to a Sierpinski carpet fractal,
reminiscent of low permeability pebbles distributed in a high permeability matrix.
A multigrid solver was used to compute the flow field (Fig. 3—4B) and a particle-
tracking algorithm was used to determine the tracer motion. No diffusion was con-
sidered. They found that dispersion increased with the scale of the simulation
faster than could be predicted with other models.

Cellular Automata

Celiular automata are essentially algorithmic entities capable of interacting
with their neighbors. The interactions give rise to complex behavior and allow en-
sembles of automata to *“compute” solutions to boundary value problems that may
be intractable for traditional analytical and numerical solutions of differential equa-
tions. Our particular interest is in the solution of fluid flow (Navier-Stokes equa-
tions) and solute transport in complex porous media. Much of the literature de-
scribing cellular automata applications to these problems has appeared in physics
journals and workshop proceedings (e.g., Frisch et al., 1986; Baudet et al., 1989;
Verheggen, 1992; Boghosian, 1993; Gutfraind et al., 1995). Rothman and Zalesky
(1997) recently published a book on the topic.

Simulation of fluids using cellular automata is frequently referred to as “Lat-
tice Gas” simulation because the automata exist on a lattice and carry out their com-
putation by accounting for momentum exchange in collisions between *‘gas” mol-
ccules. Figure 3-24 illustrates the collision rules for a two-dimensional triangular
lattice (Boghosian, 1993). Larly simulations of fluid flow in a two-dimensional
porous medium were carried out by Rothman (1988). Figure 3-25 shows fluid ve-
locity vectors in i rundom porous medinm. Complex patterns of the flow velocity



128 PERFECT & SUKOP

field in the two-dimensional porous medium including Poiseuille-like parabolic ve-
locity distributions across flow channels and flow bifurcations and convergences
are illustrated. A small eddy is observed in a dead-end pore near the lower right-
hand side of the domain.

Galilean invariance (Rothman & Zalesky, 1997} is a fundamental tenet of
Newtonian mechanics. It is invariance under the transformation x’ = x — wt, where
w is the constant velocity of a moving frame of reference, and embodies the con-
cept that only the relative velocities and positions of two bodies determine their in-
teraction. Galilean invariance is lost in lattice gas simulations because every par-
ticle has only one possible speed. This loss is an artifact that can be eliminated for
incompressible fluids by re-scaling the velocity. According to Boghosian (1993),
more sophisticated lattice gas models overcome this problem. Appropriate appli-
cation of lattice gas models also requires certain restrictions on the mean free path
of a particle (Rothman, 1988).

Baudet et al. (1989) used lattice gas automata to simulate flow and solute
transport between two flat, parallel plates. They demonstrated good agreement be-
tween the lattice gas simulations and an analytical solution to the CDE based on
the work of Aris (1959a) and Wooding (1960).

Gutfraind et al. (1995) extended the work of Baudet et al. (1989) with lattice
gas simulations of solute transport in a channel bounded by symmetrical, self-affine
(prefractal) surfaces. They found that, for Peclet numbers in the range of 20 to 50,
the CDE described solute concentration profiles adequately. Increasing roughness

-
o

X

Fig. 3 24, Two-dimensional lattice pas collision rules (Boghosinn, [0 1)
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of the boundarie increased disperston. For the range of Peclet numbers investigated,
they found that the effective dispersion coefficient varied as (8,,/0y) where 8, is
an average aperture size and Oy is the hydraulic diameter (see Fig. 3-9). The aper-
ture size controls the transverse diffusion length and the hydraulic radius controls
the flow velocity. Overall, they found that the effect of small surface irregularities
on flow and solute transport was negligible, possibly due to incorrect scaling of the
different profiles. The largest irregularities had the most important influence. This
resultis in accordance with analytical solutions for dispersion in indented and pre-
fractal capillaries presented above.

Stockman (1997) considered dispersion in fractures using a lattice gas sim-
ulation incorporating sorption kinetics and buoyancy factors. He advocated the use
of solute slugs over step changes in concentration because moment calculations are
simplified and noise in the computation of second moments is reduced.

Perea-Reeves and Stockman (1997) applied a lattice-gas cellular automaton
model to study solute dispersion, including the effect of fluid buoyancy arising from
solution density differences, in a pocketed channel. They found good agreement
with the indented capillary model discussed in the “Variable Shape, Discrete Pore
Models” section. For Peclet numbers smaller than 3 however, they found that K was
actually smaller than the molecular diffusion coefficient. They attributed this to the
restriction to diffusion in the direction of flow imposed by the pocket walls. They
also observed that density differences between the existing and introduced fluids
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increased dispersion for a step increase in inlet concentration, and decreased dis-
persion when a pulse of denser fluid was injected into the system.

Stockman et al. (1997) provide details on the practical problems and limita-
tions of lattice gas and lattice Boltzmann methods in flow and transport simulation.
In particular, they focus on errors associated with boundary conditions, the accu-
racy required for useful comparison with experimental data, programming, and prob-
lem size and run-time issues. For lattice gas methods, they find that averaging over
a large number of time steps 1s sometimes needed to resolve the flow velocity field.
This limits the applicability of lattice gas methods to flow simulation under steady
state or slowly varying conditions. In contrast, dispersive processes alone can be
adequately simulated with lattice gasses by averaging a much smaller number of
time steps. Lattice Boltzmann methods do not require averaging.

The bounce-back collision typically employed at fluid-solid boundaries,
where fluid particles are turned back in the direction they came from following col-
lision with a solid wall, causes the effective wall position to extend one half lattice
unit into the fluid from the solid surface (Stockman et al., 1997). This is not a se-
rious problem for velocity computations in slow flows, but has the potential to be
a significant problem for tracer/dispersion simulations. Increasing the number of
lattice points inside a flow channel can reduce this error, but is computationally very
expensive.

There are also limits on the range of Peclet numbers that are achievable using
lattice gas and Lattice Boltzmann methods. For lattice gasses, the achievable range
depends primarily on the practical velocity range (0.001-0.1 lattice units per time
step) and the characteristic length (usually the channel width). This is because the
molecular diffusion coefficient is fixed by the lattice size and time step. Stockman
et al. (1997) have found that varying the fluid velocity, the channel width, the vis-
cosity, and the molecular diffusion coefficient independently and maintaining nu-
merical stability is not always possible for Lattice Boltzmann methods.

All of the lattice gas applications discussed above are in two dimensions.
Three-dimensional lattice gas simulations of fluids require a four-dimensional lat-
tice (face-centered hypercubic or FCHC lattice) (Rothman & Zaleski, 1997).

Physical Micro-Models

Researchers have used physical models of porous media to study flow prob-
lems for many years. For example, the Hele-Shaw cell appeared in the late 1800s
(Sahimi, 1993). The first reported use of such models for two-phase systems is at-
tributed to Chatenever and Calhoun (1952), who used Lucite and glass bead packs
to view immiscible displacement of brine and crude oil (Buckley, 1991). Subse-
quently, etched and photo-etched glass were used to construct physical models. The
use of molded resins for model construction was introduced in the 1970s (Buck-
ley, 1991).

Generally, these physical “micromodels” are very thin (e.g., 0.2 mm) and are
intended to approximate two-dimensional conditions. Corapcioglu et al. (1997) com-
bined video recording and image analysis technology to quantify the results of mi-
cromodel solute transport simulations. Transport in the micromaode! could be sim-
ulated accurately as a porous medium or as anetwork ol discrete ractures. The frac-
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ture model neglected the pores formed at the intersection of fractures however, and
gave excessive dispersion.

Charlaix et al. (1987) used glass beads and various degrees of sintering to re-
duce the porosity and modify the pore space. They found that in unsintered glass
beads (37% porosity), the dispersion of CaCl, solutions could be described by a
Gaussian model, while “anomalous” dispersion with long-tailed BTC was ob-
served when even slight modifications (reduction to 34% porosity) were induced
by sintering. The BTC data were evaluated with a capacitance model and a linear
relationship between the characteristic exchange time between the mobile and im-
mobile zones was found to vary inversely with the flow velocity.

In a related study, Hulin et al. (1988) studied dispersion of CaCl, solutions
in mixtures of glass beads of two different sizes that were subjected to sintering,
At the percentage of small beads that yielded close to the smallest porosity, nearly
Gaussian behavior was observed and the dispersion coefficient was close to that in
a monosized beads of similar porosity. Together with the results of Charlaix et al.
(1987), this suggests that small-scale details of the pore structure were not as im-
portant in determining the dispersion characteristics as the reduction in connectiv-
ity induced by sintering.

Charlaix et al. (1988) also conducted a study of NaCl and dye transport in
etched transparent lattices. A fully connected square lattice with a lognormal dis-
tribution of channel widths and a partially connected hexagonal lattice (a percola-
tion network) were considered. They concluded that the disorder and heterogene-
ity of the medium determined the characteristic dispersion length. From experi-
mental data on the percolation network, they showed that this dispersion length was
close to the percolation correlation length &,

DISCUSSION AND CONCLUSIONS

There are many different models for predicting solute dispersion from pore
geometrical characteristics. Despite the diversity of approaches, some general
trends have emerged. The following discussion applies mainly to the range 5 < P,
< 10°, and assumes that mixing due to convection dominates over diffusive
processes.

Relating K* to P, implies that a characteristic length, /, can be defined and
measured for the system under investigation. For individual pores, ¢is usually taken
to be the radius in capillary tube models; we recommend use of an equivalent cylin-
drical radius based on the star length concept (Serra, 1982) for irregularly shaped
pores. For multipore systems, with a range of pore sizes, one possibility is that /be
defined as the equivalent cylindrical radius of the largest pores that are present. The
largest pore size might be preferable to the mean pore size, which has been widely
uscd in the past, because it does not assume any particular pore size distribution
lunction (e.g., normal or log-normal) and can accommodate fractal porous media,
which do not have a characteristic mean length scale. Furthermore, the size of the
Largest pore present s readily obtainable from image analysis or water retention mea-
strements.
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Within individual pores the microscopic distribution of flow lines results in
* oc P2 (Taylor, 1953, 1954). Differences in pore space geometry are manifested
in the constant of proportionality or prefactor in this relationship, which increases
in magnitude as pore shape becomes more irregular (Aris, 1956, 1959b). In con-
trast, mechanical mixing in multipore systems, with a single (mean) pore water ve-
locity assigned to each pore, results in K* o« P, (Day & Forsythe, 1957; Torelli,
1972). The prefactor in this relationship also increases with increasing pore space
heterogeneity.

Solute dispersion at the mesoscopic scale is a combination of both intra- and
interpore water velocity differences, coupled with the small but important contri-
bution of diffusion into and out of stagnant water regions. As a result, the relationship
between K* and P, is expected to be intermediate between K* o< P2 and K* o P,.
The actual form of this relationship has not been derived definitively. Two differ-
ent relationships, K* o< P In(P,) and K* o« P % where | < &0 < 2, have been pro-
posed (Sahimi, 1993). It can be shown that these relationships are similar when o
= 1.2. Some authors contend that ot = 1.2 is a universal constant, and that both re-
lationships are acceptable. If this is true, only the prefactor will change in response
to pore characteristics and arrangement (e.g., Biggar & Nielsen, 1976). However,
particle tracking simulations suggest that o also depends upon network configu-
ration (Salles et al., 1993; Sahimi, 1993), and most recent studies favor the power
law relationship with a variable exponent. In this case, both parameters become func-
tions of the pore space geometry.

We recommend that future research in this area focus on establishing theo-
retical and/or empirical relations between the prefactor and exponent in the power
law relating K* to P, and quantitative pore characteristics, such as the mass frac-
tal dimension and Betti numbers. In particular, there is an urgent need for additional
experimental studies, in which K* is determined over a wide range of £, on undis-
turbed samples of natural porous media that are well-characterized in terms of their
pore space geometry. Such data are required for model testing.

A final consideration is how parameters from geometrical models might be
incorporated into models to better predict solute dispersion at the macroscopic scale.
One approach involves the development of effective continuum models for struc-
tured soils and fractured rocks (de Josselin de Jong & Way, 1972; Long et al., 1982;
Berkowitz et al., 1988). Another approach is the inclusion of dispersion due to poros-
ity variations in Monte Carlo simulations of solute transport in random conductiv-
ity fields (Fiori, 1998; Hassan et al., 1998). It is also possible to embed geometri-
cal models within multiregion velocity based models (Gwo et al., 1998).

The last approach to be considered is upscaling (also known as block aver-
aging, coarse graining, and renormalization), whereby effective macroscale prop-
erties are determined by aggregating distributions of micro- and meso-scale prop-
erties (see McBratney, 1998, for a general introduction to this topic). Mishra and
Parker (1990) computed an effective macroscopic dispersivity from variable local
dispersivities by simple spatial averaging. However, local values of K* tend to be
log-normally distributed (Biggar & Nielsen, 1976). Thus, use of the geometric mean
is probably more appropriate than the arithmetic mean in this context. Spatial av-
eraging assumes that the property of interest is not autocorrelated. In the likely event
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that core-scale estimates of the dispersivity are shown to be spatially autocorrelated,
more sophisticated upscaling procedures will be needed.

Rubin and GémeZx-Herndndez (1990) and Indelman and Dagan, (1993) have
developed analytical exptessions for gpscaling both the mean and the variance of
spatially autocorrelated In(k; . Since macroscale dispersion can be related to
the variance of In(k,,), it may be possible to apply their expressions for predicting
variance as a function of block size to the problem of upscaling estimates of K* de-
termined in the laboratory to the field scale. Unfortunately, numerical simulations
based upon this approach are likely to be computationally expensive.

Real space renormalization is an alternative upscaling technique that has been
found to be computationally efficient and accurate when used to predict single phase
flow (King et al., 1993; Sahami, 1995). In this approach the effective properties of
small regions are computed and mapped onto a coarse grid. The grid is then fur-
ther coarsened and the process repeated until a single effective property is obtained.
Real space renormalization has recently been applied to miscible and immiscible
flows (Morris & Ball, 1990; King et al., 1993). Further research into the feasibil-
ity of predicting dispersion at the reservoir scale by renormalizing core-scale dis-
persivity measurements may prove fruitful.

APPENDIX A

List of Symbols

a, b = major and minor semi-axes, respectively
a = sine wave amplitude
ay,by and
a.,b, = Beta distribution parameters
A = cross-sectional area
A; = fraction of the bundle occupied by the jth tube-size increment
b, = exponent in the Campbell water retention function
b; = fractal scaling factor
B, = zeroth Betti number or number of isolated pores within the solid matrix
B, = first Betti number (also the genus) or number of independent pathways between
two points in the pore space
B, = number of bonds per site (or number of intersecting segments per segment)
B, = critical number of bonds
c= prefactor in relationship between P, and K*
C = concentration of solute in pore water
Cy = concentration at time f = ()
C,n = concentration of solute in immobile soil water
C; = solute concentration in the jth tube-size increment
C,, = concentration of solute in mobile soil water
C = circularity or compactness
<C> = mean solute concentration
d = fractal dimension of backbone or sample spanning cluster
dy, = boundary fractal dimension
¢y = mass fractal dimension
d, = surface fractal dimension
d, = fractal dimenston ol a diffusing particle’s trajectory
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D = molecular diffusion coefficient
D, = effective diffusion coefficient
E = topological or conventional Euclidian dimension
E, = Euler-Poincaré number
f = tortuosity
1., = relative volume of dead-end pore space
f = function of distance traveled by solute
g = constant for gravitational acceleration
G* = dimensionless number that represents the ratio of gravitational forces to viscos-

ity forces
h = linear dimension of a fracture zon
i = iteration level k/
J=fla, by

k = hydraulic conductivity
k., = saturated hydraulic conductivity
K* = dimensionless diffusion-dispersion coefficient
K’ = empirical K calculated from ¢, and ¢,
[ = capillary tube length
I, = length of a bond
I, = separation distance
<[> = mean microscopic characteristic length
{ = characteristic mixing length or dispersivity
L = length
L = characteristic measurement scale
L = measured length when is equal to unity
L. = macroscopic capillary length parameter
n, = number of adsorbed molecules
n, N = number
N; = number of boxes not containing pores when € is equal to unity
P = perimeter
p = power law exponent related to the fractal dimension
p. = critical percolation threshold
P, = Peclet number
g = Darcy velocity
r = radius
r. = equivalent cylindrical radius
r, = equivalent hydraulic radius
r, = nth moment of the pore size distribution
<r>= mean pore radius
Rm* = modified Rayleigh number, dimensionless number used to determine the onset
of convection in heated fluids
S = surface area
= time
t; = first time moment of solute breakthrough curve
1, = second time moment of solute breakthrough curve
f, = time taken for one pore volume to pass through the medium
T = transmissivity (= fracture width X kg, of filling material)
v = mean pore water velocity
v(y) = streamline velocity as a function of y
V/ = empirical v calculated from ¢,
vy and vy = streamline velocity components in the x and y directions respectively
V = volume
w = constant velocity of a moving frame of reference
v = distaney
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<x>= mean distance
XA = accessible fraction of open pores (i.e., open pores connected to the sample span-
ning cluster)
= fraction of open pores in backbone
y = radial coordinate
z = sinusoidal aperture wall coordinate
<Z> = mean coordination number or average number of pore throats per pore body
= exponent of P, in relationship with K*
= volume of indentations (or immobile water) per unit volume of main channel (or
mobile water)
Ba. Bg = percolation exponents
BB, = total volume of indentations per unit volume of main channel after » iterations
of the fractal generator
¥ = shape factor in relationship between K* and P,?
I' = ratio of volume available to mioving fluid at vertex
d,, = average aperture size
Oy = hydraulic diameter
€ = normalized length
= Euler’s constant
= coefficient of variation
= dynamic viscosity
= volumetric water content
= volumetric water content at saturation
6,,, = immobile water content
0, = mobile water content
K = sine wave length
A = ratio of the outflows from network branches
A = lacunarity
u = mean value
g
&

= correlation length
= percolation correlation length
Py, = bulk density
p; = liquid density
p, = particle density
o2 = variance
o(f) = variance at time ¢
o%(t,) = variance at initial time, #,
= percolation exponent
= liquid-solid contact angle
= porosity
¢ = liquid-vapor interfacial tension
Wy = liquid potential
\, = air-entry potential
@ = molecular surface area
£ = degree of disorder in network
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Soil structure, antecedent soil moisture and input flow rate control rapid flow
along preferential pathways in well-structured soils. The amount of preferential flow
may be significant for high input rates, mainly in the intermediate to high ranges
of moisture. We use a three-dimensional lattice-gas model to simulate infiltration
in a cracked porous medium as a function of rainfall intensity. We compute flow
velocities and water contents during infiltration. The dispersion mechanisms of the
rapid front in the crack are analyzed as a function of rainfall intensity. The numer-
ical lattice-gas solutions for flow are compared with the analytical solution of the
kinematic wave approach. The process is better described by the kinematic wave
approach for high input flow intensities, but fails to adequately predict the front at-
tenuation showed by the lattice-gas solution.

INTRODUCTION

Many of the operational approaches to infiltration in structured soils are based on
a double porosity approach (Hosang, 1993; Jarvis, 1994). The porous medium is
viewed as the superposition of two interacting continua. One continuum 1s the ma-
trix or microporosity where capillary-driven flow, governed by Richards’ equation
(Richards, 1931) is dominant; the other is the macroporosity where the main force
is gravity and water flows freely. Generally, a diffusive sink-source term accounts
for the mass exchange between the two continua. Most of these models require a
priori assumptions either on the spatial arrangements of macropores or on their tem-
poral hydraulic activity. A more conceptual approach based on kinematic waves has
been proposed (Germann, 1985; Germann, 1990) for describing macropore flow.

Copyright © 2001, Soil Serence Socwety of America, 677 S, Segoe Rd., Madison, WI 53711 USA. Phvs-
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The wave equation derives from the assumption that the macropore volume flux is
a nonlinear single valued function of the volumetric water content. It has been shown
(Di Pietro & Lafolie, 1991) that this approach applies reasonably well to water con-
tent profiles for high water input rates and high degrees of saturation. Yet the mean-
ing of the parameters involved in the equation and the limits of application of this
approach are not well assessed. A kinematic wave approximation has been also de-
rived as an asymptotic limit of Richard’s transport equation based on the assump-
tion of a unit gradient of the total potential head (Sisson et al., 1980; Smith, 1983;
Raats, 1983). This approximation applies during redistribution and drainage when
the soil profile is draining freely. Both kinematic equations are derived from very
different conceptual basis and the parameters involved are defined at different space
and time scales. Whatever interpretation of these parameters, the underlying phys-
ical process unifying both approaches is the predominance of gravity driven flow
over the dispersive capillary flow. The validity of these approximations and par-
ticularly the meaningful interpretation of model parameters require accurate ex-
periments. Usually, problems arise when trying to measure flow variables and
structural properties during rapid flow. Although sophisticated experimental sys-
tems have been implemented, information obtained about the process 1s incomplete
1n mMost cases.

Lattice-gas algorithms have shown to provide useful information about the
dynamics of flow in porous media and particularly in multiple-scaled porous media
(Di Pietro, 1996; Di Pietro et al., 1994). These models reproduce fluid behavior
within the incompressible limit, because they are automata for the Navier-Stokes
equations, Lattice-gases allow the study of hydrodynamic phenomena at the pore
scale, but they also recover transport laws at a macroscopic scale (Di Pietro, 1998).

In this chapter, we use the results of numerical infiltration experiments in dual
porosity media performed with a three-dimensional lattice-gas model to characterize
preferential flow as response to rainfall intensity. From the temporal and spatial evo-
lution of the water content during infiltration and drainage, we evaluate the ade-
quacy of akinematic wave approximation to describe the flow. We also discuss the
conceptual basis of the asymptotic kinematic approach to Richards’ equation in com-
parison with the macropore kinematic equation.

THEORETICAL APPROACHES
Lattice-Gas Models

Traditional methods of simulation in hydrodynamics are based on the de-
scription of a fluid field obeying to partial differential equations. Finite difference,
finite elements, spectral methods are generally used to approximate the equations
and they are represented in the computer by floating point numbers. The imple-
mentation of the boundary conditions is the main difficulty of these methods.

Cellular automata (CA) are an alternative method to solve differential equa-
tions. They can be considered as discrete approximations to partial differential equa-
tions. Cellular automata are mathematical systems consisting of many wdentical com-
ponents or cells. Each cell is a kind of virtual robot that responds to signals according
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to a set of transition rules. Despite the simplicity of their construction the whole
system is capable of complex behavior. From their analysis it is possible to develop
specific models for particular systems. The evolution of the cellular automaton in-
volves sequential processing of the information associated with the states of the cell.
The transition rules determine the macroscopic behavior of the system. The evo-
lution of the whole system is analyzed statistically. The large-scale dynamic equa-
tions describing the behavior of the system are obtained as a statistical average in
space and time of the corresponding microscopic variables under the assumption
of statistical equilibrium. The form of the large-scale equations is quite insensitive
to microscopic details (Wolfram, 1986). The microscopic transition rules can only
affect the value of the macroscopic coefficients.

Cellular automata techniques show several advantages. The whole system and
rules are expressible in Boolean algebra and then no floating point calculations are
involved. They are well adapted for massively parallel computers. Nonlinearity is
a natural component of the system, thus no special treatment is required. Models
based on cellular automata are more appropriate in highly nonlinear regimes of phys-
ical systems (Wolfram, 1984). Various field equations can be approxtmated by the
large-scale behavior of suitably chosen cellular automata. In particular, it has been
shown (Frisch et al., 1986, 1987) that the two-dimensional and three-dimensional
Navier-Stokes equations can be simulated with lattice-gas models. Frisch et al.
(1986) developed the first cellular automaton (called lattice-gas) that behaves at a
large-scale like a viscous fluid in the incompressible limit. This behavior hails from
the physical principle that states that macroscopic laws do not depend on the de-
tailed microscopic interactions but they depend on microscopic conservation laws
and on the symmetry of the underlying space. Since 1986, numerous lattice-gases
have been developed for two-dimensional and three-dimensional hydrodynamic ap-
plications. Most of these applications are mentioned and discussed by Boon et al.
(1993).

Structure and General Properties of Lattice Gases

On a microscopic level, physical fluids consist of discrete particles. The sys-
lem can be described by a deterministic system of equations, called the micro dy-
namic equations. These equations are obtained by describing the evolution of each
individual molecule in space and time. For practical reasons, a probabilistic de-
scription is normally used. In this latter approach an ensemble of microscopic par-
licle configurations are described by a probability distribution function. At the
microscopic scale, the fluid may be seen as a continuum and can be described by
the partial differential equations of hydrodynamics. These macro-dynamic equa-
ions are derived from the microscopic conservation relations of the microscopic
mean quantities, namely mass and momentum, for large space scale and for long
line scale. By analogy with statistical mechanics, the microscopic and macroscopic
Jdynamics of lattice-gases can be described in the same way. Lattice-gases may be
viewed as a completely discrete model of a fluid at the molecular level of descrip-
ton. Bach cell on the lattice plays the role of a volume element that is large enough
to contain a number of particles, but is small compared to all macroscopic lengths
wales in the system. When the Lattice has suitable symmeetries to ensure the isotropy
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of macroscopic tensor quantities, the large-scale equations differ only by irrelevant
terms from the Navier-Stokes equations in the low-speed incompressible limit. The
collision rules will determine the magnitude of the macroscopic transport coeffi-
cients such as viscosity, but they do not change the form of the macroscopic equa-
tions. We briefly describe below the structure and the main equations of lattices-
gases. For a detailed derivation of the master equations see, for instance, Frisch et
al. (1987).

Deterministic Micro-dynamic Equations

In alattice-gas the individual cells are the structural units of a D-dimensional
regular lattice. Each cell is defined by its position vector 7, on the discrete space,
a finite number of states s(r,) and a set of transition rules E that map the state of
the cell at time ¢ into the state at time ¢ + 1. A finite number of particles reside in
each cell. A discrete velocity ¢; withi =1, ..., k is associated to each particle. This
velocity is chosen such that the particle can propagate to a neighboring cell in unit
time. Each velocity direction is subject to an exclusion principle of utmost single
occupancy. The combinations of occupancies define the set of possible states as-
sociated with each cell. The configuration of each cell is defined by the Boolean
field

S(roty ={s; (rut), 1=1...k} (1]

where the s;’s are Boolean variables that take the value 1 or 0, respectively if a par-
ticle with velocity ¢y is present or not.

Alternating propagation and collision steps update the lattice. The propaga-
tion operator S performs spatial shifting of particles by ¢; and it is defined by

S:5;(r) =25 (re+c, t+ 1) 2]

Collision is a local exchange of the linear momentum of the particles. The mo-
mentum exchange rules are chosen such that they conserve the total mass and lin-
ear momentum, like real elastic collisions. The collision operator may be written
as

C:s5(rt+1) =5 (rs, )+ A (5) [3]

where A, (s;) is the collision function. Its form depends on the particular imposed
rules.

The evolution operator is the composition of the propagation and collision
operators E = C » §. The entire updating of the system can be described by the fol-
lowing equation:

sCet+ 1) = E[s(*,0)], [4]

where the symbol * stands for all the space variables. Equation [4] is called the de-
terministic micro dynamic evolution equation of the lattice-gas. The mass and mo-
mentum conservation equations for the Boolean field are, respectively, written as



TESTING KINEMATIC WAVE SOLUTIONS 151

Z 8i (r*,t) = z A% (r* + Ci,t+1), [5]

and

2 ¢i5; (rol) = Z 038 (1o + ¢1+1),
I i

[6]

Probabilistic Description

Let P[s(*,¢)] be the probability for the entire lattice gas to have the configu-
ration s(*) at time ¢. Mean quantities, such as the mean population and the mean
momentum, are given by ensemble averaging over the probability distribution.

Using the Boltzmann molecular chaos assumption, which states that the con-
figuration of cells are uncorrelated in space and time, P[s(*,)] may be completely
factorized over all cells. It is expressed as the product of the probabilities of the con-
figurations of each cell

Pls(x,n] = ITP[s(r.,0]

Tx [7]

The molecular chaos assumption implies that the system is at statistical equilibrium.
As in traditional kinetic theory this probability distribution function represents the

maximum entropy state of the system.
When the lattice is updated, conservatton of probability implies that

Pls(st + 1)] = P{[E[s(*,1)]} 8]

for all the possible configurations. Equation [8] is the probabilistic evolution equa-
tion of the lattice gas.

It has been shown (see Frisch et al., 1987) that Eq. [8] admits equilibrium so-
lutions that lead to a Fermi-Dirac distribution for the mean population of particles
N;. This distribution is expressed by

1
1 + exp(h +q.cp) [9]

where 4 is an arbitrary real number and ¢ is an arbitrary one-dimensional vector.

Averaging of the micro-dynamic conservation relations 5 and 6 leads to the
following conservation relations for the mean population and for the mean mo-
mentum

;Ni (Fed) =Z N; (re + cipt+1), [10]

ZCiM (]’*,I) = Z,CiNi (r* + Ci,t+1), [11]

The total mean mass density p(r..7) and the total mean momentum J(r,.t) per cell
are, respectively, defined by

plr.n )1: N, 112
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J(rot) = L iN; = p(rayulrat) [13]

where u is the mean velocity at position 7, and time ¢.
Equations [12] and [13] allows us to write the conservation Relations [10]
and [11] in terms of the mean variables p and u.

The Large-scale Behavior of Lattice-gases

To derive the macroscopic transport equations, the conservation Relation [10]
and [11] must be converted to differential equations. The main assumption needed
is that the mean density and the mean velocity vary slowly in space and in time.
Starting from Eq. [10] and [11], the macro dynamic equations describing the large-
scale behavior of the lattice gas are obtained by multiple-scale perturbation ex-
pansion technique (Frisch et al., 1987). We shall not derive this formalism here. In
the continuous limit, Eq. [10] leads to the macro dynamical conservation of mass
or Euler equation

(@p/at) + V.(pu) =0 [14]

The second-order expansion of Eq. [11] leads to a macroscopic momentum con-
servation equation that differs from Navier-Stokes equations only in irrelevant terms
of higher order provided that the mean velocity u is small. Thus lattice-gases may
be used as models for fluids.

Applications of Lattice-gas to Transport in Porous Media

For a single fluid, existing two-dimensional models are all variations of the
original FHP lattice-gas (Frisch et al., 1986). The cellular space is built as a hexag-
onal lattice. At most, six moving particles may reside in a cell at a time. Several
variants have been constructed differing in the number of particles at rest and in
the collision rules.

Three-dimensional regular lattices do not have enough symmetry to ensure
macroscopic isotropy. To model three-dimensional fluids, a suitable three-dimen-
sional projection of a four-dimensional model, the face-centered-hypercube (FCHC),
is used (see, for instance, Sommers & Rem, 1992). Each node in the lattice is con-
nected via links to 24 nearest neighbors. In this case, up to 24 moving particies may
occupy the cells.

Generalizations of the lattice-gas models into two or more species have also
been developed to model the dynamics of interfaces coupled with fluid motion (i.e.,
Rothman & Keller, 1988).

Because lattice-gases are entirely encoded with bit operations, they very ef-
ficiently employ computer memory, rendering their applications to fluid transport
in porous media very attractive. These models have been successfully used to
study flow in porous media for single and multiphase fluid flow, and for steady state
and transient regimes (Balashubramanian et al., 1987; Rothman, 198K, 1989).

A lattice gas model for liquid-vapor transition has also been proposed, the
intcracting liquid-gas model (IL.Gy of Appert and Zaleski (1990, 199°3)The anthors

s s -
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added long-range attractive interactions to the evolution rules. These interactions
act like Van der Waals forces in real fluids and lead to a liquid-gas transition. Both
the collision and the long-range interaction leave the total momentum and the
mass invariant. The model has at equilibrium two coexisting phases of high and low
density, the interface showing surface tension. The viscosity of the dense and light
phases and their equilibrium densities can be estimated from numerical simulations.

It has been shown that the ILG model can adequately simulate well-estab-
lished macroscopic flow regimes, like Poiscuille’s law (Di Pietro et al., 1994). The
ILG model was also applied to study evaporation in porous media (Pot, 1994), in-
filtration in two-dimensional saturated and non-saturated porous media with macro-
pores (D1 Pietro, 1996) and water storage in roughed infiltrating and non-infiltrat-
ing surfaces (Garcia Sanchez et al., 1996).

For these latter applications the geometry of the solid medium was introduced
by selecting sites that fluid particles cannot visit. Particular collision rules are de-
fined between solid and fluid sites. During the collision step particles are bounced
back from the solid sites with a given probability returning to the site where they
were coming from. This probability controls the fluid wetting properties, as it reg-
ulates the degree of attraction of liquid particles by the solid. Forcing fluid parti-
cles to preferentially travel in a selected direction with a given probability simu-
lates external forces such as gravity. In order to simulate flow in unsaturated porous
media, the liquid and gas phases are introduced by initializing selected regions of
the pore space with either the denser or the lighter phases at their respective equi-
librium densities. Proper scaling of the lattice variables such as length, time, pres-
sure, density, viscosity and velocity may provide for the link between simulations
and real situations by using the hydrodynamic similarity principle.

In this chapter we use a three-dimensional version of the ILG model to sim-
ulate liquid infiltration in double porosity porous media. Our objective is to com-
pare this approach with the kinematic wave analytical solution. Lattice gas method-
ology provide information that we are not able to obtain with available experimental
methods.

Kinematic Wave Approximation to Transport in Porous Media

A complete mathematical description of the evolution of a physical quantity
in a macroscopic continuous system usually arises from the combination of fun-
damental conservation laws, like conservation of mass and linear momentum. For
a systematic study of systems of conservation laws see Majda (1984). A conser-
vation law states the physical balance between the local variation of the density of
a physical quantity @(r,?) within a given region Q € R? of the space and the flux
F, of this quantity across the external boundary 0Q € £ . This law may be written
Y

(dp/dt) + V.F, =0 [15]
To completely describe the system we further need a law relating F, with @, which

lcads to a difterential transport equation when combined with Eq. [ 15]. It charac-
(erizes the evolution ot @ m space and time. When Fy depends on the spatial co-
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ordinates r and on @, but it does not depend on the derivatives of @, a first-order
kinematic wave equation is obtained (Lighthill & Whitman, 1955; Lax, 1972). In
this particular case

Fo,=f(r.9) [16]
and then
V.F, = (0f199)|: Ve. [17]

By introducing Eq. [17] in Eq. [15] the following kinematic wave equation is ob-
tained:

(0Q/91) + c(p,r)Vo =0, [18]

where c(r,@) = (9f/dp)|; is the signal speed at which ¢ propagates. The propaga-
tion paths in the r —  space are called characteristics and are given by dr = c(Q,r)dt.
Along each characteristic @ is constant. When fis a linear function, the wave trav-
els with no distortion. For nonlinear relations the waves may spread out fanwise or
may sharpen allowing for shock wave formation. Numerous physical phenomena
are approximated with kinematic wave theory, like flow of nonviscous compress-
ible fluids and flood movements in rivers. Such a description physically means that
no dissipative mechanisms are considered at the chosen scale. Mathematically, dis-
persive effects usually appear as an implicit or explicit dependence of the flux on
one or more derivatives of the considered quantity. In these cases the transport equa-
tion is usually of higher order. This is the case of Richards’ equation for transport
in porous media, which is derived from the combination of the conservation law
(Eq. [15]) by replacing the physical quantities ¢ and F, with the volumetric water
content O, and with the volumetric water flux J, respectively,

(96/dr) +V.J =0, [19]

and including Darcy’s law. Darcy’s law for unsaturated conditions may be written
as

J = K(6) - D(O)V6, 120]

where K(0) and D(0) are, respectively, the hydraulic conductivity and the diffusivity.

Equation [20] shows the volumetric flux depending explicitly on a deriva-
tive of 6. The Richards’ transport equation, written in the Fokker-Planck nonlin-
ear diffusion form, is obtained by replacing Eq. [20] in Eq. [19]

(06/dt) + (3K/90) VO = V.(DVB). [21]
Equation [21] shows water transport as a diffusion-convection process. If the dif-

fusive term V.(DVO) is neglected, Eq. [21] reduces to . [ 18] with «(0,r) =
(DK/0),. This type of kinematic approximation to water transport has been used
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to describe the drainage process of a uniform profile under the assumption of unit
potential gradient (Sisson et al., 1980; Raats, 1983). Smith (1983) compared the so-
lutions of the complete Richard’s equation with those of the kinematic approxi-
mation for predicting the location of moving water fronts during infiltration and
drainage. The kinematic solution predicted rather well the location of the waterfront
as well as the general pattern of O behind the front, but a loss of much of the details
due to diffusion was observed. He used the Peclet number

Pn = K(©)/DV6 [22]

to assess the accuracy of the approximation. The larger the value of Pn, the better
was the approximation.

Equation [21] does not apply to the entire porous medium domain if contin-
uous macropores are present. If we consider a domain Q of the porous medium, a
conservation equation of the form 19 for the total water content 8 is applicable, but
Eq. [20] holds only in the microporous domain where the REV concept applies. The
hydraulic conductivity is ill defined elsewhere. Durner (1994), among others, in-
troduced bi- and multimodal shaped potential functions to extend the hydraulic con-
ductivity function for multiporosity systems. The underlying assumption is the va-
lidity of Darcy’s law in the macropore domain. Although this assumption is inac-
curate at the macroscopic scale, the use of multimodal functions ameliorates the
description of flow near saturation. It has been shown (Levy, 1988; Ene, 1990) that
the validity of Darcy’s law is recovered by increasing conveniently the volume Q
to include at least one megascopic elementary volume where the continuity hy-
pothesis may be applied. This involves upscaling from the medium scale of ob-
servation, where we can distinguish the micropore from the macropore domain, to
a larger scale. The difficulties determining megascopic elementary volumes and
measuring the megascopic transport coefficients render the large-approach im-
practical in most cases.

Beven and Germann (1981) first proposed a relation between the macropore
volumetric flux J,,,. and macropore water content 9,,,. of the following form

Jmac = be?nac (23]

where a and b are two coefficients. When considering that the medium is only
formed by a distribution of macropores carrying all the flow, the combination of
Eq. [23] with the continuity equation leads to a kinematic wave equation

(0Omac/9t) + Cac VOmac =0 [24]

where ¢pae = (0J11ac/00ma0)l;- Germann (1985) developed the solutions of Eq. [24]
for infiltration and drainage for a square input water pulse of volumetric flux den-
sity J, and duration ¢, The following boundary and initial conditions were consid-
cred

0,00 =0, <021,

0,00 =8, 01y,

B cM=0, 0<:<00 [25]

Tl
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The solution for 0,,,.(x,1), for all z < z;, where z; is the depth at which the draining
front intercepts the wetting front, is

emac(zr =0, 0<t<t, (@
Omac(z.1) = 6, Vet t2) <t (2)
(2) —t, | e
Opaclz?) =6 [ 22— 121
mac(z t) ! ( 11, ) D(Z) [26]

where 1,,(z) and fp(z) are the arrival times of the wetting and draining fronts at depth
zrespectively. Equation [26] indicate that the square pulse infiltrates as a shock wave
without being spread. After input has ceased, the water content at the surface drops
to zero and a draining front develops behind the wetting front. The draining front
travels with velocity ¢ = ac,y, Which is greater than ¢,,.. After the draining front
intercepts the wetting front, 6,,,.(z,7) results in a single-crested function of time for
depths z 2 z;, and the water content of the peak begins to decrease. For details on
the derivation of the flow equations see Germann (1985). For 7 < z; the character-
istics of the wetting and draining fronts are straight lines intersecting at (zp,#) as
shown in Fig. 4-1. The characteristics correspond to the evolution of two shock
waves, respectively, one originating from the applied water content 6; at time ¢ =
0 and the other one from the reduction to zero water content at the surface when
input ceases at time ¢ = £,.

As discussed by Germann and Di Pietro (1996) the kinematic wave model
applies in two modes. The 8-mode presented above and the J-mode that is obtained
by writing Eq. [26] in terms of J using relation 23. To test the validity of the kine-
matic approach, the J-mode allows for input-output experiments. Typically, these
experiments consist of raining on the surface of a soil and measuring the drainage

Z
--------------------- (Zp,tp)

:
i

Draining Front

( Characteristics
h i

Ts . I
Time
Fig. 4-1. Theoretical wetting and draining front characteristics for the kinematie wave model for a square

pulse of duration 7, at & = ().
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hydrograph at a given depth. The 8-mode requires rapid measurement of soil mois-
ture at a given depth. The model parameters a and b are estimated through a non-
linear curve fitting procedure (see for instance Germann et al., 1997) from the 6(z,7)
or J(z,1) curves for times 7 > ,(z). We note that we normally measure total water
content or volumetric fluxes, while the kinematic Eq. [24] applies to noncapillary
or mobile water flow. This represents a first difficulty when trying to validate the
approach as the distinction between nonmobile and mobile water content 1s usu-
ally ambiguous.

Several tests of the accuracy of the approach to predict infiltration and
drainage in media with macropores have been carried out by using either the O or
the J-modes (Mdaghri, 1997). The kinematic description is legitimate for water in-
puts of intensity and duration high enough to sustain gravity dominant flow with
respect to capillary dispersion. A first insight on the possible mechanisms controlling
dispersive and preferential flow based on the analysis of the dissipation of linear
momentum have been proposed (Germann & Di Pietro, 1999). However, not
enough experimental data exist and no accurate method has been implemented for
distinguishing the types of flow.

When comparing the kinematic limit of Eq. [21] with Eq. [24], we note simil-
itude; both derive from a conservation law and from a structural relation and both
apply when gravity driven flow is dominant. But the first one is limited to macro-
scopic continuum media where the hydraulic conductivity is well defined every-
where. The other one is more general as the structural relation between the flux and
the volumetric content is not dependent on the existence of a REV. Equation [24]
does not account for waterfront dispersion, nevertheless dispersive effects have been
experimentally observed for low input intensities (Di Pietro & Lafolie,1991).

DESCRIPTION OF NUMERICAL EXPERIMENTS

Four different three-dimensional numerical infiltration experiments were
carried out in a simulated porous medium with a central parallel crack as shown in
Fig. 4-2. The lattice size is 10 by 100 by 150 sites in the x, y and z directions, re-
spectively. Solid sites are represented in red. A probabilistic algorithm generated
at random the solid distribution of the microporous matrix. The mean microporosity
and macroporosity are 0.52, and 0.192, respectively, of the total volume of the
medium. A gravity force was simulated as described in Di Pietro et al. (1994), ori-
ented parallel to the crack in the z-downward direction. Void sites (white color in
Fig. 4-2) are initially filled with gas>All quantities are expressed in arbitrary lat-
lice units. | J

A rainfall event of constant intensity lasting 4000 time steps was simulated
at the surface of the medium by injecting liquid particles at a constant rate. Applied
input rates were 0.01, 0.55, 0.77 and 1.47 sites per time step, respectively, for sim-
ulations 1 to 4. Each simulation was run over 10 (00 time steps.

Special code modules were developed to compute the water content and the
liquid velocity fickd. We obtained the macroscopic mean vilues of micropore and
macropore water contents, respectively, 0,020 and 0,,,(2,.0) by averaging over
SO time steps, and over spatinl steps ol S sites in the z-direction and over all the mi-
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Fig. 4-2. Simulated porous medium with a central parallel crack. Solid is represented in red.

cropore or macropore sites in the x-y plane. The total macroscopic water content
0(z;,t;) results from

G(Zi,t) = emic(zist) + emac(zi’t) [27]

Even if we computed the microscopic velocity field in the x, y and z directions, we
only considered the macroscopic averages in the y and z directions, as no hetero-
geneity is considered in the x-direction. The macroscopic fluxes were calculated
by averaging the microscopic velocities over 50 time steps, over five sites in the z-
direction, and over half-cross sections of the micropore matrix and of the crack, mul-
tiplied by the respective mean water contents.

RESULTS AND DISCUSSION
Numerical Infiltration Patterns and Water Content Profiles
A typical infiltration pattern is shown in Fig. 4-3. The global waterfront is

irregular. Water advances more rapidly within the crack than in the micropore ma-
trix, but water redistributes into the matrix all along the macropore walls. For the
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T =2600

Fig. 4-3. Liquid infiltration into porous medium with a central crack at time 7= 2600 for simulation 4.
Solid, liquid and gas phases are represented in red, blue and white, respectively.

lowest input intensity (simulation 1), no macropore flow was observed, water in-
filtrates homogeneously into the micropore matrix, and the successive first layers
gradually saturate. Preferential flow along the macropore occurred for the other three
input intensities. Figures 4—<4 and 4-5 show the comparative water profiles in time
for four selected depths. Total, macropore and micropore water contents are rep-
resented in black, medium gray, and light gray, respectively. The vertical line in-
dicates the time when input ceases at the surface.

Initially, just a water film pours along the macropore walls. It wets the macro-
pore walls and infiltrates into the micropore matrix. Water enters progressively into
the crack and eventually saturates it. The input lasted long enough to observe sat-

ccases, the macropore begins to drain, while the microporosity water centent does
not significantly change.

Computation of the Flux Field

We calculated the flux vectors Ji(z,7) = 0,(z,1)v,(z,1), where v is the mean flow
velocity at time £ and depth z, and the index ¢ denote macropore or micropore, re-
spectively. Figures 4-6 and 4--7 show the computed flux fields for one of the nu-
merical experiments, During rainfall, infiltration is dominated by the macropore.
Lateral infiltratton into the matrix occurs as water advances within the macropore
(sec the direction of vectors in Fip. b 0), As soon as the nearby walls are saturated.
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they behave as impervious and the water flux in the macropore is vertical in the
downward direction and lateral infiltration is observed only in the wetting front of
the macropore. For simulations 2, 3 and 4, water availability at the surface was not
a limiting factor. In these conditions the crack conducts all the liquid it can. When
input ceases (Fig. 4-7) water redistributes within the matrix. The macropore emp-
ties progressively, and the mean macropore flow velocity slows down. Deep out-
flow due to macropore flow occurs mainly during rainfall and when input inten-
sity is high enough (no macropore flow was observed for the lowest applied in-

Simulation 1 Simulation 2

Time Time

Fig. 4-4. Comparative water profiles for four selected depths (15, 35, 55, and 75) for simulations | and
2. Total, micropore and macropore water conlents are represented in black, medium gray and light
gray, respectively. The vertical ligne indicates the time when surface inpul ceuses ot 7,
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tensity). More simulations at intermediate rainfall intensities are needed to deter-
mine the limit intensity originating macropore flow for this geometry.

COMPARISON OF KINEMATIC WAVE
AND LATTICE GAS SOLUTIONS

We want to see if a kinematic wave (KW) approximation fits with the nu-
merical solutions 9(z,f) obtained with the lattice-gas model. Figure 4-8 shows the

Simulation 3 Simulation 4

Time Time

Fap 1 S, Comparative water profiles for four seleeted depths (15, 35, 55, and 75) for simulations 3 and
4 Total, micropore and macropore water content are represented in blue, green and yellow, respec-
tively. Vertical ligne indicates the time when input ceases it the surface.



T =1600

Fig. +-6. Four infiltration stages and the corresponding liquid flux vector fiel/(i

during rainfall (numerical simulation 4).
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general form of the graphical solutions for O(z,#) obtained by the lattice gas method
(Fig. 4-8a) and by analytically solving the kinematic Eq. [24] (Fig. 4-8b) for an
input pulse at the surface of duration 7. Note that if 9(z,7) is the integral surface of
the kinematic Eq. [24], the projection of this integral surface in the (z, 7) plane are
the characteristics of the partial differential equation. The same is valid for J(z,7)
if we use the J-mode of Eq. [24].

We calculated the wetting (WC) and drainage front characteristics (DC)
from the four sets of numerical data in J-mode. The points of the WC correspond
to the path of the applied input flux signal in the (z, #) plane. The DC are calculated
as the paths of the onset of the decay input signal in the same plane. The calculated
curves are shown in Fig. 4-9 for the four numerical LG experiments (dots in the
figure). No drainage characteristics exists for simulation 1, where no macropore flow
occurred.

If these characteristics correspond to those of a shock wave they should be
straight lines with slopes equal to the kinematic velocities as shown in Fig. 4-1. From
the estimated LG characteristics we observe that a linear shock wave develops after

T = 4600 T = 6600 T =9200

Fig 4 7. Three inhlteation stages alier the cessation ol surface input and their corresponding liguid lux
vector fields cnomeneal somdanon b
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a time lag. This time increases inversely to input intensity. Capillary effects seem
to dominate flow in the initial stages of infiltration and this effect is more marked
for the lower intensities.

To calculate the velocities of the wetting and drainage signals, we fitted, when
statistically significant, a linear model to LG data (Fig. 4-9). The fitted wetting char-
acteristics are lines of slope ¢, = 0.0082 + 0.0003, ¢; = 0.0093 + 0.0002, ¢ 4 =
0.0109 + 0.0002 for simulations 2, 3 and 4, respectively. The fitted LG drainage
characteristics do not differ significantly and the estimated mean slope is ¢4 = 0.0209
+ 0.008. From the relation ¢4 = ac,, we can estimate the value of the coefficient a

.

Fig. 4 K. Schematic form ol the water content as i function of depth and mne Torasquare pulse input:
() 1.Gosolution, aicd t4) KW solution.
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for each numerical experiment. The estimated values are, 2.54, 2.25, and 1.92, re-
spectively, for simulations 2, 3 and 4.

Using these values for a in Eq. [26] we estimated the water content profiles
according to kinematic theory. The KW estimated water content profiles and L.G
data for two depths are presented in Fig. 410 for simulations 2, 3 and 4. The times
of beginning of drainage are rather well predicted by the KW approach. The dif-
ferences between the KW and LG draining curves are due to the fact that we have
assumed that all of the water participates in the drainage process whereas in real-
ity only macropore (i.e., mobile) water drains at this time scale. The KW approach
better predicts the arrival times of the wetting front at the higher intensities and for
the upper layers. The initial dominance of capillary effects and lateral infiltration
from the macropore into the matrix result in a distortion of the mean waterfront,
which gradually decreases its velocity. The kinematic approach does not consider

Depth 12,5 Depth 32.5
Theta Theta
1- Sim 2 1-
: im : _
0.8 0.8 Sim 2
0.6 [I.G?
0.4 - 0.45
0.2 0.2
2000 4000 6000 8000 10000 2000 4000 6000 $000 10000
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1- ) 1- o
: Sim 3 : Sim 3
0.8 : 0.8:
0.6 " 0.6
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Fig. 4 10 Total water content at depths 12.5 and 32,5 [LG data thlacky and KW prediction (bhie) ],
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dissipation mechanisms. We hypothesize that the dispersive cllects showed by (he
LG solution could be modeled by a kinematic dispersive approach. Our fulure re-
search efforts will be oriented in this direction.

CONCLUSIONS

We have used a lattice-gas model to analyze preferential flow mechanisms
in porous media. This numerical approach provides information that most experi-
mental methods are presently unable to supply. The need for simple macroscopic
models of preferential flow oriented us to test the kinematic wave approach. The
comparison of the lattice gas solution with the kinematic approximation has shown
the limitations of the latter approach and the possible ways of ameliorating it.
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Tracer transport modeling in a soil column involves developing and solving the gov-
erning equation subject to appropriate initial and boundary conditions. The major
processes affecting the unsteady state tracer concentration are convection, disper-
sion, sorption and decay. A periodic loading function that varies as a sine or cosine
curve (sinusoid) enlarges the number of variations of tracer input to a soil column
for which there are analytical solutions. However, the development of an analyti-
cal solution of the governing equation for the appropriate boundary conditions is
complicated. The governing equation is solved by applying the Laplace transform
and the convolution integral. The integral is evaluated by introducing complex vari-
ables, so that the analytical solution can be completed. The resulting equation is a
new analytical solution for quasi steady-state or unsteady state sinusoidally vary-
ing tracer loading. Discussion of applications tells how the analytical solution may
be useful in conducting tracer transport experiments to measure soil and tracer trans-
port parameters.

INTRODUCTION

Tracer modeling in a soil column could well be dated from the pioneering
work of Lapidus and Amundson (1952) who developed the relationship for the un-
steady state transport of a tracer in a column subject to convection, dispersion, and
linear equilibrium adsorption. They included the convective (or advective) term in
their tracer transport model that marked a departure from viewing the soil column
and the water it contained as a solid with tracers transported by diffusion. For ex-
ample, earlier studies of progressive waves in confined and unconfined aquifers due
to cyclical changes in river stage provided insight into solution of diffusion-type
equations subject to sinusoidally varying boundary conditions (Werner & Noren,

Copyright © 2001, Soil Science Society of America, 6077 S, Segoe Rd.. Madison, W1 53711, USA. Phys-
feal and Chemical Processes of Water aind Solute renspovt/Retention in Soil. SSSA Special Publica-
tton no. 56,
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1951; Ferris, 1952; Cooper & Rorabaugh, 1963). Although results of these analytical
solutions were applied to infer aquifer properties based on measurements of river
stage and water levels in observation wells, they had little application to tracer trans-
port in soils as the convective term is not a part of the model. The usefulness of the
Lapidus and Amundson (1952) model encouraged additional analytical solutions
applicable to tracer transport in soils, with solutions being developed for impulse
loadings, step changes in concentration, and exponential changes in concentration.
These analytical solutions for simple initial and boundary conditions were devel-
oped by anumber of authors and were tabulated in van Genuchten and Alves (1982).
A review of inorganic solute transport in soil colimns With nonequilibrium reac-
tion was presented by Jardine (1991), while Harmon et at. (1989) and Brusseau and
Rao (1991) reviewed nonequilibrium transport of organic solutes. Several studies
of contaminant transport in rivers provide insight into soil column studies because
of the similarity of governing differential equations although in a river the poros-
ity and retardation coefficient are unity (Li, 1972; Thomann, 1974, p. 140; Thomann
& Mueller, 1987). Holley and Harleman (1965), Harleman et al. {1966), and Hol-
ley (1968) published solutions for a time series of slug-type releases of an organic
waste into a river, an approach that left the solution for the concentration in the form
of an integral that usually had to be integrated numerically. Likewise, Bennett (1971)
prepared a convolution integral solution for a time series of waste discharges to a
river, but numerical evaluation of the integral was a drawback to this approach. Yu
et al. (1991) introduced a method of solution in which superposition of analytical
solutions described the biochemical oxygen demand (BOD) in ariver due to a time
series of inputs while a similar approach for a tracer in a soil column was presented
by Ge and Lu (1996).

Cyclical boundary conditions represented by sinusoidal loading functions may
result in some confusion when the terms steady-state, quasi steady-state, and un-
steady state are used to describe the concentration profile. Steady-state, of course,
means that there is no change in the concentration profile with time. Steady-state
concentration profiles appear to involve a contradiction in terms when applied to
tracer transport in a soil column with a cyclical boundary condition. Unsteady state
appears to be the alternative if a concentration profile is not steady-state. However,
in the engineering literature the term “quasi steady-state” has been used to describe
the unsteady state concentration profile as time goes to infinity. In other words, the
quasi steady-state is reached with a cyclical boundary condition when the concen-
tration profile replicates itself within an acceptable error tolerance with the frequency
of the cyclical loading. A characteristic of the quasi steady-state condition is that
it is achieved when the initial condition no longer influences the concentration pro-
file. Obviously, the quasi steady-state concentration profile propagates with time
inward from the cyclical boundary. Thus, the concentration profile in a soil column
may be described as being quasi steady-state for a certain distance from the bound-
ary into the soil column, while for a larger distance from the boundary the con-
centration profile is unsteady state. Yet, further reflection suggests that a long col-
umn that has been subject to a cyclic boundary condition for a long, but not infi-
nite, period of time may be divided into three zones: for some distance inward from
the boundary the quasi steady-state concentration profile prevails, further from the
boundary the concentration profile may appear to be steady state, then still further

( ;
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from the boundary the influence of the initial condition prevails so that an unsteady-
state concentration profile provides a transition from the apparent steady-state
value to the initial condition value. Normally, the quasi steady-state and the steady-
state concentration profiles would not be separated, but would be considered to-
gether in a model. Yu et al. (1991) used the term “memory time” to provide a prac-
tical measure of when the quasi steady-state condition had been attained at a cer-
tain location. They also used the term “memory length” to measure the distance from
the boundary for which the quasi steady-state concentration profile was applicable
at a certain time. Logan and Zlotnik (1995) provided an asymptotic estimate for the
time required for transients to decay. Their estimate is of the order O(d/Vt) where
d is a constant depending on the distance from the inlet boundary. Oﬁenheimer et
al. (1999) recently proved that a periodic loading function, or boundafy condition,
admits a unique asymptotically attracting solution. In other words, the unsteady state
solution will approach with time the quasi steady-state solution.

Li (1972a,b) developed a perturbation solution and a method of characteris-
tics solution to describe the concentration of BOD in a river for which the loading
function followed a sine wave. For the perturbation solution advective transport in
a river was considered much larger than dispersive transport, an assumption that
was similar to one employed by Logan et al. (1996) for flow in a fractured porous
medium subject to a periodic boundary condition. Adrian et al. (1994) and Adrian
and Aishawabkeh (1997) developed quasi steady-state solutions for a BOD load-
ing to a river in which the input function varied as a sine or a cosine wave. The so-
lutions were applicable after the river forgot its initial condition. An exact analyt-
ical unsteady state solution was published by Alshawabkeh and Adrian (1997) who
applied the Laplace transform method to the problem of BOD transport and decay
in a river after the transport equations had been expressed in terms of complex func-
tions. A noteworthy feature of their method of solution was that the inverse Laplace
transforms were not based on the convolution integral but they were found from
inverse Laplace transforms of complex functions. The dispersion coefficient for a
river is taken as a constant, while some recent studies of dispersion in a soil have
explored expressing it as a function of distance (Logan & Zlotnik, 1996). There are
other mathematical approaches that can be employed to develop analytical solu-
tions to the boundary value problem that describes tracer transport in a soil column
subject to a cyclic boundary condition. The approaches differ depending upon
whether the problem is formulated as a quasi steady-state problem or as an unsteady-
state problem. A partial list of approaches includes: applying Green’s functions
(Beck et al., 1992), formulating a solution based on applying Duhammel’s princi-
ple (Tikhonov & Samarskii, 1963; Ozisik, 1968), using the principle of superposi-
tion (Luikov, 1968, p. 660-668), and obtaining the solution by using integral trans-
forms (Sneddon, 1961).

Developing concentration profiles in a soil column for cyclical boundary load-
ing functions is important for several reasons. One reason is that the solution in-
creases the repertoire ol mathematical models that are available for which some-
one may find a use. A second reason is that the solution can be used by those who

set up experiments to estinite parameters such as the dispersion coefficient. An-
other reason is that analytical solutions to tracer transport equations are desired be-
cause they can be used castly tor some simple flow cases to quickly estimate what
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may take place in an experiment. A final justification for analytical solutions is that
they can be applied for testing numerical models.

The objective of this study is to develop an analytical model for a soil col-
umn’s response to a sinusoidally varying tracer loading function by applying the
familiar Laplace transform method in which the convolution integral is used to ob-
tain the inverse transformation. The solution methodology will use Laplace trans-
forms and their inverses that are available in most introductory texts on Laplace
transforms to develop both the quasi steady-state and unsteady-state solutions. Ap-
plications of the solutions will be listed and explained.

MATHEMATICAL DERIVATION

Consider a soil column for which the solute is uniformly distributed through,
any cross-section so that a one-dimensional model is applicable. The governing
equation for solute transport, obtained by mass balance, is

2
o€ y 9 _p2C ke

ot ox ox? 0 ot [1]

where K| is the first-order transformation constant (771); C is the solute concen-
tration (mol L=3); ¢ is time (T); U is the convective (or advective) or travel time
(Darcy velocity/volumetric water content) velocity (L7 ~!); x is the distance from
the inlet boundary in the flow direction (L); E is the apparent diffusion coefficient,
usually called the dispersion coefficient, (L27~1); p,, is the soil bulk density (M L ™2);
0 is porosity; and g is the adsorbed solute concentration (mol M~1), For linear equi-
librium adsorption the retardation coefficient, R’ = 1 + p,K /0, transtorms the
transport equation to

2
oC 000
ot ox ax? [2]

where k; is the modified first-order decay constant, K| /R’, (T~!); C is the tracer

concentration (mol L—3); ¢ is time (7); u is the modified travel time velocity, U/R’,

(LT"); x is the distance from the upstream boundary in the flow direction (L); and

D is the modified apparent diffusion or dispersion coefficient, E/R’, (L2T ).
Solution for Unsteady-State Case

The initial and boundary conditions for a sinusoidal loading of tracer are

Cix,0)0=0 [3]

C (O,t) = Cl + C” hln((.!)f) |4|
him C (v — 0

o 15|
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where C, is the average tracer concentration (mol L=?); C; is the amplitude of the
variation from the average tracer concentration (mol L3); and w is the frequency
(T~1). To make the problem realistic and without loss of generality, C, and C, are
positive or zero with the constraint that C; = C, while D is positive. In the follow-
ing solution that uses superposition C, or C; may be set equal to zero. Yet, when
the final solution is obtained by superposing the individual solutions C; = C,,, while
u and k, are positive or zero. When Cj is zero, the solution is well known (van
Genuchten & Alves, 1982) (‘W /

_C ux A —x
C(x,t)——zlexp I:2D \/;x:lerfc l:@ ktjl

C ux A i
+ ELCXP[QD+ \/; xJeifc (:@+\[7E:! (61

where A = u? /4D + k,. We will now look for the solution to the case C, = 0 and C,
# () that is not solved in van Genuchten and Alves (1982). It has been discussed but
not solved by Thomann (1974, p. 140) and an early numerical solution was presented
by Dresnack and Dobbins (1968). Adrian et al. (1994) and Adrian and Alshawabkeh
(1997) presented solutions for the quasi steady-state case. The following transform
of the dependent variable (Kirkham & Powers, 1972, p. 526-527)

C (x,0) =Y (x,0) exp [2”% — Z‘% —klt] 7]

reduces the problem of Eq. [2] to

2
oY _,,
ot ox? [8]
subject to
Y(x,00=0 [9]
Y (0, ) = CyeM sin(w?) [10]
Jl{gg Y(x,) >0 [11]

The solution to Eq. [8] along with conditions [9] through [11] may be obtained
by the Laplace transform method with convolution (Carslaw & Jaeger, 1963) or a
solution for a less restrictive initial condition, Eq. [9], may be obtained by follow-
ing the methods presented by Logan and Zlotnik (1995), Following the methods
of Scott (1955), Carslaw wnd Jacger (1959), and Oberhettinger and Badii (1973)
the Laplace transform solution with convolution becomes

\\
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2
) cos(mpexp | — | At + 22— :I
Cor sin@net @D p[ L 41)1:) dt
\anD . s

2
in(wt —[ A+ 2= ]
~ Cyxcos(w T)eM ,Sln( Jexp |: ( 4D’c) t
4nD 0 72 12]

Y (x,1) =

where T is a dummy variable of integration.

The integrals in Eq. {12] are not tabulated in widely used mathematical ref
erences (Petit Bois, 1961, Abramowitz & Stegun, 1965; Gradshteyn & Ryzhik, 1980,
p. 128-129). They appear to present an insurmountable difficulty to solution of the
problem of describing the tracer concentration in a soil column due to a sinusoidal
loading boundary concentration by applying the Laplace transform method with the
readily applied convolution rule.

We now turn to an alternative to direct integration of the two integrals by not-
ing that the argument of the integrals differs only by a cos (@ T) or sin (w7). This
suggests that the Euler equation for the exponential with a complex argument
(Franklin, 1958, p. 52) can combine the two integrals into a single integral. Thus,
we will examine the following integral where i = V-1, a complex number,

2
woesp [ (1es 2 )]
t exp(io T)exp [ ( T+ 4D'c)
I 3p,= f dt
0 13/2 [13]

that can be expressed as
|: (A~ i) : :|
- —iw]t+
P I bt
dr.

0 1:3/2 [14]

1—3/2,: =

This integral has been evaluated by Horenstein (1945) as referenced by Turner
(1972, p. 196-200) to result in

Lap, = \/;& cosh (2ab) + ;{—it f{

) [15]
where
fit) = exp (=2 ab)[erf (bt'? — ar /%))
—expQab)[erfbt'? +ar'?] [16]
and i.
P=A-io . [17]
and

a’ = (x*f41)) [18]
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Turner (1972, p. 196-200) also states a result that will be used later by noting that
when t — co

L. = (Nn/a) exp(-2ab) [19]

With these results Eq. [12] can be rewritten as

: Al
Yoxf) = Coxsin(wt)e Re (Lyn)

N4nD

At
Coxcos (wne™ (I_320)
2l [20]

“the imaginary paxt of I 3y,,;”. Then Eq. [7] and [20] are combined to provide the
value of C(x, ) for the case C; =0 and Cy# 0. This result is added to Eq. [6] to give
the solution to the original problem stated in Eq. [2] to [5]

_C ux A _x_
Clx,p) = 31 exp [ZD \/; x:]erfc [4Dt \/E:l

R
+ 2exp 2D+ Dx erfc @+m

2D )
4 Lo ejfn_(j)’" L {sin (1) Re (L) ~ c0s (@) Im (L) o

where the notatio@e( “a/2. ) 18 read “the real part of I_3p,,” and Im(I_5,,) 1s read

The formal solution to the problem of describing the unsteady-state concen-
tration distribution in a soil column has now been completed. Equation [21] can be
used directly for computations using computers that have the software to evaluate
the real and complex parts of a complex function such as I_3, ,. If such software is
not available the real and imaginary parts of I_3,,  are presented in Appendix 2, in
terms of elementary functions that do not involve complex variables, as Eq. [A24]
and [A25], respectively.

Solution for Quasi Steady-State Case
While Eq. [21] is applicable for any time, it is useful to havé available the

solution to Eq. [2] to [5] for the quasi steady-state case. The quasi steady-state so-
lution is obtained by letting ¢ — o in Eq. [21]. The resultis

Cle,t)=C,exp l:;—f)— \/IZ) x:l

Hee 20 .
+ Corexpluf2D) {sin(wn) Re (1 30..) —cos (@) I (1 3.0}
Vi) [22]
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where I_35, ., was presented in Eq. [19]. Equation [22] can be used directly for com-
putations using computers with software to evaluate the real and complex parts of
a complex function, such as /_3, ... The steps that show that the function I_3, .. can
be expressed in terms of elementary functions that do not involve complex vari-
ables are shown next.

Equation [19], the function [ 3/, .., must be divided into its real and imagi-
nary parts as

Lap..= 2\@:—5 exp I:— \f% (7&—1'(,0)”2:|. 23]
—

The term (A — i®) is expressed in an alternative form for complex numbers
(Churchill, 1958) as r exp (i ©) where

r=(7+w)"? [24]

O = arctan (— Q)
A [25]

with the result that Eq. [23] becomes

o Banle lwlt)m ()

Equation [26] is simplified by applying Euler’s rule, then separating the real and
imaginary parts, so Eq. [22] becomes the solution for the quasi steady-state case

Clx,t) =Cyexp I:[:ﬁ) - %)x:]

ol b )

after applying the law of sine addition.

and

ILLUSTRATIVE EXAMPLES (

Effect of Time, Loading Frequency, and Dispersion
on Solute Distribution

Three figures of solute transport in a soil column will be discussed to con-
trast unsteady-state and quasi steady-state behavior, to itlustrate the effect of load-
ing frequency on solute distribution in a soil column, and to show the effect of the
magnitude of the dispersion coctlicient on decreasing the nuenitude of the ampli-
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tude of concentration fluctuations with distance from the inlet. While the equations
developed in this manuscript have been for a column of infinite length, any real col-
umn will have a finite length. The figures can be interpreted as showing the con-
centration distribution of tracer in the first 500 cm of a longer column, but there
may be some deviation in behavior of a tracer near the outlet of a finite length col-
umn.

Figure 5-1 shows the behavior of both the quasi steady-state solution, Eq. [27],
for ¢t = 100 d, and the unsteady-state solution, Eq. [21], for =1, 10, 20 and 100 d.
Equations {A24] and [A25] have been incorporated into Eq. [21] to develop the con-
centration curves. The values of the parameters are presented on Fig. 5-1, except
@ =1/24h™'and R = 1. For t = 100 d, the quasi steady-state solution, Eq. [27], gives
the same results as are given by Eq. [21], the unsteady-state solution. Obviously,
100 d is a long enough time for the unsteady-state effects to disappear from the 500
cm length of column in Fig. 5-1. Dispersion acts to reduce the height of the peaks
and fill in the valleys of the concentration vs.distance curve. Although the sinu-
soidal fluctuations in concentration amplitude arejdampened by dispersion, they are
still visible after the solute travels 500 cm.

Figure 5-2 shows the effect of frequency on the concentration distribution.
All three curves are for ¢ = 100 d, which is the quasi steady-state case for a 500-cm
long column. A low frequency of concentration change, ® = 1/48 h™!, is attenuated
by dispersion, but propagates with only a small change in shape. By contrast, the
highest frequency concentration loading with @ = 1/12 h~! approaches a quasi
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steady-state concentration of 20 g m~ within a distance of about 200 cm. Figure
5-2 shows that attenuation of the amplitude of a peak in concentration is a nonlin-
ear function of frequency and distance.

Figure 5-2 is of interest in planning experiments where the sinusoidal load-
ing of a tracer might be used to calculate the dispersion coefficient. If the loading
frequency is selected too large then the concentration may become dampened so
quickly that at the column outlet one will have no concentration change with time
information with which to calculate the dispersion coefficient. On the other hand,
selecting a low frequency of oscillation of tracer loading will insure a larger con-
trast in the concentration between the peak and an adjacent valley, but there will
be fewer tracer cycles observed at the outlet in a given observation time. One of
the advantages of the sinusoidal loading of a tracer to a column is the opportunity
to observe a sequence of tracer transport “experiments”. In effect, a tracer trans-
port experiment is repeated each period of the loading function. The period of a load-
ing cycle is given by T = 1/w, and the wave length is L =<1I. These relationships
between the frequency, the period and the wave length can be useful in planning
experiments. By contrast, if a conventional tracer transport experiment is conducted
using a slug-type input of a step change in tracer concentration, one does not mea-
sure the replications of output data for increasing the precision of parameter esti-
mates.

Figure 5-3 shows the effect of the dispersion coefficient on the tracer distri-
bution in a soil column. Of course, the figure shows a 10-fold increase in disper-
sion coefficient quickly dampens out fluctuations in the concentration distribution
curve leading to a near steady-state concentration profile for x > 200 cm. By con-
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trast, a 10-fold lower dispersion coefficient sharply decreases the dampening ef-
fect. The dispersion coefficient is not under the control of the experimenter except
indirectly through packing and sclection of the advective velocity. This figure em-
phasizes the importance of carrying out preliminary experiments prior to selecting
the final experimental configuration.

Improving the Estimate of Dispersion Coefficient

Suppose an experiment with the objective of estimating the\dispersion coef-
ficient takes place using a tracer in a soil column of length L. Also,suppose that
the conservative, nonsorbing solute concentration entering the soil column conforms
to the sinusoidal loading pattern described by boundary condition Eq. [4]. Also sup-
pose that the experiment has been run for a number of loading cycles with a time
series of effluent concentration measurements being recorded. Then it would be rea-
sonable to assume that the quasi steady-state concentration distribution Eq. [27] was
applicable to model the time series of data after x in Eq. [27] had been replaced by
L. If there were no experimental and model error, each loading cycle would pro-
duce an identical set of data. Of course, that won’t happen so that a measurement
taken at time ¢, , C(L, t;), will contain some error. If the data had been collected for
a time period that represented N loading cycles, and measurements were taken at
regularly spaced intervals, 1/M, where M is an integer, then there would be N val-
ues of concentration for each time increment of the loading cycle. In effect, there
would be N replications of the experiment (contrast this situation that produces repli-
cated data against an experiment in which a slug or a pulse loading had been ap-
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plied to a soil column). The expectation is that the replication of data should result
in more precise estimates of the dispersion coefficient (Berthouex & Brown, 1994,
p. 201-212). In many experiments, the data will be collected at regular intervals
but the spacing between measurements will not divide a loading cycle evenly. This
data collection scheme should still yield an improved precision of the estimate of
the dispersion coefficient as contrasted with data from slug tests or pulse loadings
of tracer.

There are problems in selecting the time interval at which data will be col-
lected from an experiment with sinusoidal loading. One of the problems is that the
data should be collected frequently enough to describe the outlet concentration
curve. One can picture certain data collection frequencies to avoid, such as collecting
data only at the peak, neutral point, or trough of the concentration curve. Problems
occur when few samples are collected resulting in an inability to reconstruct sinu-
soidal curves from the data. References on spectral analysis of data discuss in de-
tail such points as the Nyquist frequency (Blackman & Tukey, 1958; Gunnerson,
1966). Another problem that may be encountered is with a time series of noisy data.
Noisy data may make it difficult to estimate a starting value of the dispersion co-
efficient for use in a numerical optimization procedure such as a least squares pro-
cedure to estimate the dispersion coefficient. Jandel Scientific (Jandel Corp., 1995,
p. 6-67—6-86) discusses the use of filtering algorithms to apply with noisy data. Ex-
perience has shown that straightforward least squares procedures may not be effi-
cient estimators of sinusoidal wave properties when data errors are present (Jandel
Corp., 1996, p. 3-37-3-44). Turner (1972, p. 196-200) discusses the merits of al-
ternative methods of determining parameters from sinusoidal data, and points ou
that one may fit the peaks and valleys of the tracer curve (frequency domain
sis), the values of concentration at various times (time domain analysis), the Laplace
transformed data (Laplace domain analysis), or use the moments of the data (mo-
ment analysis). Jandel Scientific (Jandel Corp., 1995, p. 6-67-6-86) discusses
probiems that may develop when estimating parameters from a time series of data
and a model such as Eq. [27].

How are Sinusoidal Loading Boundary Conditions Developed?

Generating a sinusoidally variation of concentration with time to match the
boundary condition Eq. [4] can be carried out by using a digital controller or an ana-
log device (Turner, 1972, p. 196-200). A digital controller will change the pump-
ing rate of the tracer solution that is applied to the column inlet. Some digital con-
trollers do not provide a smooth change in concentration to simulate a sine curve,
but carry out the simulation through a series of step changes in concentration, for
example, representing a single sine wave curve as a series of 16 steps. Yuetal. (1991)
showed that representing a sine input curve by 12 steps in concentration resulted
in considerable error, while representing the some curve by 24 steps in concentra-
tion provided a good fit. An analog device can be constructed to change rotary mo-
tion into linear motion. Two reservoirs of water can be connected to a soil column
through a capillary tube with the result that the flow rate through cach tube is pro-
portional to the reservoir’s clevation. [f one reservotr contains i tracer and the other
reservoir contains dilution water, then a sinusoidal variation in concentration of the

-
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flow into the column can be achieved. Turner (1972, p. 196-200) discusses plac-
ing the reservoirs on a Scotch yoke or an oscillating beam to fulfill the requirement
for sinusoidal variation in concentration.

CONCLUSIONS

A quasi steady-state solution for the tracer distribution in a soil umn has
been developed for the inlet boundary concentration being a constagt plus a sinu-
soidal component. Then an unsteady state solution for tracer distribtition in a soil
column was developed for the same inlet boundary condition as above. The un-
steady-state tracer concentration distribution applies to the section of a soil column
that still remembers the initial condition. The two solutions may be applicable to
those planning experiments to measure parameters such as the dispersion coeffi-
cient from tracer tests. A sinusoidal loading of tracer at the inlet boundary may en-
able one to obtain repeated data traces at the column outlet as part of an extended
experiment. Continued collection of tracer concentration vs. time data at the col-
umn outlet over a number of periods would enable one to collect data from repeated
experiments, for each period of the sine wave would represent another experiment.
This should enable one to obtain more replicates of data to improve statistical es-
timates of the dispersion coefficient than could be obtained by experimental meth-
ods that use a slug loading or a step change of concentration at the column inlef.™

Several mathematical methods were drawn upon to aid in solving the gov-
erning equations for the problem discussed herein. Superposition enabled the inlet
boundary condition and the related boundary value problem to be separated into
two subproblems, one of which had been solved previously in the literature, while
the other subproblem with the sine loading was the major focus of this study. First,
a transform of dependent variable, Eq. [7], removed the convective and decay terms
and left a diffusion equation to solve. Then, the Laplace transform method was ap-
plied to determine the solution to the governing equations, Eq. [8] to [11]. How-
ever, when the convolution integral theorem was applied to determine the inverse
of the Laplace transform solution, two difficult-to-evaluate integrals were produced
in Eq. [12]. This difficulty was overcome by the introduction of complex variables
and application of Euler’s equation that resulted in combining the two integrals of
Eq. [12] into a single integral in Eq. {14]. Fortunately, the integral in Eq. [14] had
been evaluated by Horenstein (1945) so that an analytical solution to the original
problem could be obtained, Eq. [21] for unsteady state, and Eq. [27] for quasi steady-
state.

One area of frustration for those applying the solutions that have been de-
veloped is that computer error messages may occur referring to a calculated quan-
tity being too large. These messages are associated with the combination of func-
tions that appear in Eq. [6] and [21] when an exponential function with a positive
argument is multiplied by a complementary error function with a positive argument.
The exponential function will grow in magnitude as the positive argument in-
creases; likewise, the complementary error function will decrease in magnitude as
its argument increases. As discassed in van Genuchten and Alves (1982) the prod-
uct of the two Tunctions will o 1o zero, not infinity. The authors have learned to
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look to this combination of terms when error messages, or strange results, appear
in computations. A simple, easy, practical-—but not necessarily rigorous—solution
to the problem is to check the magnitude of the argument of the complementary error
function that has the plus sign in its argument. When the argument is larger tha
three, then set the product of the exponential function with the plus sign in its ag-
gument and the complementary error function with the plus sign in its argument
equal to zero. Again, it should be noted that the problem discussed above arises only
with the arguments that contain a plus sign. A rigorous alternative to the procedure
just outlined is to use the asymptotic form for the product which approaches zer
for large arguments.

The final conclusion is that the solutions that have been presented herein
should encourage investigators to consider carrying out experiments in soil columns
with sinusoidal inlet boundary conditions. With the ability to obtain repeated sets
of data at the column outlet, one set of data for each period of the sine wave, should
be an attractive and economical method for improving the precision of estimates
of dispersion coefficients.
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APPENDIX 1
Nomenclature

C(x,t) = solute concentration at distance x and time ¢, g m™
C; = average solute concentration at x = 0, g m™>
Cy = solute concentration amplitude at x =0, g m~
D = reduced dispersion coefficient, cm? s

E = disperston coefficient, cm? s7!

i = imaginary unit where i> = —1
K| = transformation rate constant, d!

k| = reduced transformation rate constant, d-!
K, = distribution coefficient, cm? g~!

= length dimension, also liter

M = mass dimension

n = index of summation

g = adsorbed solute concentration, mg kg~

r = inverse of time

R = retardation coclficient

3
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t= time

T = time dimension

U = average convective travel time, cn s~
u = reduced average convective travel time, cm s~
x = distance from the inlet, cm

Y = transformed concentration function, g m~
) = frequency constant, h™!

8 = porosity, also angle in radians
w = loading frequency, h™!

1
|

3

APPENDIX 2

The objective of this appendix is to obtain Re (I_3»,) and Im (I_35 ) in terms
of elementary functions that do not contain complex variables, where /3., is
given by Eq. [15] to [18]. Equations [15] to [18] are

L3p,= % cosh (2ab) + ;[——Z f(®

[AT1]
where

f(0) =exp (—2ab) [erf (bt'? — at~'"?)] — exp (2ab) [erf (bt"? + at~17?)] [A2]

and
b= ) —iw [A3]
and

a2 = (x¥4D). [A4]

Each of the terms in Eq. [A1] to [A3] will be separated into its real and imaginary
parts. Equation [A4] is already a real expression so it needs no attention.
The term cosh (2ab) becomes
cosh (2ab) = 1/2 {exp[2a (A — i®)"?] + exp[- 2a (A — i® )]} [AS5]

after substituting Eq. [A3]. Then applying Eq. [24], [25], and Euler’s equation to
Eq. [AS] and simplifying, yields the real and imaginary parts

- - -
cosh (2ab) = cos 2aVr sin (g ) cosh [Za\/; cos (g )

(8] )
+ i sin _2(:\/; sm(z )J sinh [Za\/;cos (2 )J [AG]

Next, one separates exp (- 2ab) and exp (2ab) into their real and imaginary
parts. Equation [ 9] und Faler’s equation yield
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[ T
exp (—2ab) = exp - 2aNr cos (6-2) )j| cos |:2a\/; sin (g )

T o\ .. (o]
—iexp - 2ar cos (2 ):l sin |:2a\/; sin ( 5 )_ (A7]

where the definition of cosine function as an even function and the sine function
as an odd function were employed. Similarly,

exp (2ab) = exp I:Za\/; cos (g )] cos [Qa\/; sin (g )
+ i exp [Za\/; Cos (Q )] sin |:2a\[; sin ( 0 )
2 2 . [A8]

The error functions are more difficult to separate into real and complex parts.
The procedure used by Alshawabkeh and Adrian (1997) is followed.

erf (bt'"? —at™"?) = erf { I:\/;cos (ﬁ) - —“’~:| + iNrt sin (9) }

2) At 2 [A9]
after applying Eq. [17] and Euler’s rule. Equation [A9] has the form
erf (bt'"? — at™V?) = erf (R1 + il 1) [A10]
where
R1 =Vrt cos 01
2} At [A11]
and
N=rsin [ 2]
2 [A12]

The other error function in Eq. [A2] becomes
erf (bt'2 + at™2) = erf { |:\]—r;cos (g) + at‘“z] + i\/;sin(g-) } A13]

that has the form

erf(bt”2 +at ™y =erf(R2+il 1) [Al4]
where
R2 =1 cos 0 + L&
2) i [A15)
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Alshawabkeh and Adrian (1997) followed a procedure presented by Abramowitz
and Stegun (1965) by which Eq. [A9] and [A13] are evaluated. They noted

erf(R+i=FR, D+iGR, Dh+eR 1) [A16]
where € (R, [) is an error term
&R, )= 107" | erf(R+iD)|. [A17]

As the error function is bounded by +1 the error term is negligible and will be omit-
ted in subsequent calculations. The function F(R, I) and G(R, I) will be defined sub-
sequently due to their length.

Equation [A2] contains the product of a complex exponential multiplied by
a complex error function. Thus, the product of Eq. [A7] and [A16] must be sepa-
rated into its real and imaginary parts as well as the product of Eq. [A8] and [A16].
The product of Eq. [A7] and [A16] produces

s (£]] s [ (]
—exp | 2a7cos (2] sn 27 i & ﬂ }

{F(R1, 1) +iG(R1, 11)} =

exp l:—2a\/_r_ cos (g ):l cos |:2a\f; sin (g):l F(R1,11)

- o\
+ exp —Zm/;*cos(g) sin | 2aVr sin Q)JG(RI,H)

_ _ £\
+i{exp —2ar cos (g}:lcos 2aVr sin Q) G (R1,11)

e

- _ S
—expli——Za\/;cos(gL sin | 2avVr sin g) F(Rl,]l)}

i . [A18]

Then the product of Eq. [A8] and [A16] results in

{CXP[M\/; cos (g):l Cos [2{:\/; sin (g Il
+icxp[2n\/r CON ((: ﬂ sin [P_aﬁsin(

8 J fen

i
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{F(R2,11) +iG (R2,I1)} =

exp [2ax/? cos (g ﬂ [2a«]7~ sm EQ\J

_ _ S
— exp 2a\];cos( ):| sin | 2aVr sin kg) G (R2,11)

[ fan

_ _ £\
+i{exp 2aVr cos 0 :l cos | 2aVr sin o G (R2,11)
i 2 | \ 2 /-
_2\F e}'—le—'fejlszn}
+exp_a F COS 5) s1n_a rsm\EJ (R2,11) (A19]
Abramowitz and Stegun (1965) define the functions F(R, I) and G(R. I) as
exp (—R?)
FR D= R — = [1 - 2
(R, D=erf(R) + IR [l —cos (2R D]
2 exp( —n%/4)
+ Zexp(-R* 2 (R,
R TPCR) e D [A20]
. 2 < exp (—n/4) \
GR D=sinQRD+ = Ry X 2T o (R
(RD=sin@RD+—exp R & = F—rr? g (R D) A21] _J

where f,(R, I) and g.(R, I) are defined as
£ (R, Iy = 2R — 2R cosh (nl) cos (2RI) + n sinh (nl) sin (2RI) [A22]

g, (R, I) = 2R cosh (nl) sin (2RI) + n sinh (nf) cos (2RI). [A23]

Finally, the components of Re(I_3»,) have been identified. The real part of I
32, 18 Obtained by substituting the real parts of Eq. [A6], [A 18] and [A19] into Eq.
[A1] and [AZ2] to obtain

Re (I_3p4) = \L—i cOS |:2a\/; sin [gﬂ cosh |:2a\/; cos [%ﬂ

\/;E {exp ~2a\r cos ( cos Za\/; sin (2)] F(R1,I1)

2a

NI

+ exp —2a\/1—’cos(— 2a\f1_"51 ( ) G(RL, 1)

12 |
191

) I'(R2, 1)

J s
H cos 2m/?sin[

- CXp 2(1@ cos (
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+ exp |:2a\f; cos (gﬂ sin |i2a\f; sin (gﬂ G(R2,11) } . [A24]

Next, the imaginary part of I_/,, is obtained by substituting the imaginary
parts of Eq. [A6], [A18] and [A19] into Eq. [Al] and [A2] to obtain

Im(_3p,) = i sin [2a\/r_r sin (gﬂ sinh |:2a\f; cos (g)]
{exp /P\;j COS!:ZGI\/I—” sin (gﬂ G (R1,11)

—

F(R1,11)

ro D

3
—exp —2a\/; cos 2a\f; sin (

-
\
ya

G (R2,1)

8D

~ exp 2ar cos (g)] cos |2aVr sin (

[A25]

_ _ \
— exp 2a\r cos (g):l sin | 2aVr sin (2)4 F(R2,11) }

The objective of this appendix has now been satisfied.
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The retention of heavy metals resulting from acid mine waste, application of
sewage sludge, and waste from timber preservation industry has become a major
environmental concern. The problem of identifying the fate and transport of heavy
metals in soils must account for retention reactions and transport of the various
species in the soil environment. Specifically, the development of mechanistic mod-
els for describing the fate and transport of heavy metals is a key component for en-
vironmental impact assessment. Heavy metals in soils can be involved in a series
of complex chemical and biological interactions. Such reactions include oxidation-
reduction, precipitation and dissolution, volatilization, and surface and solution
phase complexation. A number of scientists have studied soil properties that sig-
nificantly affect the behavior of heavy metals such as Cu in soils (e.g., Aringhieri
et al., 1985; Buchter et al., 1989).

Amacher et al. (1986, 1988) showed that sorption-desorption of several
heavy metals from batch studies on several soils was not adequately described by
use of single reaction of the equilibrium Langmuir or Freundlich isotherms. They
also found that a first-order kinetic reaction was not capable of describing changes
in Cd, Cr, and Hg concentrations in the soil solution with time. Aringhieri et al.
(1985) showed that retention of Cd and Cu on an organic soil was strongly time-
dependent. Cernik et al. (1994) described Cu and Zn distribution with depth in a
contaminated soil near a metal smelter. They used a modified (equilibrium) Fre-
undlich equation incorporated into the convective-dispersion equation. Montero et
al. (1994) described the movement of Cu in soil columns based on equilibrium ad-
sorption-desorption, coupled with kinetic solubilization. In addition, models based
on nonlinear kinetic adsorption or ion exchange and specific sorption have been pro-
posed in the literature. A number of such modeling efforts were used with mixed

Copyright © 200H . Sail Scienee Society o America, 677 S, Segoe Rd., Madison, WIS53711, USA, Phys-
real and Chemical Processes of Water and Solute Transport/Rerention in Soil. SSSA Special Publica-
tian o, 56,
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success to'describe Cd, Zn, and Cu movement through soils (Selim et al., 1992; Hinz
& Selim, 1994; Buchter et al., 1996). Where failure occurred, it was attributed to
nonequilibrium kinetic adsorption processes and/or inaccurate representation of
mechanisms associated with heavy metal fractions that are strongly sorbed by
soils.

Copper is a heavy metal exploited in large quantities for economic value and
often leaves many abandoned Cu mines around the world. Drainage water from the
abandoned mines often contains high Cu concentrations and can be of environmental
concern (Amacher et al., 1995). An understanding of the retention and transport of
Cu in mine soils is necessary for minimizing possible adverse effects from Cu min-
ing. For several heavy metals (e.g., Cu, Hg, Cr, Cd, and Zn), retention/release re-
actions in the soil solution have been observed to be strongly time dependent. In
fact, heavy metals in the soil environment can be involved in a series of complex
chemical and biological interactions. Several of the reactions include oxidation-re-
duction, precipitation and dissolution, volatilization, and surface and solution phase
complexation. A number of scientists studied soil properties that significantly af-
fect the behavior of heavy metals such as Cd in the soil. The problem of identify-
ing the fate of heavy metals in soils must account for retention reactions and trans-
port of the various species in the soil environment.

Since the soil system 1s heterogeneous in nature, a number of studies inves-
tigated the interaction of Cu and other heavy metals with different soil constituents.
For example, Sequi and Aringhieri (1977) reported that removal of organic matter
released new sorption sites on soil. In contrast, Cavallaro and McBride (1984) found
that treatment of the clays by removal of organics tended to either enhance or have
little effect on sorption and fixation of Cu and Zn. They attributed this behavior to
dominance of oxides of the soil clays to sorption and fixation of heavy metals com-
pared to the organic component in soil. Atanassova (1995) investigated Cu ad-
sorption-desorption for a vertisol and a planosol and their clay fractions and found
that Cu sorption was well described using Freundlich and Langmuir isotherms. It
was suggested that observed decreases of the distribution coefficient (K) with in-
creasing Cu concentration is due to high affinities at low surface coverage. One may
regard dependency of K, on concentration as manifestation of the heterogeneity of
sorption and clear indication of the nonlinearity of Cu sorption isotherms.
Atanassova (1995) also showed that desorption was non-hysteretic and fully re-
versible for Planosol whereas strong desorption hysteresis was observed for the ver-
tisol soil with significantly higher organic matter content. Recently, Wu et al.
(1999) found that Cu was preferentially sorbed on organic matter associated with
the coarse clay fraction. They also suggested that iron oxides may block available
sites by coating lateral surfaces of layer silicates. Wu et al. (1999) also suggested
that observed adsorption-desorption hysteresis is probably due to extremely high
energy bonding with organic matter and layer silicate surfaces.

A literature search reveals that Cu isotherms for different soils as well as clay
fractions often exhibit a nonlinear shape. Moreover, most investigations do not con-
sider the kinetic retention behavior of Cu retention during adsorption, Since the non-
linear nature of Cu retention directly influences its mobility in soiis, knowledge of
the time-dependence nature of Cu behavior is significant. Therelore, the primary
objective of this investigation was to study the kinetics of Cu adsorption as well as
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release or desorption over a wide range of concentrations. Specifically, we inves-
tigated the extent of nonlinearity and kinetics of Cu retention behavior in a McLaren
soil (coarse-loamy over sandy or sandy-skeletal, mixed, super active, Typic Eu-
trocryepts). To achieve these goals, we employed several nonlinear approaches based
on the assumption of single and multiple reaction site mechanisms. The approaches
implemented include single reactions, multireaction and second-order models of
the nonlinear kinetic type. Limitations of these approaches and the experimental
data sets are also discussed.

Multireaction Model

The two-site equilibrium-kinetic model of Selim et al. (1976) is perhaps one
of the earliest multireaction approaches for describing retention and transport be-
havior of reactive solutes in porous media. Basis to the multisite approach is that
the soil solid phase is made up of different constituents (soil minerals, organic mat-
ter, iron and aluminum oxides), and that a solute species is likely to react with var-
1ous constituents (sites) through different mechanisms (Amacher et al., 1988). As
reported by Hinz et al. (1994) heavy metals are assumed to react at different rates
with different sites on matrix surfaces. Therefore, a multireaction kinetic approach
may be considered to describe Cu retention kinetics in soils. The multireaction model
(MRM) used here considers several interactions of one reactive solute species with
soil matrix surfaces. Specifically, the model assumes that a fraction of the total sites
is kinetic in nature whereas the remaining fractions interact rapidly or instanta-
neously with solute in the soil solution.

As illustrated in Fig. 61, the model accounts for reversible as well as irre-
versible retention reactions of the concurrent and consecutive type. We assumed
Cu to be present in the soil solution phase, C (mg L™1), and in several phases rep-
resenting Cu retained by the soil matrix as S., Sy, S,, S;and S, (mg kg~! soil). We
further considered the sorbed phases S,, 5, and S, are in direct contact with the so-
lution phase (C) and are governed by concurrent reactions. Specifically C is assumed
to react rapidly and reversibly with the equilibrium phase (S.) such that

Se = K (0/p)C, (1]

where k. is a distribution coefficient (m* Mg™), p is soil bulk density (Mg m~3), ©
is water content (m® m™>), and # is the reaction order (dimensionless). Moreover,
n represents a nonlinearity parameter that is commonly less than unity (Buchter et
al., 1989). This parameter represents the heterogeneity of sorption sites with dif-
ferent affinity to heavy metal retention on matrix surfaces (Kinniburgh, 1986).

The relations between C and §| and S, were assumed to be governed by a non-
linear kinetic reaction expressed as

(9S,/98) = k; (OIp) C™ — k, S, 2]
(8,101 = [k, O/T) C™ — ky S,] — ks S, [3]

where 1 is time (h), &, and &, are the rate coefficients (h 'y associated with §; and
m is the reaction order, Similarly, for the reversible reaction between Cand S5, &y,
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and k, are the respective rate coefficients (h~!). In the above equations we assumed
n = m since there is no known method for estimating » and/or m independently.
The multireaction model accounts for irreversible retention in two ways. First
as a sink term @ with direct reaction with the solution phase C and S, , e.g., pre-
cipitation/dissolution, and immobilization, as first-order kinetic process

Q =p (aSm/at) = kirr 0C [4]

where k. is the associated rate coefficient (h™!). Irreversible retention was also con-
sidered as a result of subsequent reaction of the S, phase into a less accessible or
strongly retained phase S5 such that,

853/81‘ = k5 52 [5]

One may regard the slowly reversible phase 55 as a consequence of rearrangement
of that retained on matrix surfaces.

Second-Order Two-Site Model

The basic assumption of the second-order modeling approach is that there ex-
ists at least two types of retention sites for heavy metal on soil matrix surfaces. More-
over, the primary difference between these two types of sites is based on the rate
of the proposed kinetic retention reactions. Furthermore, the retention mechanisms
are site specific where the rate of reaction is a function of not only the solute con-
centration present in the soil solution phase but also the amount of available retention
sites on matrix surfaces.

The original second-order approach (SOTS) was first proposed to describe
Cr retention and transport in several soils by Selim and Amacher (1988). Here two
types of sites were considered, the first was of the equilibrium type and the second
was kinetically controlled type sites. Moreover, S, (ug g~! of soil) was consid-
ered to represent the total retention capacity or total amount of sites on matrix sur-
faces. It is also assumed that S, is an intrinsic soil property that is time invariant.
Therefore based on the two-site approach, the total adsorption sites,

Smax = (Se)max + (Skdmax [6]

where S, is adsorption maximum, (S,)., and (Sy )., are the total amount or ad-
sorption maxima for equilibrium and kinetic type sites, respectively (ug g~! of soil),
If frepresents the fraction of equilibrium type sites (S, ). t0 the total sites, we thus
have,

(Se)max Zmeax
(S dmax = (1 ".f) Smelx [7]

Assuming ¢, and ¢y, as the vacant or available sites (ug g™' of soil) for adsorption
on equilibrivm and Kinetie type sites (8, and 5} ), respectively, we have
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0. = (Se)max - Se =f Smax — Se
q)k = (Sk)max - Sk =(1 _f) Stax — Sk [8]

with the total available sites of ¢ = ¢, + ¢y. As the sites become filled or occupied
by the retained solute, the amount of vacant sites approaches zero, (¢, + ¢) — 0.
In the meantime, the amount of solute retained by the soil matrix approaches the
total capacity or sorption maxima (S, + Sx) = Spax-

The second-order approach was successfully used for Cr retention and trans-
port predictions by Selim and Amacher (1988) and for Zn retention by Hinz et al.
(1992). This model was recently modified such that the total adsorption sites Sy,
were not partitioned between S, and Sy phases based on a fraction of sites f (Selim
& Amacher, 1997; Ma & Selim, 1998). Instead it was assumed that the vacant sites
are available to both types of S, and S,. Therefore, f is no longer required and the
amount of solute adsorbed on each type of sites is only determined by the rate co-
efficients associated with each type of sites. As a result, sites associates with equi-
librium or instantaneous type reactions will compete for available sites prior to slow
or kinetic type sites are filled. Perhaps such mechanism is in line with observations
where rapid (equilibrium type) sorption is first encountered and followed by slow
types of retention reactions, We are not aware of the use of this second-order ap-
proach to describe heavy metal retention kinetics and transport in soils.

In the following analysis we followed similar overall structure for the sec-
ond-order formulation to that described for the multireaction approach where three
types of retention sites are considered with one equilibrium type sites (S.) and two
kinetic type sites, namely S| and S,. Therefore, we have ¢ now related to the sorp-
tion capacity (Sp.c) by

Smax =0+ S +8+ 5, [9]

The governing retention reactions can be expressed as (Ma & Selim, 1998):

S.=K.0Co [10]
(8/00) =k, 0 CO—k, S, [11]
(35,/01) = [k30 Cp — k4 So] — K5 S, [12]
(885/00) = ks S5 [13]

(3S;,/0) =k, O C [14]

The unit for K, is cm? pg', k; and k4 have a derived unitof et pg Th ' by, kg, kg
and k,,, arc assigned with the unit of hours (h 1),
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MATERIALS AND METHODS

McLaren surface soil (unclassified) with pH of 4.1, organic matter content
of 3.03%, and cation exchange capacity (CEC) of 33.0 mmol kg~!. McLaren soil
was obtained from a site near an abandoned Cu mine on Fisher mountain, Mon-
tana. Acid mine drainage from the abandoned mine flows into Daisy Creek below
the mine that is located about 3.2 km (2 mi) from Cooke City, Montana (Amacher
et al., 1995). Results from undisturbed soils near the minespoil are reported here.
The minespoil is characterized by high Cu contents and low pH.

Kinetic retention of Cu was studied using the batch method described by
Amacher et al. (1988). Triplicate 3 g of soil was placed in polypropylene tubes and
mixed with 30-mL solutions of known initial Cu concentrations. Initial concentra-
tions (C,) of Cu were 5, 10, 20, 50, and 100 mg L~!. Reagent-grade copper per-
chlorate was used. Background solution composition was 0.005 M Mg(ClO,),. The
soil slurry was shaken 15 min every 2 h. After 2, 4, 8, 12, 20, 48, 96, and 192 h of
reaction time, samples were centrifuged and aliquots of 1.0 mL of the supernatant
were withdrawn for Cu concentrations analysis using inductively coupled plasma
spectroscopy (ICP). The samples were reweighed, vortex mixed, and returned to
shaker. The amount adsorbed were calculated as the decrease in Cu concentration
in soil solution. For each concentration, the means of triplicate samples are reported
throughout.

Following adsorption, Cu desorption was carried out using successive dilu-
tions. Here, the soil residue with initial Cu concentrations (Cg) of 50 and 100 mg
L~! was extracted with 0.005 M Mg(ClQ,), several times. Each extraction was con-
ducted by adding 30 mL of 0.005 M Mg(ClQy,), solution after decanting the su-
pernatant. The first four extractions were completed in 2 h in order to evaluate the
equilibrium adsorption sites. The subsequent four extractions were conducted with
a three-dimensional equilibration time interval between each desorption step in order
to assess the affinity of retention sites for Cu during desorption.

RESULTS AND DISCUSSION
Single Reaction Models

Several sorption isotherms representing the total amount of Cu retained (S)
vs. Cu in soil solution (C) are shown in Fig. 6-2. These results were obtained for
selected reaction times from the batch experiments and show the kinetics of Cu re-
tention in this soil. In addition, Cu retention is not only time dependent but non-
linear in nature. Similar kinetic and nonlinear behavior of other heavy metal retention
has been observed by numerous investigators. The concave sorption nonlinearity
implies that Cu mobility in the soil solution tends to increase as the concentration
increases. A simple way to describe the above sorption isotherms is by use of the
I'reundlich equation;

SR [15]
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Fig. 6-2. Adsorption isotherms for Cu on McLaren soil at different retention times. The solid curves
are based on the Freundlich equation.

was used where K; is the distribution coefficient (cm?® g=') and b is an exponential
parameter. A set of Ky and b values was obtained for each § vs. C data set. Exam-
ples of isotherms calculated using Eq. [15] are shown by the solid curves in Fig.
6—2. The parameters obtained indicate that K; was strongly time dependent (see Fig.
6-3). The K, values along with their standard errors are also given in Table 6—1.
The goodness of fit of the model to the data is given by the 2 values. The K; value
increased from 16.7 to 42.1 m* Mg~! with retention time from 2 and 196 h, re-
spectively. The parameter b was less than unity for all isotherms and ranged from
0.601 to 0.696 with a mean value of 0.629. No consistent trend for b vs. reaction
time was observed, however. In fact, these b values did not vary appreciably for
the different reaction times. Similar behavior was observed for Cd by Hinz and Selim
(1994) who found b to vary from 0.60 to 0.74 for Cd for a time range of 2 to 240 h.
The extent of nonlinearity of Cu isotherms can thus be compared with Cu
isotherms obtained by other investigators. For example, Buchter et al. (1989) mea-
sured K¢ and b for Cu after 1 d of retention for 11 soils having a wide range of prop-
erties. They reported a range of » values from 0.47 to 1.42 with a mean value of
0.76. Recently, a somewhat lower value for b of 0.42 was reported by Houng and
Lee (1998). These investigators also reported that b for Cu was not affected by the
presence of Cd as a competing heavy metal. It should be emphasized, for most stud-
ies, adsorption isotherms represent one-dimensional retention where the kinetics
of the sorption processes is not investigated.
The results shown in Fig. 6-3 indicate that for & given reaction time, the Fre-
undlich Eq. [ 5] was capable of describing the overall shape of the isotherms. Nev-
ertheless, the time dependency of Ky implies that the imodel piven by L. [15] rep-
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Fig. 6-3. Freundlich parameters K; and b vs. retention time.

resents an over simplification of the retention mechanisms in the soil. Specifically,
a single equilibrium reaction was incapable of describing the kinetic behavior
shown.

Measured isotherms of the type shown in Fig. 6-2 are frequently described
using the Langmuir approach. In fact, several investigators indicated that one-di-

‘Table 6-1. Parameter estimates, standard errors, and coefficient of correlation » ) for the Langmuir and
Freundlich equations at various reaction times.

Time Somax ® = K; b r

h ——— mgkg™! L mg™!

2 637.8 £ 163.7 71.2 +30.9 0.976 16.71 = 3.51 0.696 + 0.053 0.988

4 5542+71.6 424 £ 109 ().986 2525+3.32 0.624 £ 0.634 0.994

¥ 6349+ 839 41.1 = 10.7 0.987 27.82x6.15 0.640+0.058 0.983

(2 619.6+759 36,7492 0.987 3041 £6.76 0.625 +0.058 0.981

R 721.9 £ 85.9 RISUE 3 (LURY 3479+ 044 0.636 = 0.050 0.987

48 6832+ 020 30.01 5.9 (19U $0.00 £ 6,10 (.606 + 0.041 0.993

6 7018+ 78.3 RU SN R () OKY 4230+ 875 (L6033 + 0.037 ().994

| 94 ORU.O t KT RS0 /A0 () LUK 42X 10t 0.K0 0.601 + 0.045 ().Y8Y
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mensional isotherms for Cu and other heavy metals can be well described using Fre-
undlich and Langmuir approaches (Cavallaro & McCbride, 1978; Harter, 1984;
Amacher et al., 1986; Schulte & Beese, 1994; Aassova, 1995; Houng & Lee,
1998). Although the Langmuir form is not strictly recommended over the Freundlich
equation, it is often preferred since it provides a sorption maxima S, that can be
correlated to intrinsic soil properties such as the type of clay, specific surface area,
etc. Therefore, the isotherms shown in Fig, 6-2, were also described based on the
Langmuir form,

S = SnaxCl(w + C) [16]

where the parameter @ (mg L™!) is a Langmuir coefficient that represents a mea-
sure of the affinity of sites or bonding strength. Based on nonlinear linear least
squares, best—fit Langmuir parameters for the different adsorption times were ob-
tained and are given in Table 6-1 and ® and S,,,, vs. retention time are shown in
Fig. 6-4. Based on # and root mean square errors (rmse), the Langmuir formula-

1000 -
Langmuir Smax
800 4
2 ;s i
E’ 600 -
&
X 400 -
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Fig. 6 4. Langmuir parameters S, and @ vs.retention fime,
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tion is capable of describing our Cu adsorption data. In fact, the LLangmuir approach
was successfully used to describe several heavy metals including Cu isotherms for
several soils (Cavallaro & McCbride, 1978; Harter, 1984; Amacher et al., 1986;
Atanassova, 1995; Houng & Lee, 1998). Unlike the isotherms presented here, the
time of reaction for most Cu isotherms reported in the literature is limited to 1 d of
adsorption.

The fact that the sorption capacity term (S,,,x ) given in Table 6-1 did not ap-
preciably change with retention time gives credence to the Langmuir model in de-
scribing our Cu results. This is a significant finding if the sorption capacity is to be
used in describing the retention behavior as well as the potential mobility of a heavy
metal such as Cu in soils. If S}, is not a unique value and varies with time or con-
centration, the use of such term in modeling efforts becomes questionable. We rec-
ognize that based on parameter estimation alone, we cannot conclude that the
Langmuir equation is uniquely applicable to our Cu sorption data. In fact, as argued
by Sposito (1982) and Amacher et al. (1988) isotherm equations such as those of
Eq. [15] and [16] should be regarded as empirical equations and that their use con-
stitutes primarily curve-fitting procedure.

The consequence of the above is that based on goodness of fit of the sorp-
tion data, both the Freundlich and the Langmuir approaches described the data
equally well for all reaction times (see Table 6-1). It is also conceivable that such
a finding is expected since both approaches result from the general isotherm equa-
tion (Kinniburgh, 1986)

Smax !

s g [ mer e

=1 1+ € (K]‘Ci )?"i [17]
where j=1, F;=1,B;=1, A;=1, and g; = 1 for the Langmuir equation. Whereas
for the Freundlich equation.we have j=1, F;=1,3;=1,and g = 0.

Multiple Reaction Models

Results from the kinetic batch experiments for our soil are presented in order
to illustrate the changes in Cu concentration (C) vs. time for the various initial (input)
concentrations {Cg). Retention of Cu by the soil matrix was rapid during the ini-
tial stages of reaction and was then followed by slow and continued Cu retention
as depicted by the changes of C vs. time results. The capability of the multireac-
tion approach discussed above in describing the experimental batch data is shown
by the solid curves of Fig. 6-5 for the various initial concentrations (C,’s). Good
model predictions were observed for the wide range of input concentrations val-
ues considered.

The multireaction model used here accounts several interactions of the re-
active solute species (Cu) within the soil system. Specifically, the model assumes
that a fraction of the total sites is highly kinetic whereas the remaining fraction in-
tcracts slowly or instantancously with solute in the soil solution. As illustrated in
Fig. 61, the model also accounts for irreversible reactions of the concurrent and
consccutive type. As aresult, different versions of the multireaction model shown
in Fig. 6 | represent difterent renctions from which one can deduce Cu retention
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Fig. 6-5. Experimental results of Cu in soil solution for McLaren soil vs. time for a wide range of ini-
tial concentrations (C,’s). The solid curves were obtained using the multireaction model with con-
current (top figure) and consecutive (bottom figure) irreversible reactions. Fitted parameters were n,
ki, ky, and k;; (top) and n, k3, k4, and ks (bottom) and are given in Table 6-4.

mechanisms. Several variations were examined: (i) a two-parameter model with &,
and k;.; (i) a four-parameter model with k., &, and k,. and &;,,; (ii1) another four-
parameter model with k., k3, k4 and ks; and (iv) a five-parameter model with &y, &3,
ka, k4, and k;.r. These variations were chosen based on our obscrvitions of Cvs, time
and assumes the presence of at least a fraction of retentton sites that interactys
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Table 10-2. Comparison of gocdness of fit of the multireaction model with S, and S;,, for McLaren soil.
All C,’s were used for the “overall” fit.

C, Model» RMSE n SE K, SE Kin SE
mg L’ —m*MgL!— h-!

5 0.747 2024 0244 8316 0.010 1928  0.0138 0.0535

10 0.641 5460 0594 15338.0 0.002 9849 00113 0.1033

20 0.757 9.349 0.221  4200.0 0.002 39.46 0.147 0.027 7

50 0.501 23.034 0.212 11 609.0 0.006 3949 0.0043  0.0305

100 0.550 38.126 0295 92650 0.004 273.8 0.0035 0.0077
Overall-A  0.981 3.098 0.584 0.0655 3.605 0917 0.0028 0.0004
Overall-B  0.981 3.075 0.629% -- 3.041 0.135 0.0028 0.0004

+ n was derived from Freundlich Eq. [15].

slowly (kinetic) and another which is kinetic but irreversible or slowly reversible
in nature. Each model variation was fitted to the experimental data using a nonlin-
ear, least-squares, parameter optimization scheme (van Genuchten, 1981, p. 80).
Criteria used for estimating the goodness-of-fit of the model to the data were the
r* and the root mean square error (rmse) statistics (Kinniburgh, 1986),

rmse = [rss/(N — P)]\/2 [18]

where rss is the residual sum of squares, N is the number of data points, and P is
the number of parameters.

In our simulations, the multireaction model was fitted to Cu vs. time for all
input concentrations (C,) simultaneously. As aresult an “overall” set of model pa-
rameters for the appropriate rate coefficients, applicable for the entire data set, was
achieved. Generally, individually fitted parameters had large standard errors due
to small degrees of freedom. Several model variations even failed to fit Cu con-
centration vs. time for most C,‘s and convergence was often not achieved. In ad-
dition, large variations existed among fitted model parameters. The example shown
in Table 6-2 is for the simplest case where only two sorbed phases were consid-
ered; a reversible (S,) and an irreversible (S;;) where three model parameters were
estimated (n, k., and k;,. ). For most C,’s, parameter optimization failed to fit the
data. Moreover, the nonlinear parameter n was particularly difficult to estimate due
to extremely high standard errors. We also found that when other verstons of the
multireaction model were tested, poor parameter estimates were obtained. There-
fore, the use of a data set from an initial input concentration was not recommended
in our study for the purpose of parameter estimation of the multireaction model.

In order to overcome this difficulty, the entire data set consisting of all input
concentrations (C,‘s) was used in the nonlinear least-square optimization. The re-
sulting overall set of parameter estimates for our simplest model version (e.g., n,
k., and k;,;) are given in Table 6-2. This use of the entire data set resulted in increased
degrees of freedom. Specifically, this resulted in a decrease of the root mean square
error (rmse) and improved r? value as well as a decrease in parameter standard er-
rors. In addition, the overall shape of € vs. time observations for the different C,’s
were improved using this overall fitting strategy. The estimated value for 1 was 0.584
that is within the confidence interval of the Freandlich £ (=0.629) obtained carlier
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Table 6-3. Goodness of fit of the multireaction model when the nonlinear parameter n was derived from
the Freundlich equation (n = b = 0.629) for individual as well as overall Cy’s.

C, Model» RMSE k, SE K SE K SE

mg 1.7 h!

6 0.601 0.3601 0.682 0.225 0.429 0.167 0.0062  0.0022

10 0.849 0.3668 0.922 0.109 0.270 0.043 0.007%  0.0022

20 0.762 0.8887 1.133 0.179 0315 0.063 0.0059  0.0018
50 0.802 2.1709 0.994 0.163 0.273 0.056 ¢.0028  0.0010
100 0.663 4.3336 1.217 0.252 0.357 0.087 0.0019  0.0007
Overall 0.992 2.0635 1.131 0.089 0.323 0.031 0.0020  0.0003

(see Fig. 6-2, Table 6—1). Consequently, we tested whether the value of Freundlich
b can be used in place of the parameter » in the multireaction model. Therefore, for
this model version, only two parameters were estimated (k. and ;) that resulted
in equally good description of C vs. time for all C,’s (figure not shown). Moreover,
when n = b was assumed, the resulting rmse and r* values were comparable to those
when n was estimated (see Table 6-2).

Based on the above findings, we tested other versions of the multireaction
model where n = b was assumed (see Tables 63 and 6—4). The examples shown
in Figs. 65 and 6-6 (see also Table 6-3) are for the case where a kinetic phase (S;)
and an irreversible phase (S;,) were constdered. Based on goodness of fit of the
model to the experimental results, the use of Freundlich 4 in place of » is recom-
mended only if the entire data set (for all C,’s) is simultaneously used in the opti-
mization method (see Table 6-3). Obviously, the use of n = b reduces the number
of total parameters to be estimated that is advantageous because the parameter n
is, in general, difficult to estimate as discussed above. Simulations, where n = b was
assumed, are shown in Fig. 6-6 for two model versions. It is obvious from the sim~
ulations shown in Figs. 6-5 and 66, a number of model versions were capable of
producing indistinguishable simulations of the data. Similar conclusions were
made by Amacher et al. (1988, 1990) for Cd, Cr(VI), and Hg for several soils. They
also stated that it was not possible to determine whether the irreversible reaction i
concurrent or consecutive, since both model versions provided similar fit of theit
batch data. Contrary to their findings, we found that the use of a consecutive irres
versible reaction provided an improved fit of our Cu data than other model versiongy
This finding is based not only on # and rmse values but also on visual observatiolt |
of model simulations. '

!

Second-Order Two-Site

The adsorption maximum, which is often used to characterize heavy met
adsorption, can be quite misleading if the experimental data do not cover a suff}
cient range of solution concentration and if other conditions such as the amoun
initially sorbed prevail (Houng & Lee, 1998). Harter (1984) emphasized th
isotherms should be examined in the original form and if they do not show the co
rect shapes and only the low concentrations arc used, the Langmuir equation ¢
provide estimates of the adsorption maximum that arce i crror by 50% or more, |
our study, we have shown that, for reaction times greater than 20 to 30 h, S, w




Tabwe 10—4. Goodness of fit of several versions of the multireaction model for describing Cu adsorption on McLaren soil. Model versions A-1 and A-2 are based on con-
Surrent irreversible reaction whereas versions B-1 and B-2 are based on the consecutive type.

Mode!

W2TSION Model r2 RMSEi n SEi K} SE K2 SE k3 SE k4 SE ks SE Kirr SE
h!

A-1 0.992 2.071 0592 0042 1318 0256 0327 0302 -- -- -- -- - -- 0.0020 0.0003

A-2% 0.992 2.062 0.629 -- 1.131  0.089 0323 0.031 -- -- -- -- - -- 0.0020 0.0003

B-1 0.999 2.000 0.619 0.0375 - -- - -- 1.1980 0.2104 0.3264 0.0304 0.0024 0.0004 -- --

B-2+ 0.992 1.987 0.629 -- - -- -- -- 1.1871 0.0951 03496 0.0021 0.0021 0.0004 -- --

* n value derived from the Freundlich Eq. [15].
1 RMSE = root mean square error, SE = standard error.
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not time dependent (see Fig. 6-3). To further test its validity, the average Langmuir
Smax from Table 6-1 was utilized as an input parameter in the second-order two-
site formulation (SOTS). Since SOTS relies on the assumption that rate of reten-
tion is a function of the amount of unoccupied or vacant sites, the choice of the ap-
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propriate S,,,, is essential in simulation and prediction of adsorption-desorption as
well as transport behavior of heavy metals in soils.

Figure 6-6 shows adsorption results using the SOTS model based on two
model versions. The associated estimates of the parameters that provided model re-
sults along with their standard errors are given in Table 6-5. For both model ver-
sions, S« Was not estimated rather the values used was 689.67 mg kg~! which was
obtained from the Langmuir formulation (see Table 6—1). The goodness of fit of
the model to the data is once gain based on r? and rmse values that illustrate the ver-
satility of the model. The question arises when we relaxed our assumption of the
use of Langmuir S,,,,« and utlized the SOTS with the optimization scheme to arrive
at best estimate of the rate coefficients (k,, k,, etc.) as well as S, The results of
the optimization for the two model versions are also given in Table 6-5. Based on
these results, it is clear that the use of Langmuir S,,, as an input parameter pro-
vides reliable predictions of our adsorption kinetic results.

The success of the second-order approach in describing the Cu results is sig-
nificant since, to our knowledge, the SOTS formulation described in this chapter
has net been applied for heavy metals. Previous use of the second-order formula-
tion that included a partitioning of the sites indicated that for Cr and Zn the rate co-
efficients were highly concentration dependent (Selim & Amacher, 1988; Hinz et
al., 1992). In contrast, important features of the SOTS approach used here include
the fact that the reaction rate coefficients are not concentration dependent, rather
only one overall set of parameters is needed to describe the data. In addition, a prior
knowledge of the fraction of the equilibrium to kinetic sites from total available is
not needed. Moreover, the use of Langmuir S,,,, as an input parameter provided
equally good prediction of our batch data.

Hysteresis

Adsorption-desorption results are presented as isotherms in the traditional
manner in Fig. 67 that clearly indicate considerable hysteresis for Cu. This hys-
teretic behavior resulting from discrepancy between adsorption and desorption
isotherms was not surprising in view of the kinetic retention behavior of Cu in our
soil. Several studies indicated that observed hysteresis in batch experiments may
be due to kinetic retention behavior and slow release and/or irreversible adsorption
conditions. Adsorption-desorption isotherms indicate that the amount of irre-
versible or nondesorbable phases increased with time of reaction. Copper may be
retained by heterogeneous type sites having a wide range of binding energies. At
low concentrations, binding may be irreversible. The irreversible amount almost
always increased with time (LLehman & Harter, 1984). Recently, Wu et al. (1999)
suggested that Cu hysteresis is probably due to extremely high energy bonding with
organic matter and layer silicate surfaces. The fraction of nondesorbable Cu was
relerred to as specifically sorbed. Atanassova (1995) showed that desorption was
non-hysteretic for a Planosol whereas strong desorption hysteresis was observed
lor a Vertisol. It was suggested that Cu was fixed in a nonexchangeable form that
resulted in Tack of reversibility as well as hysteretic behavior.

Many researchers veported that the magnitude of hysteresis increases with
longer sorption incubittion peviods, Amsworth ecal. (1994) found that despite in-
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Table 10-5. Goodness of fit of several versions of the second-order model for describing Cu adsorption on McLaren soil. Model versions A-1 and A-2 are based on con-
current irreversible reaction whereas versions B-1 and B-2 are based on the consecutive type.

Model

version Model 72 RMSE:i: Smax SE:‘: Kl SE K2 SE k3 SE k4 SE k5 SE Ku‘r SE
—mgkgtT— !

A-l 0.995 1.629 690.88 48.00 0.00432 0.00045 0.1770 0.0217 -- -- - - - -- 0.000070 0.000 020

A-IF 0995 1.607 68967 - 000433 0.00032 01767 00181 - -~ - - -- -~ 0.000071 0.000013

B-1 0995 1623 642.16 44.80 -- - - - 0.00473 0.00051 0.1579 0.0196 0.00118 0.00027 - -

B-2+ 0995 1.621 689.67 -- -- - -- - 0.004 36 0.00032 0.1688 0.0169 0.00436 0.00032 - -

T S 15 provided from Langmuir Eq. [16].
= RMSE = root mean square error, SE= standard error.
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Fig. 6-7. Adsorption and desorption isotherms illustrating hysteresis behavior of Cu retention in
McLaren soil.

creasing the desorption times from 16 h to 9 wk, hysteresis persisted for Co and
Cd sorbed on hydrous ferric oxide. They also found that Cd and Co displayed in-
creasing hysteretic behavior upon aging from 2 to 16 wk while Pb sorption/des-
orption behavior was reversible. Hysteresis has also been observed in ion ex-
change reactions for several cations, where the exchange of one sorbed cation with
another is not completely reversible, i.e., the forward and reverse exchange reac-
tions do not result in the same isotherms. The hysteretic behavior of cation exchange
is abundantly reported in the literature; a critical review of this literature was pub-
lished by Verburg and Baveye (1994). From a survey of the literature they were able
to categorize several elements into three categories. The elements in each category
were found to show hysteretic exchange between groups, but not within groups. Ver-
burg and Baveye (1994) proposed that exchange reactions are most likely a multi-
stage kinetic process in which the later rate-limiting processes are a result of phys-
ical transformation in the system, e.g., surface heterogeneity, swelling hysteresis,
and formation of quasi-crystals, rather than simply a slow kinetic exchange process
where there exists a unique thermodynamic relationship for forward and reverse
reactions. While this may be true in some circumstances, an apparent (pseudo) hys-
teresis also can result from slow sorption and desorption reactions, i.e., lack of equi-

librium (Selim et al., 1976). Regardless of the different reasons for hysteresis, it is
evident that kinetic models such as those proposed in this study need to be com-
plimented by detailed information on the mechanism(s) responsible for the slow

kinetic reaction(s).
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Validation

Validation of models such as the second-order and multireaction model re-
quires model parameters to be estimated independently. Such a validation should
be carried out prior to model adoption for prediction of retention and mobility of
heavy metais in soils. This validation is also necessary for the use of a model for
different soils and for a wide range of conditions. This requirement is not always
achieved because independent parameters are not often available, however. As a
result, evaluation of a model is sometimes restricted to goodness of fit of the model
results to experimental measurements.

Validation of our proposed kinetic model is illustrated by the solid and dashed
curves shown by the C vs time results shown in Figs. 6-8 and 6-9 for C, of 50 and
100 mg L~!. Here all model parameters for both the multireaction and second-order
models were based on adsorption data only. With the exception of p and 6, initial
conditions for this initial-value problem were the only input required. Based on these
predictions, we can conclude that both models predicted Cu desorption or release
behavior satisfactorily. However, predictions of desorption isotherms were not
considered adequate at the initial stages of desorption following adsorption. In ad-
dition, the model underpredicted amount sorbed that directly influences subsequent
predictions for the desorption isotherms. Discrepancies between experimental and
predicted are expected if the amounts of Cu in the various phases (C, S, §;, and
S,) at each desorption step were significantly different. These underpredictions also
may be due to the inherent assumptions of the model. Specifically, the models may
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Fig. 6-8. Experimental results of Cu in soil solution for McLaren soil vs. time during adsorption and
desorption for initial concentration C, = 50 and 100 mg I. '. The solid and dashed curves are pre-
dictions based on parameters from adsorption data using the moltireaction and second-order models
gtven in Tables 6-4 and 6--5, respectively, The irreversible mechanism was aceounted for based on
concurrent l'{‘-'l('li()llﬁ.
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not account for all retention or provide incomplete description of Cu reactions in
soils.

Finally, based on literature review, most retention experiments were de-
signed for adsorption measurements where desorption data were not always sought.
Therefore, kinetic retention models, such as those proposed in this study, which are
capable of predicting desorption behavior of heavy in soils based solely on ad-
sorption parameters are of practical importance. Based on our results, the overall
goodness of our model predictions are considered adequate and provides added cre-
dence to the applicability of our proposed model approaches. Moreover, adsorp-
tion as well as desorption results, the second-order model was superior compared
to the multireaction model. Furthermore, model formulations with consecutive ir-
reversible retention, for MRM as well as SOTS, provided better Cu description than
other model versions.

SUMMARY AND CONCLUSIONS

The kinetic behavior of Cu in McLaren soil, during adsorption and desorp-
tion, is consistent with observation for other heavy metals and soils. In fact, sev-
eral researchers have noted that not only are heavy metals strongly sorbed and ex-
hibit slow desorption kinetics, but that the rate of desorption decreases with in-
creasing reaction. Padmanabham (1983) conducted desorption experiments of Cu
from goethite and concluded that Cu was sorbed in two different ways: a fraction
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Fig. 6-9. Experimental results of Cu in soil solution for McLaren soil vs. time during adsorption and
desorption for initial concentration C,, = 50 and 100 mg L', The solid and dashed curves are pre-
dictions based on purametesrs from adsorption data using the multireaction and second-order models
givenin Tables 6 4wl 6 5 gespectively, The irreversible mechanism was accounted for based on
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was associated with low bonding energy and the rest was associated with high bond-
ing energy. It was observed that a gradual interchange with increasing incubation
time occurs between the readily desorbed fraction (low energy) and the less read-
ily desorbed fraction (high energy). Smith and Comans (1996) observed an increase
in the slowly desorbed fraction of sorbed Cs from sediments with increasing incu-
bation time. Modeling of their data using a two compartment model suggests that
there exist an exchangeable sorbed fraction and a fixed fraction. Slow transfer be-
tween the two fractions was responsible for slow kinetics of sorption and desorp-
tion.

Mechanisms associated with our modeling efforts using MRM and SOTS con-
sider at least two sorbed phases: a fully reversible phase and one which is fixed or
characterized by slow release or irreversible. The reversible phase (S,) and/or §,
represent kinetic type sites and S, for equilibrium type sites. Adsorption reactions
associated with S, §;, and S, may include mechanisms such as inner-sphere com-
plexes, outer-sphere complexes, and diffuse ions (Sposito, 1989). Outer-sphere
bonds consist of a solvated ion that forms a complex with a charged functional group,
the primary bonding force is electrostatic. An inner-sphere complex is partially de-
hydrated, the ion forms a direct ionic or covalent bond with the surface functional
groups. A diffuse ion exists in the water layers near the surface, and is held by elec-
trostatic attraction from permanent charges that exist in the solid structure. A major
difference between the outer-sphere complex and the diffuse ion complex is in the
strength of the electrostatic force, which is directly correlated to the proximity of
the ion to the surface (McBride, 1994).

Mechanisms associated with irreversible reactions include different types of
surface precipitation that accounts for the formation rption of metal polymers
on the surface, a solid solution or coprecipitate that involves coions dissolved
from the sorbent; and a homogeneous precipitate formed on the surface composed
of ions from the bulk solution, or their hydrolysis products (Farley et al., 1985). The
continuum between surface precipitation and chemisorption is controlled by sev-
eral factors, including: (i) the ratio of the number of sites vs. the number of metal
ions in solution; (ii) the strength of the metal-oxide bond; and (iii) the degree to
which the bulk solution is undersaturated with respect to the metal hydroxide pre-
cipitate. Such mechanisms are consistent with one or more irreversible reactions
associated with our model presented in Fig. 6—1. Based on the goodness of fit to
our experimental results, irreversible retention of the consecutive type appears to
be the dominant mechanism. This finding is equally applicable for the multireac-
tion model as well as the second-order model.

Although, the above studies consider several possible forms of heavy met-
als species to be present in the soil environment, such do not provide the control-
ling mechanisms among the various species. However, the work of Lehman and Har-
ter (1984) supports our assumption of a consecutive rather than a concurrent reac-
tion for irreversible sorption. Lehman and Harter (1984) measured the kinetics of
chelate promoted Cu release from a soil to assess the strength of the bond formed.
Their sorption/desorption data were multisite, which they attributed to high and low
energy bonding sites. They also found that with increased residence time, 30 min
to 24 h, there was a transition of the Cu from low energy sites o high energy sites
(as evaluated by release kinetics). Incubations for ap to fow days showed a con-
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tinued uptake of Cu and a decrease in the fraction released within the first three min-
utes, which was referred to as the low energy adsorbed fraction. Kim et al. (1996)
used nuclear magnetic resonance (NMR) spectroscopy to make microscopic ob-
servations of Cs sorption mechanisms on kaolinite, boehmite, silica gel, and illite.
Their experiments coincide with those of Lehman and Harter (1984), suggesting
that Cs formed two distinct types of complexes on the surfaces of the minerals: inner-
sphere, and outer-sphere.

In conclusion, we presented clearly the kinetics of both sorption and des-
orption processes. The models are based on speculation of possible mechanism(s)
that governs reaction kinetics. However, these hypotheses are based primarily on
macroscopic data, while sorption and desorption processes are microscopic phe-
nomena. At best, macroscopic investigations suggest a particular mechanism may
be occurring; they provide little evidence that other mechanisms are not involved
(Strawn & Sparks, 1999). Despite such difficulties, adequate predictions of sorp-
tion mechanisms based on macroscopic observations are presented. Based on our
studies, to better predict the mechanisms responsible for the kinetic processes gov-
erning adsorption-desorption reactions, microscopic as well as macroscopic data
are needed.
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Macroscopic data for the sorption of Co(II), Cd(IT) and Sr(II) to a-Al,O5 were used
in conjunction with x-ray absorption spectroscopy (XAS) data to estimate triple layer
(TLM) surface complexation model parameters. The XAS results showed that
Co(II) and Cd(II) sorbed as inner-sphere surface complexes and that Sr(II) sorbed
as an outer-sphere complex. In addition, surface precipitation was observed only
in the case of Co(1Il) sorption. Surface complexation model reactions were selected
based on the XAS results for each divalent metal ion, and surface acidity constants
were determined using potentiometric titration data. A solid solution version of the
TLM that appears to be consistent with the spectroscopic data was used to describe
the sorption of Co(IT). The modeling results predicted that Co(II) sorption is dom-
inated by mononuclear surface complexes at low surface coverage and by
Co(1I)/Al(1II) surface precipitates at high surface coverage. In order to model the
Cd(II) sorption data throughout the range of data presented by Honeyman (1984),
it was necessary to incorporate a second high energy surface hydroxyl site. In con-
trast to the Co(II) data, it was not necessary to incorporate a solid solution model
to predict sorption data collected at high coverage. The effects of ionic strength on
Sr(Il) adsorption to a-Al,O5 could be described using two outer sphere reactions.
The results shown in this chapter demonstrate the effectiveness of surface com-
plexation models when the selection of surface reactions and parameter estimation
are constrained by independent measurements.

INTRODUCTION

The prevalence of toxic metal ions in contaminated aqueous and terrestrial
environments represents a significant environmental risk. Effective pollution con-

Copyright @ 200H, Senl Scrence Society of Americs, 677 S, Segoe Rd., Madison, WI 53711, USA. Phys-
feal and Chemical Processes of Water cand Sofute Transport/Betention in Sail. SSSA Special Publica-
1on no, 56,
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trol and remediation strategies for toxic metal ions require accurate descriptions of
their fate and transport in the environment. Inorganic species present in soil and
aqueous systems may undergo a range of reactions that will affect their mobility
and bioavailability in the environment. These reactions include complexation, pre-
cipitation-dissolution, oxidation/reduction and phase partitioning processes. The
least understood and perhaps most dominant of these reactions are those associated
with partitioning of the contaminants to soil surfaces, commonly referred to as sorp-
tion processes. Sorption of a contaminant to soil may occur by adsorption at the min-
eral/water interface, absorption within soil organic matter, or through formation of
a surface or co-precipitate. The type of sorption process that dominates in a par-
ticular system is highly dependent on the type of mineral phases present and the
properties of the sorbing species. Solution conditions such as pH, ionic strength,
metal ion concentration, and the presence and concentration of other sorbing or com-
plexing species can also control the extent and type of operative sorption process.

While the rates and extent of sorption will differ significantly for each of these
sorption processes, approaches commonly employed to describe metal ion sorption
often fail to distinguish among them. Indeed, the most common approach to de-
scribing metal ion sorption has been to fit data to empirical isotherm models that
relate the total concentration of solute in solution phase to its total sorbed concen-
tration. The simplicity of implementing these empirical descriptions of sorption into
field-scale transport models makes them an attractive alternative. Unfortunately,
these empirical models exhibit limited ability to predict sorption outside of the range
of conditions (i.e., pH, sorbate and sorbent concentrations, ionic strength, and so-
lution composition) for which they were calibrated, and therefore are not adequate
predictive tools. Over the past several decades there has been a substantial research
effort directed toward developing mechanistic models capable of describing sorp-
tion reaction phenomena over a range of field-scale behavior. These research ef-
forts have led to the development and refinement of modeling approaches that at-
tempt to accurately depict the reaction of sorbates with mineral surfaces.

Surface complexation models (SCM) have emerged at the forefront of these
more thermodynamic descriptions of adsorption and many geochemical speciation
models have incorporated various SCM into their code’s behavior (Davis et al., 1978;
Davis & Leckie, 1978, 1980; Stumm et al., 1980; Barrow et al., 1980, 1981; Hayes
& Leckie, 1986; Hiemstra et al., 1989a,b; Dzombak & Morel, 1990; Robertson &
Leckie; 1997; Goldberg, 1992). All SCM are based on the assumption that reac-
tions between surface functional groups and sorbing species are analogous to aque-
ous solution complexation reactions. Differences among the various models stem
primarily from their description of the surface/water interfacial region. While SCM
were originally developed and applied to describe sorption of cations and anions
to oxide, hydroxides and oxyhydroxides, they have since been applied to sorption
of metal cations, oxyacids, organic acids and metal-ligand complexes to pure min-
eral phases, mixed mineral assemblages, clays, and natural soils.

During the early development of these surface complexation models, the se-
lection of a particular reaction was based on its ability to fit adsorption data col-
lected in macroscopic experiments in which the extent ol sorption was expressed
by quantifying the mass of solute lost from solution as o function of pH. Model re-
finements were based on attempts to more accuritely describe surface charge be-
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havior, ionic strength effects, proton release and sorption over a large range of total
solute/sorbent ratios. Unfortunately, the selection of the appropriate reaction was
often dependent on the selection of the particular model and a number of different
model reactions were able to fit selected data sets reasonably well. However, the
ability to extend sorption predictions beyond the range of experimental data used
to derive the reaction constants was tenuous.

In order for SCM to serve as predictive tools in natural systems, operative
reaction phenomena must be described accurately over the range of conditions ex-
pected in field-scale scenarios. This requirement is even more evident in light of
studies showing that sorption of metal ions can affect the subsequent sorption of
other solution species (McBride, 1985a,b; Stahl & James, 1991), the surface charge
characteristics of the mineral phase (Hendershot & Lakkluich, 1983; Hansmann &
Anderson, 1985; Anderson & Benjamin, 1990; Ryan & Gschewend, 1992; Herrera-
Urbina & Furstenau, 1995), the morphology of the mineral phase (Johnsson, 1994),
the rate of surface enhanced oxidation and hydrolysis (Fendorf et al., 1993; Tor-
rents & Stone, 1994; Baolin & Stone, 1996); the rate of mineral dissolution (Bondi-
etti et al., 1993; House, 1994; Stumm, 1997) and the coagulation properties of min-
eral phases (Liang & Morgan, 1990).

Over the past several decades, molecular spectroscopy and microscopy have
emerged as the most promising tools for confirming: (i) the types of functional
groups present on mineral surfaces; (ii) the location of sorbed species with respect
to the surface; and, (iii) the molecular structure of sorbed complexes and surface
precipitates. Over the past 10 yr the most promising of these spectroscopic tools
has been synchrotron-based XAS. XAS can provide quantitative structural data of
the coordination environment of sorbing metal ions on pure minerals and natural
sorbents in systems containing metal ion concentrations as low as 10 g cm™
(Brown, 1990). Specifically, extended x-ray absorption fine structure (EXAFS) data
can yield the identity of first and second nearest neighbors, coordination numbers,
and distances from the sorbing metal ion and the first and second nearest neighbors.
Because the technique does not require a vacuum for analysis of transition metals,
sorption samples can be analyzed in an aqueous environment. This tool has been
applied to differentiate between inner-sphere and outer-sphere complexes (Hayes
& Leckie, 1986), mononuclear, polynuclear complexes and surface precipitates
(Chisholm-Brause et al., 1990; Charlet & Manceau, 1992, 1994; O’Day et al.,
1994a,b, 1996, Papelis et al., 1995; Hayes & Katz, 1996; Towle et al., 1997;
Schiedegger et al., 1997, 1998; Thompson et al., 1999), monodentate and biden-
tate surface complexes (Chisholm-Brause, 1991; Bargar et al., 1997; Brown et al.,
1999), internal and external sorption on clays (Papelis & Hayes, 1996; Chen &
Hayes, 1999) and binary and ternary complex formation (Bargar et al., 1998).

The incorporation of this information into surface complexation models will
allow their application to more complex systems and will provide scientists and en-
gineers with the tools necessary to accurately predict metal ion sorption at field-
scale. Thus, the goal of this chapter is to demonstrate a methodology for calibrat-
ing a surface complexation model using spectroscopic information to guide the se-
lection of model reactions. A brief review of divalent metal cation sorption and the
dependence of sorption processes on solution conditions is provided to establish
the basis for surtace complexatton modeling. Background information on the the-
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oretical framework of the SCM approach is also provided to introduce the number
and type of parameters that must be evaluated for applying SCM. The modeling
approach previously developed and applied to the cobalt/a-Al,O4 system is then
reviewed and applied to two different divalent metal cation/ct-Al,O5 systems.

BACKGROUND

The dependence of mineral surface charge and metal ion sorption on the prop-
erties of mineral oxides, metal ions, and solution conditions has been summarized
in a number of previous reviews (see, e.g., James & Parks, 1982; Schindler &
Stumm, 1987; Dzombak & Morel, 1990; Davis & Kent, 1990; Stumm, 1992;
McBride, 1994; Hayes & Katz, 1996). The surface charge of many minerals is
known to vary as a function of pH and is typically characterized by the point of zero
charge of the mineral (pH,,.). Below the pH,,, a mineral carries a net positive charge
and above the pH,,,, the mineral carries a negative surface charge. The variable
charge associated with oxide, hydroxide and oxyhydroxide minerals derives from
the acid/base characteristics of hydroxyl groups on the surface.

In general, pH,, values for silica and manganese oxides are below pH 7 and
values for aluminum and iron oxides are greater than pH 7. Therefore, the electro-
static attraction of a divalent metal ion for a particular mineral will vary with pH.
The adsorption of divalent cations is expected to increase with increasing pH as the
surface becomes less positively charged. For example, Fig. 7-1 demonstrates the
shift in the fractional pH adsorption edge of cadmium (Cd(Il)) with pH,,. of the
sorbent. Reported pH,,,. values of rutile, ferrihydrite and corundum (o.-Al,0O5) are
5.8, 8.5 and 8.9, respectively (Davis & Kent, 1990; Stumm, 1992; Hayes et al.,
1990). Adsorption of Cd(1l) for all of the minerals shown occurs below its reported
PHp,.

’ This ability to sorb against a positive surface charge is common for many
strongly sorbing divalent metal ions and suggests that adsorption to the oxide sur-
face cannot be solely attributed to ion pair formation with surface sites. Strongly
sorbing metal ions are found in the middle of the periodic table and include the di-
valent transition (e.g., Zn Cu, Ni, Co, Fe, and Mn) and other heavy metal cations
(e.g., Cd and Pb). For these divalent cations, sorption has been found to occur
through inner-sphere coordination of the metal ions with surface hydroxyls. The
XAS studies conducted by a number of investigators have confirmed the forma-
tion of inner-sphere surface complexes with a number of these divalent metal ions
(Chisholm-Brause et al., 1990; Fendorf et al., 1994; O’Day et al., 1994a,b, 1996;
Towle et al., 1997; Bargar et al., 1997a,b; Strawn et al., 1998). For example,
EXAFS has demonstrated that cobalt (Co(ll)) sorbs to a-Al,O4, v-Al,O5, and
kaolinite through an inner-sphere reaction in which Co(II) is bonded directly to the
surface (Chisholm-Brause,1991; O’Day et al., 1994a,b, 1996; Bargar et al., 1997b).
Similarly, Bargar et al. (1997a), and Strawn et al. (1998) have shown that Pb sorbs
to o-Al, O3, v-Al, O3, hematite and goethite primarily as inner-sphere complexes.

In contrast to the transition metals, divalent alkaline carth metal ions typically
sorb at pH values above the pH,,,.. For these cations, sorption is believed to occur
primarily through relatively weak 1on pair formation (outer-sphere complexes). The
relative allinity to form complexes with surlace hydroxyls can be correlated with
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Fig. 7-1. Fractional pH adsorption edges for Cd sorption [107% M Cd(IT) added to solution] to corun-
dum, ferrihydrite {am-Fe,0;) and rutile (adapted from Honeyman, 1984).

the inverse of the ionic radii if coulombic forces dominate over ion-dipole and ion
induced-dipole interactions between the counter ions and water molecules (Eisen-
mann, 1962). Based on the ionic radii shown in Table 7-1, the following selectiv-
ity trends are expected for the alkaline earth ions assuming that coulombic forces
dominate:

Mg?>* > Ca** > Sr?* > Ba*.

Table 7-1. Ionic radii of selected divalent metal ions,

Divalent metal ion Ionic radius (pm)¥
Cd 95.0
Co 74.5
Cr 61.5
Ni 69.0
Pb 119.0
Al 53.5
Mg 72.0
Ca 100.0
Sr 118.0

Ha 135.0

F Radit are dor a coordination number of siy tduta are lrom Stannon, 1976),
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The above sequence has been observed in studies of alkaline earth adsorp-
tion on Y-Al,O5; (Huang & Stumm, 1973). The trend is also consistent with the ex-
pectation based on the expected preference of harder Lewis acids for hard Lewis
bases like surface hydroxyls. Limited spectroscopic evidence is available for sorp-
tion of alkaline earth metals because many of these metals do not exhibit sufficiently
high K-shell fluorescence energies to be studied in the presence of corundum and
water using current EXAFS methods. Chen and Hayes (1999) have shown that Sr(II)
sorbs to montmorillonite, illite, and hectorite primarily as a weakly associated outer-
sphere complex. Similar findings have been reported for sorption of Sr(I) to clay
minerals (Parkman et al., 1998; O’Day et al., 2000; Sahai et al., 2000).

It has also become commonly accepted that the dependence of sorption on
ionic strength is also a function of the strength of bonding and whether an inner-
or outer-sphere complex forms (Hayes & Leckie, 1986). For example, as shown in
Fig. 7-2, strontium (Sr(II)) sorption to a-Al,O5 is highly dependent on the con-
centration of the background electrolyte, NaNO,, whereas Co(Il) sorption appears
to be unaffected by increases in NaNOj; concentrations. The lack of ionic strength
effect for Co(II) adsorption is consistent with spectroscopic data (Hayes & Katz,
1996; Towle et al., 1997; Bargar et al., 1997) indicating that Co(II) forms an inner-
sphere complex with surface hydroxyl groups. The EXAFS data for Sx(Il) on
corundum has yet to be reported in the literature, however, the Sr(Il) data is con-
sistent with the findings for clay minerals (Parkman et al., 1998: Chen & Hayes,
1999; O’Day et al., 1999a,b).

While many of these hypotheses have become commonly accepted axioms,
it must be recognized that these generalizations are oversimplifications. Outer-sphere
complexes have been observed in systems for which macroscopic data showed a
lack of ionic strength dependence, and there are examples in the literature in which
strongly sorbing metal ions exhibit ionic strength dependence (Kosmulski, 1996;
Bargaret al., 1997b). For example, studies reported by Bargar et al. (1997b) on sin-
gle crystals indicate that Pb can form both inner- and outer-sphere complexes de-
pending on the crystallographic surface. In studies with an oriented single crystal
of v-Al, O3, Pb(1l) formed outer-sphere complexes on the y-Al,O5 (0001) surface
and inner-sphere complexes on the y-Al,0, (1102) surface. These differences have
been explained using bond valence theory to distinguish between the affinity of
Pb(II) for the different crystal faces. These findings further highlight the deficien-
cies associated with relying solely on macroscopic sorption data to guide the se-
lection of surface complexes in SCM applications and reiterate the need for spec-
troscopic identification of surface complexes.

The utility of EXAFS has been especially evident in recent studies examin-
ing the formation of surface precipitates. A number of investigators have suggested
the formation of surface precipitates to explain poor SCM model fits in data ranges
for which the surface concentration of sorbed metal ion is high, but the system is
undersaturated with respect to buik metal ion solubility (Farley et al., 1985; Dzom-
bak & Morel, 1990; Charlet & Manceau, 1992). Recent research in the geochem-
ical, soil science, and environmental literature has confirmed the formation of
polynuclear sorbate structures with varying surface loadings of Co(ltl), Cr(Il),
Cu(II), Ni(II), and Ph({11) on a wide variety of metal oxide and clay mineral surfaces
(Chisholm-Brause et al., 1990; Charlet & Mancean, 1992, 1994 Fendorf etal., 1994,




SPECTROSCOPIC METHODS & SORPTION MODEL PARAMETERS 219

100
® NaNO, =0.01M
] ® ™
NaNO, = 0.1M : -
80 [ANaNO, =0SM e m"
= - A
60 A
- e "a
E N
2 40 e
g .
R
[ ]
20
- A o-ALO, = 20 g/L
(A) Total Sr = 1.26x 104M
0
8 9 10 11
pH
100 N —
EmNaNO, =0.01M L ® P
.NaNO3 = 0.05M ] (B)
80 | ANaNO;, =0.I1M
PY
A
60 e
s A
'g’ A®
2 40 "..
<
S
20 o ° a- ALO,=2 g/L
| Total Co = 2x10-°M
o & u
6 7 8 9
pH

Fig. 7 2. Bffect of increasing swomie strength on pH adsorption edges for (A) a weakly sorbing divalent
imetal, Se(lD; and () o sttongly sonbimg divalent metal ion, Co(ll),



220 KATZ & BOYLE-WIGHT

} Me(ll) & Me(lll)

Interlayer
anions, e.g.

NO3

7

SN

‘/{,;7'

Fig. 7-3. Representative hydrotalcite structure. The charge imparted by Al** incorporation into the edge-
sharing octahedra of the brucite sheets is compensated by charge balancing anions in the interlayer.

O’Day et al., 1994a,b, 1996, Hayes & Katz, 1996; Papelis & Hayes, 1996; Schei-
degger et al., 1997, 1998; Towle et al., 1997; Xia, 1997). The formation of these
surface precipitates occurs below bulk solution saturation for precipitation of pure
metal hydroxide phases and at submonolayer surface coverages in many of the cases
cited above.

Surface precipitates formed during sorption of Co(Il) and Ni(Il) to aluminum
oxide and clay systems are similar to the hydrotalcite group of minerals identified
in geologic weathering environments (Bish, 1980) and consist of brucitelike lay-
ers of edge-sharing metal octahedra interlayered by charge-compensating anions
(see Fig. 7-3). The general structural formula can be expressed [Me(II),_,
Me(I1D,(OH), 1** [A%, “YH,O]* (Brindley & Kikkawa, 1979; Hashi et al., 1983;
Taylor, 1984) where the presence of interlayer anions, A", is required to compen-
sate the excess positive charge imparted by AP* substitution into the octahedral layer
(Fig. 7-3). EXAFS can be used to analytically distinguish these phases from pure
metal hydroxides because A1’ incorporation leads to a contraction in the average
Me-0O-Me bond and reduction in the number of nearest-neighbor Me ions (de la Cail-
lerie et al., 1995; Bellotto et al., 1996, Scheidegger et al., 1997; Towle et al., 1997).

The formation of mixed metal hydroxide precipitates is not expected for all
divalent metal ions. In a recent paper by Bargar et al. (1997) examining sorption
of Pb(Il) on a-Al,O5 using EXAFS, the formation of small multinuclear clusters
observed at high coverage were not consistent with the formation of a mixed metal
hydroxide precipitate. Similar results were obtained by Strawn et al. (1998) in the
study of Pb(II) sorption complexes on y-Al,0s. In this study, no surface precipi-
tates were detected after 23 d of equilibration and EXAFS data suggested that Pb(Il)
primarily formed a monomeric inner-sphere complex with AI(TIT) hydroxyl func-
tional groups. It was hypothesized that the lack of formation ol a surface precipi-
tate for Pb was due to the large ionic radius of Ph relative to AR, In a study of
Cd(I) adsorption to porous transition aluminas (Papelis e al., 1995), there was also
no evidence supporting the formation of polynuclear cadminn surface complexes
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Table 7-2. TLM parameters and potential metal ion sorption reactions.

Parameter  Description

N Site density

K* Mass law formation constant for SOH?*

K- Mass law formation constant for SO~

Koo Mass law formation constant for background electrolyte cation

K Mass law formation constant for background electrolyte anion

C, Inner layer capacitance for describing relationship between charge and potential

C, Quter layer capacitance for describing relationship between charge and potential
Kuve Mass law formation constant for complexation between metal ion and surface hydroxyl
Hypothetical reaction Complex formed

SOH + Me?* & SO~ -Me?* + H* (Outer-sphere)

SOH + Me?** + H,0 ¢ SO—-MeOH* + 2H* (Outer-sphere)

SOH + Me?* < SOMe* + H* (Inner-sphere, mononuclear, -dentate)
SOH + Me?* + H,0 < SOMeOH + 2H* (Inner-sphere, mononuclear, -dentate)
SOH + Me** + An~ <> SOMeAn + H* (Inner-sphere, mononuclear, ternary)
SOH + Me?* + An~ & SOHMeAn* (Inner-sphere, mononuclear, ternary)
SOH + Me?* + An~ & SOMe*-An~ + H* (Inner-sphere, mononuclear, ternary)
2SOH + Me?* + H,0 < (S0),Me + 2H* (Multidentate)

SOH + 4Me?* + 3H,0 <> SO(Me),(OH){* + 4H* (Multinuclear)

SOH + Me?* + 2H,0 < (SOH)..Me(OH),,, + 2H* (Surface precipitate)

in systems that were undersaturated. However, in systems that were well oversat-
urated with respect to cadmium hydroxide solubility, precipitate formation was ob-
served during sample preparation and was apparent in the EXAFS spectra. Re-ex-
amination of Table 7—1 suggests that the lack of surface precipitation in this sys-
tem may also be due to the large ionic radius of Cd(Il) relative to AI(III).

These results suggest that the sorption mechanisms of Sr(II), Cd(Il) and
Co(II) to aluminum oxides are distinctly different. Spectroscopic data for Sr(1I) ad-
sorption to clays and to iron oxide suggest that Sr(Il) adsorbs as an outer-sphere
complex. Spectroscopic data for Co(II) adsorption to y-Al,O5 suggest that Co(II)
adsorbs as an inner-sphere complex and at high coverage a hydrotalcitelike surface
precipitate forms that incorporates AI(III) from the sorbent phase. In contrast, the
EXAFS data for Cd(II) sorption to aluminum oxides suggest that Cd(II) does not
form surface precipitates, presumably due to its large ionic radius. Thus, these three
compounds serve as excellent probes for evaluating SCM capabilities for describ-
ing sorption over a range of expected surface behavior.

SURFACE COMPLEXATION MODELS

A number of different surface complexation models have been applied to de-
scribe and predict divalent metal ion sorption data over the past 20 to 30 yr. All of
the models incorporate surface acidity and the formation of metal ion complexes
with surface hydroxyl groups via equilibrium mass law expressions such at those
presented in Table 7--2. In addition, each model employs a description of the elec-
trical double layer to correct for clectrostatic effects at the mineral/water interface
(as shown in Fig. 7 « lor the triple layer model and described in Table 7-3). These
clectrostatic effects arise fromn the presence of surface charge generated electrostatic
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Fig. 7-4. Schematic representation of the triple layer surface complexation model showing the three
planes of adsorption and the charge/potential relationship for each adsorption plane. In this modified
version of the TLM (Hayes & Leckie, 1986), adsorption can occur either injthe o-plane or the B-plane
depending on the binding strength of the metal cation.

potential that diminishes as a function of distance from the surface. Each of the mod-
els offers a different conceptualization of the interfacial region. The models differ
with respect to the type and location of sorbed surface species and in the formula-
tions used to describe the relationship between surface charge and surface poten-
tial across the interfacial region (see Table 7-3). In addition, some models assume
surface hydroxyl site heterogeneity. Model comparisons are provided in a number
of reviews (Westall & Hohl, 1980; Davis & Kent, 1990; Goldberg, 1992; Hayes &
Katz, 1996; Venema et al., 1996; Robertson & Leckie, 1997).

The most simplistic surface complexation models that incorporate electrical
double layer theory are the diffuse layer model (DLM) and the constant capacitance
model (CCM). In both of these models, all divalent metal ions sorb directly to the
surface hydroxyl groups (at the o plane) and specific adsorption of electrolyte ions
1s ignored. The diffuse layer model has been widely used due to its simplicity and
the development of an extensive database of metal ion binding constants for sorp-
tion to hydrous ferric oxide (Dzombak & Morel, 1990). In addition to the metal ion
binding constants, it requires only three adjustable parameters to describe adsorp-
tion behavior; two surface acidity constants and the site density. The relationship
between charge and potential is described by the Guoy/Chapman expression. The
CCM requires one additional parameter to fit adsorption data, namely, a capacitance
term to describe the charge/potential relationship and the paramceters are strictly valid
at only one ionic strength.,




Tabke 7-3. Surface complexation reactions and model parameters.

Location of complex

Protolysis reactions Mass law Constant capacitance model Diffuse layer model Triple layer model
Constant
SOH + H* = SOHj} Kt @-plane g-plane
SOH=S0 +H* K- g-plane #-plane g-plane
Surface complexation reactions \
SOH + Me”* = SOMe* H* Kne g-plane g-plane \Xor B-plane
SOH + L-=SL + OH~ K ¢-plane gplane -or f-plane
SOH + Cat* = SO—Cat* + H* Kea Blplane
SOH + An~ + H* = SOHZ-An- Kan B-}plane
Charge/potential relationships ,ﬂ‘"
Location Relationship Relationship Jelationship
©,-plane v, 0.1174VT sinh(zFy4 /2RT) /(o= Wp)Cy
o4-plane 0.11741 sinh(zFy4 /2RT) / 0.1174V] sinh(zFy 4 /2RT)
/ =—(y— ¥y C,
Model parameters K+ K-, N, C, K+ K, N, -~ K*, K, Kcar » Kans Neo Cp. G2
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The triple layer model is one of the most commonly used models. It is more
complex than either the DLM or CCM in that it allows adsorption to occur at var-
ious locations within the interfacial region depending on the type of complex
formed as shown in Fig 7—4. As a result, it requires seven adjustable parameters in
addition to the metal ion binding constants. These parameters include two capaci-
tance values, two surface acidity constants, binding constants for the anion and
cation of the background electrolyte, and site density. The model was initially de-
veloped and applied by Davis and Leckie (Davis et al., 1978; Davis & Leckie, 1978,
1980) and Morel et al. (1981) based on the works of Yates and Chan (Yates et al.,
1974; Chan et al., 1975). Over the years, the model has undergone various modi-
fications and extensions. The initial version of the TLM did not allow sorption di-
rectly to surface hydroxyls in the o-plane. One of the most significant modifica-
tions was to allow inner-sphere sorption at the o-plane (Hayes & Leckie, 1986a).
Hayes and Leckie (1987) also modified the approach used to incorporate activity
corrections; however, this modification has been criticized in recent literature
(Criscenti & Sverjensky, 1999).

Thus, current versions of the model allow sorption of inner-sphere complexes
directly to surface hydroxyls whereas outer-sphere complexes are located at the [3-
plane. Recent modifications have included an extension to allow parameter esti-
mation of surface site densities, surface acidity constants and site densities using
Born solvation and crystal chemical theory (Sverjensky, 1993, 1994; Sverjensky
& Sahai, 1996; Sahai & Sverjensky, 1997a,b) and to treat electrolyte ions as non-
specific adsorbing species that screen charge in the [3-plane (Robertson & Leckie,
1997).

Offshoots of the TI.M incorporate site heterogeneity and more complex rep-
resentations of the interfacial region. In the CD-MUSIC surface complexation
model, the charging mechanism of the surface oxygens was modified to allow the
protonated surface oxygens to have fractional charge and to allow site heterogeneity
(Hiemstra et al., 1989a,b). Model extensions were also made to account for differ-
ences between pH,, and isoelectric point measurements in the “four layer model”
(Bowden et al., 1980; Barrow et al., 1980, 1981; Bousse et al., 1991; Charmas et
al., 1998). This model allows only potential determining ions (H* and OH™) at the
o-plane. A new plane is provided to disallow adsorption of strongly sorbing cations
directly to the surface and to distinguish between adsorption of cations and anions
of the electrolyte. While these model extensions may provide a better representa-
tion of the electrical double layer region, they do so at the cost of adding even more
parameters to the model. The selection of an appropriate model, therefore, typically
represents a compromise between the accuracy of the model construct and the re-
liability of the model parameters. In many cases, models with fewer parameters can
provide reasonable representations of experimental data over a fairly broad range
of data.

The goal in applying any SCM is to develop a self-consistent methodology
for parameter estimation such that a set of standard parameters to describe surface
acidity, site density, and the charge/potential relationships for difterent minerals can
be developed and can be used in conjunction with spectroscopic data to guide the
selection of appropriate adsorption reactions for the formation ol metal ion surface
complexes (i.c., inner vs. outer sphere, mono  vs, bidentate, mononuclear vs,

L N
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polynuclear adsorption). Dzombak and Morel (1990) made significant progress on
this front for the DLM. After determining a representative site density and surface
equilibrium constants for protonation of the surface of hydrous ferric oxide, they
used FITEQL a nonlinear optimization program to determine surface binding con-
stants for a wide range of metal cations and oxyanions (Westall, 1982). The limi-
tation of their work with respect to the proposed methodology is that the metal ion
surface binding reactions were not based on spectroscopic data. More recently,
Hayes and Katz (1996) and Katz and Hayes (1995a,b) applied this methodology to
the TLM for the adsorption of Co(Il) to y-Al,O3. In the remaining sections of this
chapter the methodology for determining surface complexation modeling parame-
ters for the TLLM for Co(Il) adsorption will be reviewed and then applied to Sr(1I)
and Cd(II) sorption.

METHODOLOGY

The TLM surface complexation model (modified by Hayes & Leckie, 1986a)
contains a number of adjustable parameters to describe surface acidity, electrolyte
surface binding, inner- and outer-layer capacitances and metal ion adsorption.
These parameters are described in Table 7-2. In previous research, Hayes et al.
(1990) and Hayes and Katz (1995a,b) developed a methodology for estimating these
parameters for Co(II) adsorption to o-Al,O5. The methodology is described in de-
tail in Katz and Hayes (1996). A similar approach is used here to describe Sr(II)
sorption and Cd(II) sorption. Briefly, the approach involved characterizing the sor-
bent material and collecting potentiometric titration data for 0-Al,O5, macroscopic
sorption data for the metal ion sorption to oi-Al,O5 and XAS spectroscopy data of
the sorbate/sorbent phase. The potentiometric titration data were used in conjunc-
tion with an objective fitting routine (FITEQL, Westall, 1982) to determine the pH,,.
and to obtain the surface hydroxyl site density, N, the values for the two surface
protolysis equilibrium constants, K* and K, and the values for the electrolyte
binding equilibrium constants, K, and Kcr. The results of the XAS experiments
were used to: (1) select appropriate SCM metal sorption reactions; and, (i1) an ap-
propriate data set for calibrating the metal ion sorption equilibrium constants. The
model parameters were then evaluated for their ability to predict the effects of ionic
strength and surface coverage for a range of macroscopic sorption data sets. The
experimental and modeling procedures used in this work are outlined below.

MATERIALS

All of the experimental data to be modeled in this work utilized ¢-Al,O4
(Buehler LTD, Evanston, IL). This oxide has been subjected to previous SCM sur-
face characterization (Honeyman, 1984; Hayes et al., 1991; Katz, 1993; Katz &
Hayes, 1995a) and has similar sorption properties to other aluminum oxide min-
crals, The surface arca of the material was determined to be 12.6 x 10° m? kg~! using
the N, BET method.

Points of zero charge can be determined experimentally through potentio-
melric ttration ot different ionic strengths, index ion adsorption or through elec-
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Table 7-4. Thermodynamic constants for aqueous speciation.

Reaction log K Source

Co** + H,0 = CoOH* + H* -9.7 Smith & Martell, 1993
Co?* + 2H,0 = Co(OH){ + 2H* -18.8 Smith & Martell, 1993
Co* + 3H,0 = Co(OH);™ + 3H* ~31.5 Smith & Martell, 1993
2Co* + H,0 = Co,OH* + H* -11.2 Baes & Mesmer, 1976
4Co%* + 4H,0 = Co,(OH)}* + 4H* -30.5 Baes & Mesmer, 1976
Co?* + NO = CoNO{ + H* 0.2 Smith & Martell, 1993
Co? + 2NO = Co(NO;)§ + H* —(0.3(ionic strength = 0.5) Smith & Marteli, 1993
Co? + 2H,0 = Co(OH)y, + 2H* -13.1 Smith & Martell, 1993
AP + 3H,0 = 0.50-Al,O; + 3H* -9.73 Lindsay, 1979

Cd** + H,0 = CdOH* + H* -10.1 Smith & Marteli, 1993
Cd** + 2H,0 = Cd(OH)? + 2H* -20.3 Smith & Martell, 1993
Cd** + 3H,0 = Cd(OH);' + 3H* -31.7 Smith & Martell, 1993
Cd* + NO3 = CdNO? 0.5 Smith & Martell, 1993
Cd* + 2NO; = Cd(NO3)Y 0.2 Smith & Martell, 1993
Cd* + 2H,0 = Cd(OH)y, + 2H, -13.7 Smith & Martell, 1993
Sr?* 4+ H,0O = SrOH* + H* -13.2 Smith & Martell, 1993

trophoretic mobility measurements. All of these methods provide only estimates
of the point of zero charge and each method has potential drawbacks (Sposito, 1998).
In addition to these experimental methods, significant progress has been made in
the development of theoretically based determinations of points of zero charge from
mineral properties such as dielectric constant, Pauling electrostatic bond strength
and cation hydroxyl bond length (Severjensky, 1994; Felmy et al., 1998). In this
work, a pH,,. of 8.9 was previously estimated by Hayes et al. (1991) from the
crossover point of a series of potentiometric titrations conducted at varying ionic
strength (known as the pH of the point of zero salt effect).

Co(II), Cd(1I) and Sr(II) were selected as sorbates because they are either toxic
or radioactive contaminants and their sorption behavior is representative of many
other environmentally relevant divalent metal cations. In addition, the solutes vary
with respect to their ionic size as shown in Table 7-1, and, as discussed previously,
exhibit varying sorption behavior on oxide minerals. In addition, all of these metal
ions have sufficiently high K-shell fluorescence energies that they can be studied
using XAS in the presence of aluminum oxide and water. Relevant solution reac-
tions and thermodynamic constants for calculating metal ion solution speciation and
solubility are summarized in Table 7-4.

EXPERIMENTAL METHODS

Some of the experimental data modeled in this chapter were obtained from
the literature and the experimental methods are reported therein. In all cases,
sodium nitrate was used as the background electrolyte. The Co(ll) adsorption data
were collected by Katz and Hayes (1995a,b). Macroscopic and XAS sorption data
for Cd(11) were collected previously by Honeyman ( 1984) and Papelis et al. (1995),
respectively. The spectroscopic data from Papelis et al. (1995) were collected on
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transition alumina rather than o-Al,O5 and is used in this research to guide the se-
lection of SCM reactions for modeling of Honeyman’s Cd(IT) data (1984). The Sr(II)
data were collected as part of this work. Except as noted below, experimental so-
lution conditions were adjusted to avoid precipitation of metal oxide, carbonate, or
hydroxide phases. In addition to the complexation and precipitation reactions
shown, Co(II) also undergoes oxidation reactions at high pH and high solute con-
centrations. Therefore, caution was exercised to avoid reaching these conditions in
the experiments conducted by Katz and Hayes (1995a,b).

Titration Experiments

Potentiometric titration data for the corundum used for SCM surface para-
meter evaluation were taken from Hayes et al. (1991). Titrations were conducted
for three ionic strength conditions, varying over two orders of magnitude. The ex-
periments were carried out at 25 °C while maintaining an argon atmosphere at all
times. The NaNO; and HNO; were inttially added to adjust the ionic strength to
the lowest level to be studied and the pH to an arbitrary starting value at least two
pH units away from the point of zero salt effect (PZSE), the crossover point of a
family of constant ionic-strength titration curves (Sposito, 1984). Then, the titra-
tion was carried out by incremental base addition using equilibration times rang-
ing from 2 to 10 min. The final pH of the base titration never exceeded 11 in order
to minimize dissolution. An acid titration was performed to return the suspension
to the original starting pH, additional electrolyte was added to increase the ionic
strength, and the titration was repeated following the same protocol. Based on ex-
tensive titration studies, no significant hysterisis was observed between acid and
base titration “legs” using the above approach. In addition, comparison of results
for titration experiments conducted over longer periods of time (24-48 h) to these
data showed no significant differences between the techniques (Katz, 1993).

Sorption Experiments

For Co(II) and Sr(II) sorption experiments, 10-mL polyethylene centrifuge
tubes were used as reactors. Each centrifuge tube containing the solid suspensions
was mixed by end-over-end rotation at 0.84 rad s~! (8 rpm) in a constant tempera-
ture room maintained at 25 °C. Mixing times were normally fixed at 48 h to allow
sufficient time to achieve equilibrium conditions. The pH was measured at 25 °C
using a Ross combination semi-microelectrode and an Orion Model 720 pH meter
(Orion Research Inc., Boston, MA). The amount of metal ion sorbed was determined
by analyzing the supernatant for solute following solid/liquid separation. Solid/lig-
uid separation was accomplished by centrifugation. Several control samples, which
did not contain solid, were carried through each procedure to monitor system
losses and, in several cases, control samples that did not contain solute were also
monitored. The Cd(Il) data were collected using similar procedures that are de-
scribed in detail by Honeyman (1984). Notable exceptions are that the experiments
were conducted in 40-ml, polycarbonate tubes, and a 4-h equilibration time was
employed based on kinetie studies showing that adsorption was complete within
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this time frame. Batch equilibrium data for sorption of the metal ions covered a range
of pH values for different initial solute concentrations, solid concentrations and ionic
strengths [except that all of the Cd(I1) data were collected at a (.1 M ionic strengthl].

X-Ray Adsorption Fine Structure Data Collection and Analysis

Sorption samples were prepared for XAS using the same procedures described
above for generating the pH edges and isotherm data. All samples were equilibrated
for a minimum of 24 h prior to pH measurement and centrifugation. An aliquot of
supernatant was then removed and stored in acid prior to subsequent analysis for
metal ion content. Most of the remaining supernatant solution was then removed
and the remaining wet pastes were placed into aluminum sample holders, sealed
with mylar or Kapton tape windows for XAS analysis.

X-ray absorption spectra were collected at Stanford Synchrotron Radiation
Laboratory (SSRL) on wiggler beam lines. The Cd(IT) data and solution samples
were collected at room temperature. The Sr(IT) and Co(II) data were collected at
cryogenic temperatures (20 K) to minimize static disorder. The results obtained for
Co(Il) were consistent with results obtained at room temperature. Beam current
ranged from 40 to 95 mA at 4.8 x 1071°J (3 GeV) with a wiggler magnetic field of
1.8 T (18 kG). Energy selection was achieved using a Si(220) crystal monochro-
mator with incoming beam flux detuned 30 to 50% to reject high-order harmonic
reflections. Beam energy was calibrated to the K-edge of a metallic cadmium foil,
cobalt foil, or elemental Bi foil for Sr. Fluorescence spectra for low temperature sam-
ples were collected using a 13-element Ge detector with a Be window at a 45° angle
to the sample. Fluorescence spectrum for Cd(IT) samples and the solution sample
were collected using a Stern-Heald-type detector (Lytle et al., 1984) with soller slits
and an aluminum filter. Sorption samples typically required 6 to 12 scans depend-
ing on concentration. Model compounds typically required two to four scans.

Specific details of the Co(II) and Cd(II) data analysis are provided elsewhere
(Hayes & Katz, 1996; Papelis et al., 1995). The Sr(ll) data analysis was accom-
plished using a suite of programs developed at SSRL called EXAFSPAK (George
& Pickering, 1995). Background below the edge was subtracted using a Gaussian
fit through the pre-edge region. Background above the edge was subtracted using
a fourth-order, three-segmented spline fit through the EXAFS region using a Vic-
toreen polynomial and tabulated McMaster coefficients (McMaster et al.,1969; Teo,
1986; Brown et al., 1990). Weighting with a factor of &* compensated damping of
the spectra. A k-space EXAFS range was selected using points at which chi was
zero, typically 3.0 to 11.0 for Sr(II). The k-window range was then Fourier trans-
formed to distance space, producing radial structure functions (RSF). Individual
peaks were 1solated with a window in R-space and back-transformed. Generally,
an experimental model compound is first analyzed to determine spline conditions
and R-windows, which are altered minimally for the unknowns.

Fitting was accomplished by nonlinear least squares techniques with four ad-
justable parameters per component: N, R, 0% and AE,, where N is the coordination
number, R is the distance, 62 is the Debye-Waller factor and Al is the difference
between the reference functions and unknown spectra, The Al variable was
floated in the first shell only and fixed in subsequent shells, Expertmental or the-
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oretical FEFF 7.0 (Rehr et al., 1991; Zabinsky et al., 1995) phase-shift and ampli-
tude functions from known compounds were used for fitting unknown spectra. Fits
were first performed on individual back-transformed peak regions. During the
final step, parameter data for all shells were combined to fit the original &* EXAFS
spectra.

Modeling A pproach

Modeling divalent metal ion sorption requires estimation of the proton stoi-
chiometry (the number of protons released per metal ion sorbed), the type of sur-
face complex (inner or outer sphere) formed, and the formation constants for each
reaction selected. Table 7-2 presents a list of various reactions that may be incor-
porated into the TLM. Because a variety of combinations of different sorption re-
actions and constants may fit various aspects of the sorption data equally well (see,
e.g., Westall & Hohi, 1980; Hayes et al., 1991; Katz & Hayes, 1995a), protocols
are needed to insure the best choice of reactions and a more universally accepted
set of guidelines to allow reproducibility from one laboratory to another. The strat-
egy used in modeling Co(Il) sorption to a-Al,O5 involved:

1. Estimation of the SCM metal oxide surface parameters using surface
titration data and the objective curve fitting routine FITEQL (Westall,
1982). (A range of valid parameters sets were generated assuming vari-
ous values of site density, ApK,, and C;, C,, to be later optimized with metal
cation sorption data.)

2. Evaluation of spectroscopic data and ionic-strength dependence to guide
the selection of divalent cation sorption reactions at low to moderate cov-
erage where mononuclear sorption is the dominant reaction process.

3. Estimation of surface complexation constants for the selected mononuclear
surface reactions using one set of low coverage sorption data (<0.25 nmol
m~2) in conjunction with the objective curve fitting routine FITEQL
(Westall, 1982).

4. Analysis of the predictive capabilities of the ionic-strength dependence for
valid sets of surface acidity parameters determined in step 1, and selec-
tion of optimal SCM parameters sets based on metal ion sorption data fits.

5. Analysis of the predictive capabilities of the monomer surface complex-
ation constants over a range of moderate and high surface coverage data.
Model failure at high coverage was indicative of the formation of surface
precipitates.

6. Re-evaluation of XAS data to guide the selection of multinuclear SCM re-
actions.

7. Incorporation of multinuclear species formation and surface precipitation
reactions into SCM to accurately account for their formation.

8. Re-analysis of predictive capabilities of the SCM model over a wide
range of surface coverages and conditions using the valid set of parame-
ters determined in steps 3 and 4.

FITEQL, (Westall, T982), o least-squares, fitting program, was uscd to find
optimum SCM parnmeter vidues from sets of titration or metal 1on sorption data,
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Parameter optimization is attained by changing the values of the adjustable para-
meters until the sum-of-the-squares of the residuals between the measured sorption
data and FITEQL calculated values is minimized. Optimization can be performed
using single or multiple sets of data.

For estimation of the appropriate SCM surface parameters, combined titra-
tion data covering over two orders of magnitude in ionic strength were used. In our
procedure, the two electrolyte surface binding constants were optimized using
FITEQL for a given set of surface acidity, site density and capacitance values. In
order to identify appropriate parameter sets, FITEQL optimization was performed
for more than 100 different sets of parameters. In the case of metal ion sorption at
moderate coverage, FITEQL was used to obtain the sorption constants using a min-
imum set of pH-edge data in conjunction with the parameters obtained from the po-
tentiometric titration data optimizations. In turn, each of these surface complexa-
tion constants was then tested for its ability to predict data collected under other
system conditions including pH edges collected at different surface coverage and
different ionic strengths.

RESULTS AND DISCUSSION
Potentiometric Titration Data

A detailed discussion of the FITEQL optimization of TLM surface parame-
ters for - Al,O5 has been discussed previously (Hayes et al., 1991). The analysis
demonstrated that the TLM version of the surface complexation model can fit titra-
tion data reasonably well using a range of TLM surface parameter sets (see Fig. 7-5
as an example). While it was not possible to identify a single optimum set of pa-
rameters, it was possible to narrow the range of parameters. Valid sets of surface
parameters for the TLM were found for ApK, between 0 and 6, C, between 0.8 and
2.0 Fm~2, and N, between 1 and 10 sites nm~2. In all cases the value of C, was set
equal to 0.2 Fm=2

Cobalt Sorption Model Calibration and Predictions

A detailed discussion of the FITEQL optimization of TLM sorption para-
meters for Co(II) sorption on ¢t-Al,O3 has also been discussed previously (Katz &
Hayes, 1995a,b; Hayes & Katz, 1996). The first step in modeling Co(II) sorption
to a-Al,O5 was to select an appropriate mononuclear species reaction and reaction
constant at low to moderate coverage (step 2 above). The postulated reactions should
include those that are structurally consistent with crystal structure, proton reaction
stoichiometry, and EXAFS analysis. A stiochiometry of one proton released per
metal ion sorbed has been found to be appropriate for strongly sorbing divalent metal
tons (Huang & Stumm, 1973; Hohl & Stumm, 1976; Hayes & Leckie, 1987;
Dzombak & Morel, 1990). A lack of ionic strength effect on the location of the ad-
sorption edge was shown in Fig. 7-2 and spectroscopic data have indicated that sorp-
tion of Co(ll) to a-Al,O5 and y-AlL O leads to inner-sphere surface complexes at
surface coverages less than 0.25 pmol m = (Brown etal., 1990, The evidence sup-
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Fig. 7-5. 0-Al,Q; titration data and TLM optimization fits for C; = 1.1 Fm™=, C; =02 Fm™? N, =2
sites nm 2, and ApK, =4 as a function of ionic strength data from Hayes et al., 1990).

porting inner-sphere, mononuclear surface complexes for Co(1I) sorption at low cov-
erage included EXAFS fits of a Co-Al interaction at 0.31 nm (3.1 A) and the ab-
sence of Co second nearest neighbors at these low surface coverages (Brown et al.,
1999). Based on these results, the following inner-sphere monomer reaction was
selected for calibration of the moderate-coverage data:

=SOH + Co?** < =SQCo* + H* [1]

Although we selected a monodentate inner-sphere surface complex involving just
one surface hydroxyl, more recent modeling of the Co/y-Al,O; system by Brown
et al. (1998) incorporated a bidentate surface complex with two surface hydroxyl
groups bound to a single Co*. In their work two inner-sphere bi-dentate monomeric
reactions were used to describe Co(II) sorption to y-Al,O; at low coverage:

2(=SOH) + Co** + H,0 < [(=SOH),CoOH]* + H* [2]
and

2801+ Co™ 0 2HLO ¢ 5 [(=SOH)Co(OF), ) '+ 2H! 13]
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In terms of proton release, the first of these models is consistent with the mon-
odentate reaction that we proposed, but their reaction incorporates an additional sur-
face hydroxyl site. If the formation of a bidentate complex involves coordination
of a metal ion to different types of surface hydroxyl sites, monodentate represen-
tation may be more consistent with the potentiometric titration approach used to
quantify the sorbent surface sites. For example, based on EXAFS analysis of
sorbed samples and the polyhedral approach for selecting feasible surface sites, it
has been proposed that at low coverage, a bidentate complex of Co(II) may be
formed on kaolinite by sharing a terminal Al-OH and a nearby bridging Al-OH-Si
(O’Day et al., 1994a). Because proton release from bridging hydroxyls is unlikely
(Hiemstra et al., 1989a,b), only one proton exchangeable terminal hydroxyl site is
involved. Since the titration data used to determine the SCM parameters only
quantify the total number of proton exchangeable sites (e.g., terminal surface hy-
droxyls), a monodentate surface reaction may be more reasonable. In contrast, if
crystallographic data are used to quantify the site density, then it may be more rea-
sonable to use the bidentate reactions proposed by Brown et al. (1999). Clearly, more
work is needed to provide a link between the most thermodynamically favorable
sites and XAS data. Recent efforts to utilize valance bond theory in conjunction with
EXAFS data (Bargar et al., 1997a,b) and to develop methods for estimating sur-
face complexation model parameters from first principles may provide the tools for
accomplishing this task (Sverjensky, 1994; Sverjensky & Sahai, 1996).

The TLM calibration was performed on data collected for the system con-
taining 107® mol L= Co(I), 0.01 M NaNQ; and 20 g L~! o-Al,O; using the inner-
sphere monomer monodentate reaction. These data were selected because surface
precipitate formation is not expected in this coverage range (<0.25 mol m2) based
on EXAFS results. The model calibration was performed for a range of valid TLM
parameter sets (Ng, ApK,, C{, Cs, Ky, K.ip) Optimized from potentiometric titration
data (step 1). The results of the calibration step indicated that a range of SCM sur-
face parameters provided similar fits to the 2 x 107 mol L~! Co(II), 0.01 M NaNO,
and 20 g L' a-Al,O5 sorption edge (see Fig. 7-6, and Katz & Hayes, 1995a). How-
ever, in general, TLM parameter sets with N, values between 1.0 and 10 sites nm2,
C, values greater than 0.8 up to 2.0 F m~2, and ApK, values less than or equal to
four were needed to predict the data collected at different ionic strengths reason-
ably well. The TLM parameters derived from the 20 g L.~! data and consistent with
1onic strength data were subsequently used to predict sorption for a variety of data
that varied over a range of surface coverage as shown in Fig. 7-7.

Based on that analysis, it was found that most of the surface parameter sets
that worked well for the calibration and ionic strength dependence step did not ad-
equately predict the data over moderate ranges in surface coverage and pH. Two
TLM parameters sets, however, did predict sorption data well up to about 0.4
umol m~2 (see Table 7-5). These two sets were C; = 1.1 F m~2, N, = 3 sites nm™2
and ApK, =4, and C; = 1.1 Fm=2, N, = 2 sites nm~2 and ApK, = 4. As illustrated
in Fig. 7-7, using these parameters, the TLM gives excellent predictions of the 2
g L' a-Al,04, 2 x 107% M data, reasonable predictions of the 20 g L™ a-ALO;, |
x 107* M data, and underpredicts the 2 g L™ a-A1, 0y, 1 x 10 M total Co(ll) data.
These results suggest that the model is capable of predicting sorption data for sur-
face coverages less than approximately 0.4 pmol 1.1 in reasonable agreement
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Table 7-5. TLM surface ionization and metal ion adsorption parameters.

Parameter Description Parameter values
N, Site density 2 3
log K* Log formation constant for =SOH?* 6.9 6.9
log K~ Log formation constant for =S5O~ -10.9 -10.9
log Kcar  Log formation constant for background electrolyte cation

(=SO—CAT?) -8.08 —8.29
log K, Log formation constant for background electrolyte anion

{=SOH3 + An") 9.58 9.35
C Inner layer capacitance for describing relationship between

charge and potential 1.1 1.1
C, Quter layer capacitance for describing relationship between

charge and potential 0.2 0.2
log Ko, Log formation inner-sphere Co(II) surface complex (=S0C8) -1.1 -12
log K4y Log formation inner-sphere Cd(1I) surface complex to high

energy sites (=50Cd*) 1.25 1.00
log K-y Log formation inner-sphere ternary Cd(Il) surface complex

to high energy sites (=SOHCdANO;) 9.00 8.75
log Koy Log formation inner-sphere Cd(1II) surface complex to

low energy sites (=SOCd") -1.1 -2.95
log K5;; Log formation outer-sphere Cd surface complex (=SO~-Sr%*) -14.96
log Ks»  Log formation outer-sphere Sr(Il} surface complex (=SO—SrOH™*) -5.29

with the range for which monodentate sites are expected based on EXAFS analy-
ses presented by Chisholm-Brause (1991) for sorption of Co(II) to y-Al,O5. Her
EXAFS results suggest that the onset of multinuclear surface complexes occurred
between 0.25 and 0.61 umol m™2. Above this coverage, the formation of multinu-
clear surface complexes is suggested by the Fourier transforms of EXAFS spectra
showing the presence of second- and fourth-shell neighbor Co-Co interactions at
0.307 nm (3.07 A) and 0.614 nm (6.14 A), respectively (see Towle et al., 1997, and
Fig. 7-8 showing Fourier transforms of data uncorrected for phase shift and pre-
sented in Hayes & Katz, 1996).

Several methods have been postulated for modeling sorption data that is dom-
inated by multinuclear surface reactions and surface precipitation. Katz and Hayes
(1995b) and Brown et al. (1998) have proposed the use of polynuclear species based
on EXAFS results such as those shown in Fig. 7-8. The Co-Co interactions observed
at high coverage, and the increase in the coordination number with coverage is con-
sistent with an increase in the size of the multinuclear complexes as the surface cov-
erage increases. In the latter work, polynuclear species incorporated into the TLM
were calibrated to fit the EXAFS derived coordination numbers for second-shell
Co-Co interactions. Katz and Hayes (1995b) also adapted the DLM version of the
surface precipitation model developed by Farley et al. (1985) to the TLM. This
model is based on the assumption that an ideal solid solution forms from the dis-
solution of the sorbent phase and the sorbing metal ion making it thermodynami-
cally feasible for a precipitate to form below the solubility of the pure cobalt hy-
droxide phase. The composition of the precipitate is expected to vary as a function
of the relative amounts of sorbent and sorbing material participating in the reac-
tion. Based on recent EXAFES data suggesting the formation of a hydrotalcite type
surface precipitite that is comprised of Co() and Al(HT) derived from the sorbent
phase, this model would secm appropriate (Towle et al., 1997).
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The solid solution model implemented by Farley et al. (1985) allows for sur-
face complexation at low surface coverages and co-precipitation of the metal hy-
droxide phase as a solid solution containing sorbing and sorbent ions. In an ideal
solid solution, the solid phase activities are given by:

[Me(OH)s(o]
(Me(OH)zq} = = == ”
and
__[S(OH)3(y)]
(SOH)s) == -

where the { } denotes activities, [] denotes concentration, S(OH); ) represents a triva-
lent oxide or hydroxide sorbent phase, Me(OH),,, represents a divalent hydroxide
sorbing phase and T represents the total mass of solid material in solid solution and
1s given by:

T = (Me(OH)y()] + [S(OH)3(y)] [6]
In addition, because an ideal solid solution is assumed:
{S(OH);(5,} + {Me(OH)y) } =1 [7]

This representation allows the solubility of the sorbing metal hydroxide
phase to change as a function of surface coverage because the solubility will be ex-
ceeded according to:

{M62+} {OH_}Z 2 {Me(OH)Z(s)}Ksp [8]

where K, is the thermodynamic solubility product constant.

There are no additional parameters required for implementation of the equa-
tions above if all of the sorbent material is able to participate in the formation of
the solid solution. However, an additional parameter is required if only a fraction
of the sorbent phase can participate in the solid solution. In the case of a crystalline
solid material, this parameter is expected to be a small fraction of the total solid
added to the system, accounting for the fact that only the surface and some of the
first few layers of the sorbent will participate in the formation of a solid solution
with the co-precipitating metal ion. The value chosen for this parameter is likely
to depend on the dissolution properties of the sorbent and can be considered a fit-
ting parameter.

The surface precipitation model was implemented using MICROQLA+ (Dzom-
bak, 1989) using the K, values shown in Table 7—4 and assuming that approximately
2% of the aluminum oxide added to the system was able to participate in the for-
mation of the solid solution. Representative results of the surface precipitation mod-
cling, shown in Fig. 7 9, suggest that the model can provide a reasonable repre-
sentation ol the sorption process over a range of solution conditions.
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The next task in the evaluation of SCM for predicting sorption behavior was
to assess its ability to predict sorption for other divalent metal ions. This aspect of
research was conducted to test the extensibility of the surface ionization constants
derived for Co(Il) to cations with varying sorption behavior. To this end, results are
presented in this scction for modeling data collected by Honeyman (1984) for sorp-
tion of Cd(11) by «t-AlOy using the TLLM. The selection of Cd(1) was based on pre-
vious EXAES rescarch conducted by Papelis et al. (1995) indicating that Cd(I)



240 KATZ & BOYLE-WIGHT

Table 7-6. Surface coverages for Cd sorption pH edges.

Solid concentration Solution concentration Surface coverage
gL™! mole L' umol m™2
2.0 1.0x 1076 0.040
6.0 1.0x 10°° 0.013
10.0 1.0x 1076 0.008 0
30.0 L.OX 10°® 0.002 6
50.0 1.0x 107® 0.001 6
2.0 5.0x 107 2.0
10.0 50x%x107° 0.40
20.0 5.0 107 0.20
2.0 1.0x 1073 0.40
10.0 1.0x 10°° 0.080
20.0 1.0x 107 0.040
20.0 8.0x 1078 0.000 32
20.0 4.1x 1078 0.000 16
20.0 1.6 x 107% 0.000 06
20.0 1.0 x 1077 0.000 4

forms only mononuclear surface complexes. This conclusion was based on the ab-
sence of second-shell Cd neighbors in samples containing 1.2 uM Cd m~? aluminum
oxide. Second-shell nearest neighbors were observed in a pH 9.0 sample contain-
ing 10* M of Cd(II) and with a surface coverage of 12 uM Cd(IT) m~? aluminum
oxide. However, the formation of a bulk precipitate was observed during the sam-
ple preparation above pH 7.5.

The absence of surface precipitate formation was also observed by Bargar et
al. (1997a,b) and Strawn et al. (1998) for Pb(Il) sorption to aluminum oxide, and
no evidence exists in the literature to support the incorporation of Pb into hydro-
talcitelike structures (Cavani et al., 1991), most likely due to the large ionic radius
of Pb(II) (119 pm) relative to that of Al (IIT) (53.5 pm). The ionic radius of Cd(II)
is also relatively large (95 pm). Macroscopic sorption data also support the absence
of surface precipitation of Pb(1I) and Cd(II). In systems aged up to 60 wk, studies
by Lothenbach et al. (1997) indicated potential formation of a solid solution between
Ni(II), Zn(II}, or Cu(II) and precipitated AI(III} (added in a dissolved form) in mont-
morillonite suspensions. In contrast, the behavior of Cd(1I) and Pb(ll) appeared to
be consistent with formation of a strict adsorption complex. Thus, in modeling Cd(II)
sorption to o-Al,O3 only mononuclear adsorption reactions were considered.

The experimental conditions for Cd(II) data collected by Honeyman (1984)
are presented in Table 7-6, along with the surface coverages assuming 100% of the
initial Cd(II) added to the system was adsorbed. As indicated by the data in this table,
some of the experiments in these systems represented extremely low surface cov-
erages. As shown in Fig. 7-10a, the position of the edge for experiments conducted
below 1 x 1077 M solution concentration and 20 g L™! o.-Al,0 was invariant with
respect to pH. The surface coverages for data from these experiments ranged from
approximately 6 x 107 umol m™2 to 3 x 10~* umol m~? (corresponding to ap-
proximately 10% adsorbed for the lowest total concentration and 100% adsorption
for the highest total concentration shown in Fig. 7-10a). Invariance of the pH edge
at low coverage is indicative of saturation of a small number of high energy sites
sorption. Thus, the approach used to fit the data in this system was o incorporate
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into the TLM, a second, lower energy site having identical surface protolysis and
electrolyte complexation reaction constants as those used for Co(Il) sorption. A num-
ber of potential inner-sphere reactions were evaluated using FITEQL for their
ability to predict the slope and location of the sorption edges shown in Fig. 7-10
and 7-11. The following two reactions provided the best fit to the low coverage data
assuming sorption to high energy sites:

SOH + Cd?* = (SOCd)* + H* Ky [9]
SOH + Cd2* + NO;~ = (SOHCANO,) Kcgs [10]

The first reaction incorporating the (SO-Cd)* surface complex was also used to de-
scribe sorption to the remaining weaker binding sites; however, the equilibrium con-
stant for sorption to the high energy sites, Kcq3, was significantly smaller. While
no spectroscopic data have been presented to substantiate the selection of these re-
actions, the second reaction was required to match the slope of the pH adsorption
edge (corresponding to the proton release) at the lower coverages.

Calibration of the model required estimation of the three equilibrium constants
for Cd(Il) sorption to the high and low energy sites as well as an estimation of the
number of high energy sites. The surface parameters for the low energy sites were
the same as those used for Co(Il) sorption data. In addition, valid sets of surface
parameters determined from the 0-Al,O, potentiometric titration data and Co(Il)
sorption data were also used for the high energy sites (C; = 1.1 F m™2, N, = 3 sites
nm™2, and ApK, =4, and C; = 1.1 Fm™2, N, = 2 sites nm~2, and ApK, = 4), except
the value of the high energy site density was reduced to fit the data. Calibration of
the site density for the high energy sites and the sorption equilibrium constants and
(Ngo, Kcqq and Ky, ) was performed separately from the equilibrium constant for
the low energy sites by calibrating with only the low coverage data. FITEQL was
used to estimate the values for the equilibrium constants for the reactions, although
it was not possible to incorporate the high energy site density as a fitting parame-
ter into FITEQL and achieve convergence. As a result, the value of high density
sites (N,,) was determined by manually changing the value of Ny, during FITEQL
optimization of the low coverage data. The values of Ng,, K4, and K¢y, determined
are shown in Table 7-5. Plotted in Fig. 7-10 is the TLM simulation for the data set
used to determine the equilibrium constants and site density for the low coverage
data.

After the values of Ny, K41 and K4, were determined, the value of K43 was
determined using the data collected for 1 x 107% M Cd(II) and 10 g L~! a-Al,Os,
the calibrated values of Ng,, K¢yq;, and K4, and the surface acidity constants de-
termined from C; = 1.1 F m~2, N, = three sites nm~2, and ApK, = four. The value
for K43 is presented in Table 7-5, and the model calibration is shown in Fig. 7-10b
along with predictions using these constants.

Predictions for Cd(IT) sorption by ¢t-Al,O4 provide reasonable agreement over
a range of solute and solid concentrations, as shown in Fig. 7-10 and 7-11. How-
ever, the model slightly underpredicts sorption in the system containing 2 g L™ -
AL O, and 5 x 107° M Cd(11). There are three possible reasons for the Jack of fitin
this region. First, the coverages in this region are consistent with the surface pre-
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cipitate coverages observed for Co(Il). However, spectroscopic data available for
Cd(II) sorption to aluminum oxide were not consistent with surface precipitate for-
mation.

A second possible explanation is that using a site density of 3 sites nm™2, the
system is reaching site saturation. In order to maintain consistency between the pa-
rameters obtained for Co(Il) and the parameters used to model other divalent metal
ions, only valid parameter sets obtained with Co(IT) can be applied in this analysis
(C; = 1.1 Fm™2, N, =3 sites nm™2, and ApK, =4 or C; = 1.1 Fm™2, N, = 2 sites
nm~2, and ApK, = 4). Comparison of model fits for the surface acidity parameters
derived using two sites nm~2 instead of three sites nm~2 led to an even greater un-
derprediction of the data so this explanation cannot be ruled out.

A third possible explanation for the slight underprediction of sorption in this
region, is the presence of bulk precipitation. Equilibrium calculations using the sol-
ubility constant presented in Table 7—4, an ionic strength of 0.1 M and a Cd(II) con-
centration of 5 x 107> M indicate that precipitation should occur above pH 9.1. In
the experiments conducted by Papelis et al. (1995) bulk precipitation was ob-
served in systems containing 1 x 10~* M Cd(1l) and 0.01 M ionic strength above
pH 7.5. This corresponds to a solubility constant of (K,) of 107102, Using this value
of the solubility constant, bulk precipitation will occur in the 5 x 1073 M system
(in the absence of adsorption) at pH values greater than 7.8. Thus, it is possible that
bulk precipitation is contributing to removal of Cd(II) from solution in this region.

In summary, the analysis of the data collected by Honeyman (1984) shows
that at very low surface coverages incorporation of a second high energy site could
be used to describe the sorption behavior over a range of low coverage conditions.
With the incorporation of a second site, it was possible to describe sorption of Cd(II)
over a range of solid concentrations from 2 g L~! to 50 g L~1. At high coverages
(in excess of 0.5 umol m~2 percentage surface coverage) the model slightly un-
derpredicted sorption. The underprediction at higher coverages may be due to bulk
precipitation of an amorphous cadmium hydroxide or cadmium hydroxycarbonate
phase or due to the selection of a low site density.

Strontium Spectroscopy and Sorption Model Calibration and Predictions

The final task in the evaluation of SCM for predicting-sorption behavior was
to assess its ability to predict sorption for a weakly sorbing (outer-sphere) divalent
metal ion. Because previous studies reporting EXAFS results for Sr(II) sorption to
aluminum oxides were not available in the literature prior to our modeling efforts,
Sr(II) XAS data were collected as part of this work. The Sr(II) XAS data were col-
lected for a strontium nitrate solution and the samples shown in Table 7-7.

The background-subtracted, normalized &*-weighted EXAFS spectra for a
strontium nitrate solution and the three sorption samples are shown in Fig. 7-12.
Only one frequency is visible in all of the spectra corresponding to the oxygen first-
shell neighbors as shown in the Fourier transforms in Fig. 7-12. The Sr-O distance
and coordination numbers were determined by fitting the back transformed first-
shell peak using phase and amplitude parameters derived from the SrO) model com-
pound. An example fit of the background-subtracted, & *-weighted Sr(lly EXAFES
is shown in Fig. 7-13. The results preseanted in Table 7 7 and Fig. 7 14 are in good
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Table 7-7. Sr-O fit parameters for Sr sorption t0 20 g L! a-AlL O3, 0.1 M NaNO;,.

Sample pH Initial concentration Nt R} Ac?t AE T
Sr Solution 7.49 0.0010 M 9.17 2.52 0.0098 -5.65
I'=0.17 8.79 0.0002 M 9.48 2.58 0.0105 -2.21
I"'=0.38 9.75 0.0002 M 8.27 2.57 0.0077 —2.46
Ir=1.25 9.62 0.0006 M 8.42 2.58 0.0080 -2.46

t N = coordination number, R = distance, 62 = the Debye-Waller factor, E, = the difference between
the energy at which wave vector K was set to zero for reference functions and unknown spectra.

agreement with the strontium nitrate solution sample suggesting that the coordi-
nation environment for Sr(Il) is consistent with an outer-sphere reaction. In addi-
tion, the strong ionic strength dependence presented in Fig. 7-2 for Sr(1I) adsorp-
tion is also consistent with outer-sphere adsorption. As a result, model calibration
of Sr(II) adsorption to o.-Al,0O5 utilized the following two surface complexation re-
actions, which could not be distinguished spectroscopically:

=SOH + Sr** + H,0 < =SO—Sr** + H* Ksn [11]
=SOH + Sr’* + H,O < =SO~-SrOH* + 2H* Ksp0 [12]

Model calibration of these reactions was performed on data collected at 5.0 x 107>
M Sr(Il) and ionic strengths of 0.01 and 0.5 M. The optimized equilibrium constants
for the reactions are shown in Table 7-5, and the model calibration is shown in Fig.
7-14 along with predictions of data collected at tonic strengths of 0.003 M and 0.1
M. Predictions of data collected at higher solute concentration (Fig. 7-15) indicate
that the model appears to be able to predict both ionic strength effects and solute
concentration effects, at least for the limited range of data shown here.

CONCLUSIONS L

This chapter has illustrated a methodology for modeling divalent cation
sorption at metal oxide-water interfaces using SCM. The methodology was applied
to simulate and predict sorption data over a wide range of solution conditions and
surface coverage for three divalent metal ions that differ with respect to their bind-
ing strength and their ability to form surface precipitates. The keystone of the
methodology relies on the use of spectroscopic data to guide the selection of ap-
propriate model reactions. In the case of Cd(II) and Co(II), XAS data were consistent
with the formation of inner-sphere surface complexes for sorption to 0-Al,O5. A
single mononuclear inner-sphere reaction, however, was unable to account for
sorption except over a limited range of conditions in both cases. For Co(Il), spec-
troscopic data have indicated the formation of a surface precipitate comprised of
Co(Il) and AI(I1T) derived from the sorbent surface. Incorporation of an ideal solid
solution model into the TLM was capable of describing Co(ll) sorption through-
out a fairly large range of data. Consistent with the spectroscopy, the model pre-
dicts that mononuclear species dominate at tow surface coverage and that the ex-
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tent of surface precipitation increases with increasing surface coverage and in-
creasing pH.

The Cd(II) sorption data were available over an even larger range of surface
coverage than Co(II). In this case, the spectroscopic data did not provide evidence
for the formation of a surface precipitate, and the TI.M was able to predict sorp-
tion at high coverage reasonably well without incorporating surface precipitation.
However, the TLM was not capable of predicting data at very low surface cover-
ages using a single monomeric reaction. It was necessary to account for site het-
erogeneity by incorporating a second surface hydroxyl site into the model. Due to
current limitations of XAS and other spectroscopies, it was not possible to identify
the structure of the surface complex at low coverage, nor was it possible to inde-
pendently estimate the surface hydroxyl site density of the high-energy sites. Not
surprisingly, it was possible to predict the data in the low coverage range by in-
corporating a second high-energy surface site and two Cd(II) surface reactions. How-
ever, the reactions that were used to describe the behavior in this range of data were
not unique, and the accuracy of the modeling description in this range of data is ten-
uous at best.

Spectroscopic data for Sr(Il) were consistent with the selection of outer-sphere
reactions to describe adsorption. Two outer-sphere reactions were employed to de-
scribe the trends in pH, ionic strength and surface coverage. One of the significant
components of the modeling approach was that the TLM parameters used for
Cd(1I) and Sr(II) were constrained to employ the same model constants derived pre-
viously for Co(1l). In both cases, it was possible to describe the adsorption behav-
ior of these solutes using the same values of the surface hydroxyl site density, sur-
face protolysis equilibrium constants, and electrolyte binding equilibrium constants.

While this chapter has illustrated the utility of SCM for predicting sorption
behavior of divalent metal ions using the methodology described, much still remains
to be accomplished before SCM can be more universally applied. For example, while
this study focused on single-solute adsorption onto pure oxides, more research needs
to address the use of SCM in muitisolute systems containing other sorbing anions
and cations, and to evaluate sorption in heterogeneous soils. A limited amount of
research conducted in this area suggest that SCM show promise in this regard (Wang
et al., 1997) but more research is needed prior to field-scale application (e.g.,
Davis et al., 1998).
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In 1808 the great French chemist Gay-Lussac predicted that “we are perhaps not
far removed from the time when we shall be able to submit the bulk of chemical
phenomena to calculation” (Gay-Lussac, 1808). Today, almost 200 yr later, we are
on the verge of realizing Gay-Lussacs vision. The widespread availability of high-
speed computers and the development of efficient software packages have caused
phenomenal growth in a subdiscipline now generally referred to as computational
chemistry. What began as an esoteric chemical exercise has evolved into a power-
ful tool used increasingly by chemists to solve a wide array of problems in applied
fields such as pharmaceuticals development, nanomaterials, and scil chemistry.
To a large extent soil chemistry has traditionally been a phenomenological
science. That is, various important bulk properties of soils, such as the thermody-
namics and kinetics of adsorption, have been studied extensively and successfully,
but detailed mechanistic explanations of such phenomena in molecular terms are
largely unavailable, even though they are highly desirable. In an attempt to provide
molecular descriptions of such phenomena as adsorption in soils, during the past
decades soil chemists have increasingly employed spectroscopic techniques. In sup-
port of these efforts and in the hope of aiding in the interpretation of experimental
data, we have explored the possibilities of using atomic scale computer simulations
to arrive at general mechanistic models that can rationalize the large body of em-
pirical data that have been accumulated for important soil chemical processes.
The molecular computational techniques that we chose to perform the desired
tasks are based on classical potential energy functions that allow one to approxi-
mate the forces influencing a collection of atoms. In the case of polar solutes and

Copyright © X001 Soil Science Society of America, 677 8. Segoe Rd., Madison, WI 53711, USA. Plivs-
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water near clays, the dominant forces arise from electrostatics and hydrogen bond-
ing, while dispersion forces are dominant in the adsorption of nonpolar molecules
by clays. Thus, effective and useful potential energy parameters must accurately
describe clay electrostatics, the hydrogen bonding of surface hydroxyls, and the dis-
persion/repulsion characteristics of clay surface atoms. If these parameters are
properly calibrated, then the computational techniques can effectively describe ad-
sorption reactions that are governed by nonbonded forces, such as those for cations
and neutral organics. In order for such methods to be successful, it is of course a
prerequisite that the basic structural features of the clay systems involved are
known from experimental studies, such as x-ray crystallography.

Within the framework of classical computational procedures, molecular dy-
namics (MD) simulations are an effective tool for providing insight into the prop-
erties of large molecular systems. Such simulations typically generate a collection
of molecular states or configurations that approximately represent a statistical me-
chanical ensemble, and they are characterized by the fact that optimized potential
energy is not sought for in a static way but, rather, the atoms and molecules in a
given ensemble are allowed to move freely, approaching an equilibrium state with-
out any restraints other than those imposed by the potential energy functions and
the state variables, such as temperature and pressure. Standard formulae from sta-
tistical thermodynamics can then be used to calculate ensemble averages, which in
turn can be related to the macroscopic properties of interest. In the recent past we
have developed potential energy functions that make it possible to apply MD sim-
ulation techniques to study adsorption phenomena at the clay mineral/aqueous so-
lution interface. It is the purpose of this chapter to provide a short introduction to
the procedures involved, to illustrate their capabilities by describing some of our
recent results, and to provide an outlook by describing some of our current and
planned projects.

SOME ASPECTS OF MOLECULAR FORCE FIELDS

In order to perform MD simulations of an ensemble of molecules, the potential
energy of the system has to be known. When the latter is formulated in terms of a
valence type potential, the total potential energy of a molecule, V., can be expressed
as the sum of potential energy terms corresponding to bond stretching, angle bend-
ing, angle torsion, electrostatic interactions, and van der Waals interactions:

Vtot = Vbond stretch 1 Vangle bend

+ Vangle torsion + Velectrostatic + VvdW + cross terms [1]

The parameter-coupling cross terms model correlations between coordinates of dif-
ferent type, such as between bond stretching and angle bending.

The individual terms of Eq. [1] can be expressed by various functionalities.
As representative examples we present, in Eq. [2] to [6], the specific functional ex-
pressions that we are using in our work. These expressions are the same as those
used in the force field developed by Maple et al. (1994), and they form the opera-
tional basis of the MSI/Insight/Discover software saite (MSI, 1997),
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The bond stretch potential in this force field (Maple et al., 1994) is:
Viond suetch = ka (r = rg)? + ka (r = rg)® + kg (r = rp)* (2]

where r, 1s the equilibrium separation distance between two bonded atoms, r is the
actual separation distance, and k,, k3, and k; are potential parameters. A complete
set of parameters (k,, k3, k4 and ry) is required for each unique pair of bonded atom
types. For example, the values of these parameters will be different for a bond be-
tween Al in octahedral coordination and triply coordinated O in the octahedral sheet,
or between Al in tetrahedral coordination and O in a Si-O-Al linkage.

The functional form of the angle bending potential in this force field (Maple
et al., 1994) is:

Vangle = €28 — 8)? + ¢3(8 — 6p)* + c4(0 — 6;)* [3]

where 6 is the equilibrium bond angle and ¢,, ¢, and ¢4 are potential parameters.
Similarly, for the torsional potential:

Viorsion = 11[1 + cos(® — §g)]
+ Tz[l + COS(Z(I) - (poz)] + T3[l + COS(3¢ - ¢03)] [4]

where the ¢y; are equilibrium torsion angles and the T, are the potential parameters.
The potential energy possessed by a molecule that results from nonbonded inter-
actions between atoms is described by van der Waals and electrostatic potentials:

Vieaw = (A4, Iry®) — (BiB; Ir®) (5]
Velectrostatic = q4i4; ler, ij [6]

where the A; and B, are van der Waals repulsion and attraction parameters, respec-
tively, r;; 18 the distance between atoms i and j, the g; are partial atomic charges, €
is the dielectric constant of the intervening medium, and the subscripts refer to atoms
iand j.

A collection of atom types, potential energy equations, and all associated pa-
rameters is collectively referred to as a force field. Historically, force fields were
parameterized by comparing simulated molecular structures and conformational en-
ergies with experimentally determined structures and energies and adjusting the pa-
rameters until differences between simulated and experimental values were mini-
mized. In part because experimental data of high quality are sparse, increased use
is now being made of quantum mechanical calculations to supplement the experi-
mental data base available for force field parameter development. In order to pro-
ceed in this way, the structures and energies of representative molecules are cal-
culated ab initio, and the force field parameters are adjusted in such a way as to re-
produce the ab initio results as accurately as possible.

In addition to providing reference molecular structures, quantum mechani-
cal calculations also yield direet estimates of other molecular properties, such as
force constunts and partial atomic charges, which are of direct utility in force ficld
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parameter development. To serve this purpose, the ab initio calculations must be
performed at a level that is in close agreement with experimental data. This means
that, for example, nonbonded parameters must be obtained from ab initio calcula-
tions that include electron correlation (Teppen et al., 1994; Ramek et al., 1996).

All the results described below were obtained with the force field supplied
with the MSI/Insight/Discover software suite (MSI, 1997). More precisely, this force
field consists of the cff91 parameters (Maple et al., 1994) for standard organic and
inorganic compounds, augmented with parameters for silicates and zeolites devel-
oped by Hill and Sauer (1994, 1995). Since zeolites do not contain octahedrally co-
ordinated Al, we had to derive (Teppen et al., 1997) new potential parameters that
make it possible to perform molecular dynamics simulations of phyllosilicates.
Specifically, it was necessary to derive an angle bending potential for octahedral
O-Al-O angles that is able to produce dual minima at 90 and 180°. In addition, since
the force field by Hill and Sauver (1994, 1995) was based in part on the results of
ab initio calculations that did not include electron correlation, a new set of non-
bonded parameters and partial atomic charges was derived from the results of new,
electron-correlated ab initio calculations of molecular structures representing frag-
ments of phyllosilicates. The resulting potential parameters (Teppen et al., 1997)
were further refined to reproduce as closely as possible the x-ray crystal structures
of some oxides and phyllosilicate minerals.

To illustrate this approach, the simulated and experimental structures of
gibbsite, kaolinite and pyrophyllite are compared in Fig. 81. The experimental crys-
tal structures are those of Saalfeld and Wedde (1974) for gibbsite, Bish (1993) for
kaolinite, and Lee and Guggenheim (1981) for pyrophyllite. In Table 8—1 structural
parameters of pyrophyllite obtained with our force field are compared with the cor-
responding x-ray crystallographic values of Lee and Guggenheim (1981). Details
on how the mineral structures were calculated can be found in the original paper
(Teppen et al., 1997). Furthermore, information on the procedural details involved
in performing molecular dynamics simulations can be found in a number of stan-
dard texts, such as the one by Allen and Tildesley (1987).

A BRIEF REVIEW OF RELATED WORK CONDUCTED
BY OTHER RESEARCH GROUPS

While the focus of this chapter is on research conducted by our group, there
are numerous other research groups performing computer simulations of the mol-
ecular properties of clay minerals. Several of these groups are using methods that
are different from those used by us. A brief summary of the work being conducted
by these groups follows.

The bulk structures of most minerals important to soil chemists are well known
from x-ray and neutron diffraction studies. Exceptions to this generality would be
the various amorphous oxides and mixed oxide precipitates. Methods pioneered by
Catlow’s group should find increasing applicability to the structural study of these
amorphous soil minerals and mixed phases. Their approach has been to develop
ionic-type force fields for performing static energy minimizations of general oxide
and halide mincerals. Since ionic foree fields require Far fewer parameters than va-
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Fig. 8-1. Comparison of experimentally determined crystal structures (top) with typical snapshots from constant-pressure MD simulations (bottom) for gibbsite (left), kaoli-

nite (center) and pyrophyllite (right). The crystal structures used were by Saalfeld and Wedde (1974) for gibbsite, Bish (1983) for kaolinite, and Lee and Guggenheim
i 1981) for pyrophyllite.
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Table 8—1. Comparison of simulated and experimental crystal structure parameters for pyrophyllite (all
distances in nm).

Mineral parameter Simulated Experimentalt
a axis length 0.518 + 0.002 0.5160

b axis length 0.902 £ 0.007 0.8966
layer d spacing 0.931 £ 0.004 0.9190
density (Mg m=3) 2.75 £0.02 2.815
Al-O bond length 0.192 +0.003 0.1911
$i-O bond length 0.163 £ 0.003 0.1618
O-H bond length 0.097 £ 0.002 0.0970

1 Taken from Lee and Guggenheim (1981).

lence force fields, they have generally been able to derive their force fields from
experimental data for simple oxides (Sanders et al., 1984; Collins & Catlow, 1990),
although they have had occasion to employ quantum calculations, too (Gale et al.,
1992; Purton et al., 1993). They have tested their overall force field for its applic-
ability to mixed oxides (Bush et al., 1992, 1994; Battle et al., 1995; Lewis et al.,
1995), mica (Collins & Catlow, 1990, 1991, 1992; Collins et al., 1993} and smec-
tite clay minerals (Breu & Catlow, 1995).

For the study of adsorption to general oxide surfaces, the ideal tonic force-
field would be consistent with a molecular mechanics model for dissociable water.
Such a forcefield has indeed been developed and has been applied to the study of
silicate (Rustad & Hay, 1995) and iron(I1I) (Rustad et al., 1995) hydrolysis in so-
lution, to bulk iron oxyhydroxide structures (Rustad et al., 1996a) and to the pro-
tonation of goethite surfaces (Rustad et al., 1996b).

In many instances, we believe that the forces causing adsorption are almost
entirely of a nonbonded nature, as in the case of clays interacting with hydrated
cations or nonpolar organics. For these cases, valence force fields are ideally suited
for simulating adsorption, and they have the advantage that good parameters already
exist for water, organic solutes, and some inorganic solutes. Among soil mineral
surfaces, it is the basal surfaces of phyllosilicate clays that have been most exten-
sively studied by both experimental and theoretical methods. A variety of adsor-
bates have now been simulated in the clay interlayer space, including aqueous al-
kali cations (Delville, 1991, 1992, 1993; Delville & Sokolowski, 1993; Skipper,
1998a; Skipper et al., 1991, 1995a,b; Chang et al., 1995, 1997, 1999; Boek et al.,
1995a,b; Karabomi et al., 1996; Greathouse & Sposito, 1998; Cygan, 1998; Cygan
etal., 1998; Smith, 1998), aluminum polymers (Capkova et al., 1997, 1998a,b), am-
monium cations (Janeba et al., 1998), several metal chelates (Sato et al., 1992a,b,
1996; Breu & Catlow, 1995; Breu et al., 1999; Park et al., 1997) and alkanes
(Keldsen et al., 1994, Skipper, 1998b). These simulations have normally been
done by holding the clay lattice rigid and allowing the interlayer space to relax
through various Monte Carlo or molecular dynamics methods. On the other hand,
Breu and Catlow (1995) and Breu et al. (1999) observed “chiral recogmtion™ of an
organometallic intercalate by a smectite when they allowed the entire systen, in-
cluding the clay lattice, to relax.
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THE ADSORPTION OF ORGANIC MATERIALS AT THE
CLAY MINERAL/AQUEOUS SOLUTION INTERFACE

The adsorption of organic compounds by clay mineral surfaces is a process
of immense interest to soil and environmental chemists. For example, the adsorp-
tion of naturally occurring organic compounds such as humic acids by clays is
thought to protect the organic from microbial degradation while enhancing the hy-
drophobicity of the clay mineral surface. In addition, the adsorption of organic mol-
ecules has been used in various analytical techniques, such as in the determination
of clay layer charge by the alkyl ammonium ion method and in the determination
of cation exchange capacity by methylene blue adsorption. In each of these cases,
details of the structural and energetic interactions of the organic compounds with
the mineral surfaces are important to know and estimates can be obtained from MD
simulations.

In this section we shall briefly review three different cases taken from our re-
cent work: the adsorption of trichloroethene by clay minerals, the adsorption of
methylene blue by clay minerals, and studies dealing with the alkyl ammonium ion
method for layer charge determination.

Adsorption Studies of Trichloroethene

Scope

Chlorinated hydrocarbons dominate lists of the 10 most commonly detected
organic contaminants in groundwaters of the USA and Western Europe (Kerndorff
et al., 1992). Among them, trichloroethene (TCE) has perhaps the greatest poten-
tial to spread (Schleyer et al., 1992) from waste disposal sites to drinking water
sources because of its relatively high water solubility, high vapor pressure, and long
persistence in subsurface environments. Toxicological concerns have resulted in reg-
ulations (CFR, 1993) placing an upper limit of 0.005 mg L=! for concentrations of
TCE in American drinking water. The water solubility of TCE is 1385 mg L~ (West,
1992), which is more than five orders of magnitude greater than the drinking water
limit. Thus, a concerted effort to characterize, understand, contain, and remediate
waste plumes of chlorinated hydrocarbons is needed before the plumes further con-
taminate major aquifers.

From 10 to 10* mg kg~! TCE sorb to low-organic-matter minerals (Estes et
al., 1988; Farrell & Reinhard, 1994a,b), so all contaminated aquifer materials are
potential long-term sinks and longer-term sources of TCE, but little or nothing is
known about the mechanisms of adsorption. Clay minerals often comprise the bulk
of the surface area in low-organic-matter aquifer materials, so the interactions of
TCE and clays are of special interest.

The considerations presented above prompted us to explore the behavior of
TCE on hydrated clay surfaces (Teppen et al., 1998a,b,c).

Some Computational Aspects of the Trichloroethene Simulations. To
model the properties of TCE on clay surfaces, in one series of calculations the 1:1
clay mineral kaolinite was constructed using experimental coordinates (Bish,
1993). From this, u supercell Jecomposition Al SiOgg (O, | was built with a
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nearly rectangular repeat unit of 2.061 by 1.788 nm in the ab-plane. Unlike smec-
tites, kaolinite does not typically swell along the c-axis upon hydration. We nev-
ertheless separated the layers for the purpose of simulation. We increased the ¢ axis
from (.74 to 2.0 nm in order to create a 1.2-nm interlayer space where the behav-
ior of water and TCE could be modeled. Here kaolinite proves itself to be an in-
teresting model mineral, since it presents two very different types of surfaces to aque-
ous solutions. Artificially expanding the interlayer space creates a pore that pro-
vides the opportunity to use a single simulation to study adsorption to both types
of basal external surface that would be found on a kaolinite mineral grain. Slit-pores
of this type are found in the environment, for example in kaolinite books (Dixon,
1989) and perhaps at interfaces between silicate grains and aluminum oxide coat-
ings.

If a system with an artificially and permanently expanded interlayer space was
to be modeled (in order to model an external surface, for example), all calculations
were performed under NVT (constant mass, volume, and temperature) conditions.
In certain other situations such as those described below, the artificially expanded
systems were first allowed to equilibrate under NVT conditions and subsequently
subjected to NPT (constant mass, pressure, and temperature) conditions, whereupon
the separated layers spontaneously reannealed, thereby restoring the equilibrium
interlayer spacing characteristic of that particular system.

The kaolinite surfaces were hydrated at two different levels. Either 55 or 89
water molecules were added to the supercell pore and distributed on the surfaces
during 15 ps of molecular dynamics simulations to create hydrated mineral surfaces.
On a dry clay basis, these systems contained 24 and 39% water, respectively. Then,
four TCE molecules were added to the center of each slit-pore and each system was
equilibrated for at least 50 ps. In this and all other calculations a time step of 0.5 fs
was used.

In another series of MD simulations of TCE on clay mineral surfaces, the clay
mineral pyrophyllite, an uncharged, 2:1, dioctahedral phyllosilicate, was con-
structed using experimental data (L.ee & Guggenheim, 1981). We chose pyrophyl-
lite for study because it has the same structure as the smectites, but it is a neutral
clay and the interlayer space is thus devoid of the hydrated counterions that would
typically be present to complicate simulations.

Six unit cells of pyrophyllite were fused to produce an Al;4Siy30,20(OH),4
supercell of neutral, idealized 2:1 clay. Again, we expanded the interlayer space,
in this case to 3.0 nm, and inserted 76 water molecules to give a water content of
32% by weight. We equilibrated the water for 15 ps at constant volume, and then
mserted eight TCE molecules into the center of the interlayer space. This time, the
molecular dynamics were run in the isothermal-isobaric (NPT) ensemble to simu-
late TCE in a fully hydrated micropore environment with no liquid-gas interfaces.

Some Mechanistic Aspects of Trichloroethene Sorption. The simulations
described above have so far yielded the following results (Teppen et al., 1998a,b,c):

1. Water was found to outcompete C,HCIl; for clay surface sites. At the low-
est water content, the kaolin surfaces were not covered by a complete
monolayer, and all TCE molecules were able to adsorb direetly to the clay
surface. From this state desorption was slow.
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2. Three distinct mechanisms coexist for TCE adsorption on clay mineral sur-
faces. The most stable interaction of C,HCl; with clay surfaces is by full
molecular contact, coplanar with the basal surface. This kind of interac-
tion is suppressed by increasing water loads. This mechanism is preferred
more on the hydroxylated aluminalike surface of kaolinite than on the
siloxane surface. A second, less stable and more reversible interaction in-
volves adsorption through single-atom contact between one Cl atom of
TCE and the clay mineral surface. At higher water contents, TCE cannot
sorb parallel to the surface, but inserts one Cl atom through the water mono-
layer, from both the H-C-Cl and CI-C-Cl ends, to make contact with the
clay surface. In this state the sorbate is rather mobile and can move be-
tween different adsorption sites along the mineral surface. In a third mech-
anism, adsorbed C,HCl; never contacts the clay directly but sorbs onto the
first water layer. This kind of interaction is observed when enough water
is present to form a complete water monolayer on the mineral surfaces.

We have also studied the desorption of TCE (Teppen et al., 1998a,c) from
kaolinite surfaces. In these studies, a monolayer of TCE was first equilibrated with
a kaolinite external (hydroxylated aluminol) surface, and then water was added.
After 350 ps of MD simulation (NVT, 5.0-nm interlayer separation, 0.5-fs timestep),
60% of the TCE had desorbed (Fig. 8-2). In this process TCE first changed its in-
teraction with the mineral surface from a planar association to one in which only
one or two atoms contacted the clay. Subsequently the TCE desorbed into the water
layer.

When the same process was repeated by first equilibrating a monolayer of
TCE with a kaolinite siloxane surface and then adding water, after 350 ps of MD
simulation only 20% of the TCE had desorbed. As this example shows, MD sim-
ulations can be employed in this way to explore the relative kinetics of adsorp-
tion/desorption of solutes at the clay mineral/aqueous solution interface.

Ongoing investigations involve capillary phase separation of TCE and water.
When condensed phases of TCE and water are created within the interlayer region
of pyrophyllite, chosen to represent a generic slioxane-lined slit pore, after 200 ps
of molecular dynamics at 298 K and 1 bar, no mixing between the two phases had
occurred. Further simulations are underway to assess the likelihood that such cap-
illary phase separation actually will occur spontaneously.

The methods described above for the study of TCE are representative of the
methods we are currently using to study the adsorption of a variety of organic mol-
ecules by clay mineral surfaces. We shall briefly summarize the results obtained
so far in two other cases, one dealing with the adsorption of methylene blue to clays
and the other dealing with a recalibration of the alkyl ammonium ion method for
surface charge determination. In both of these studies, essentially the same com-
putational techniques as those described above were used.

The Adsorption of Methylene Blue
Scope

Methylene blue (MB) was selected for study by MD simulations because it
has been widely used Tor the determination of both surface arcas and cation exchange
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capacities (CEC) of clay minerals (Brindley & Thompson, 1970; Hang & Brind-
ley, 1970). Surface area estimates are made by noting the MB surface coverage that
produces the most rapid flocculation of the clay and by assuming that each MB

Fig. 8-2. (a) A monolayer of TCE was equilibrated with a hydroxylated aluminol kaolinite surface, then
water was added. (b) After 350 ps of molecular dynamics simulation, 60% of the TCE had desorhed.
Desorption occurred in two steps: first the TCE molecule “stood up™ on the surface so that only one
or two atoms contacted the clay, and then after some time detachment ocenrred and the TCE moved
very quickly to the external water surface. When the same procedure wiss repeated at the siloxane
kaolinite surface, after 350 ps of molecular dynamics simulation only 200 of the TCE had desorbed.
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cation lies flat on the clay basal surface, covering approximately 0.55 nm?. Cation
exchange capacities are estimated from the plateaus of MB adsorption isotherms,
assuming that inorganic cations are fully exchanged. The procedure has been most
successful in measuring sodium-clays (Brindley & Thompson, 1970; Lagaly, 1981)
and has been widely used in industry as a simple means of estimating the relative
smectite contents of bentonite deposits.

It is a characteristic aspect of the MB method that it frequently overestimates
the values of both surface area and CEC (Hihner et al.,1996). Typical explanations
for this phenomenon are that MB adsorbs in multiple layers (Hang & Brindley, 1970)
or that it does not lie flat on the mineral surface (De et al., 1974; Shelden et
al.,1993; Hihner et al.,1996; Bujdak & Komadel, 1997). The exact reason remains
unclear because the mechanisms of MB adsorption to clay minerals are largely un-
known and expected to be rather complex (Bodenheimer & Heller, 1968). Thus,
the problem of MB adsorption is basically a structural one and of the kind for which
MD simulations are particularly well suited.

For this reason we performed MD simulations of MB sorption at relatively
high (~105 cmol of MB kg™ clay), intermediate (~70 cmol of MB kg~' clay), and
low (~35 cmol of MB kg™! clay) loadings on various clay mineral surfaces, including
a model beidellite and a model mica surface, with variable amounts of water. As a
result of these calculations it must be concluded that MB ions can arrange in a large
number of ways on silicate surfaces. Structures found on dry beidellite include: (i)
single layers parallel to the interlayer surfaces; (ii) stacks in which the ions are ap-
proximately parallel to one another but at an angle with respect to the basal plane;
and (1i1) bilayers parallel to the clay basal planes. In each case the addition of water
perturbs the regular stacking found in the absence of water.

Simulations with mica yielded similar results. At low loadings, when sufti-
cient surface area is available, the molecules attach flat on the mica. At higher load-
ings some of the molecules begin to assume a tilted orientation with respect to the
basal plane, finally forming irregular clusters with flat, tilted, and random orienta-
tions in which the molecules are piled on top of each other.

From all these findings it follows that MB adsorption does not involve a sin-
gle, well-defined arrangement on clay surfaces, and the surface area occupied by
an individual adsorbate molecule can vary over a broad range.

Molecular Dynamics Simulations Concerning
the Alkylammonium Ion Exchange Method

As a final example, we shall briefly summarize the results of investigations
(Teppen, 1997) performed to determine mechanistic aspects of the alkylammonium
ion-exchange method.

The alkylammonium ion-exchange (AAIE) method for layer-charge deter-
mination of smectitic and vermiculitic clays was pioneered in the 1960s by Lagaly
and Weiss (see the review by Lagaly, 1994). It has the practical advantage that it
allows determination of the layer charge (i.e., structural cation exchange capaci-
ties) for impure clays such as are found in soils. However, when the method is tested
(Laird ctal., 1989 Senkayi et al., 1985; Mermut, 1994) on pure clays and the re-
sults are compured with tayer charges derived from elemental analyses, it is found
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to systematically underpredict the layer charge (Laird, 1994). Many hypotheses have
been advanced to explain this disparity (Lagaly, 1994; Laird, 1994), including charge
heterogeneity, mineral-edge effects, and incomplete saturation of the CEC by the
organic cations. To some extent, MD simulations can be used to test, on a molec-
ular level, the plausibility of each of these hypotheses. For this purpose a series of
some 30 MD simulations of alkylammonium ions were performed (Teppen, 1997)
on muscovite mica and on a dioctahedral vermiculite.

Central to the AAIE method are assumptions made concerning the average
surface areas and the average interlayer volumes occupied by the alkylammonium
ions. These assumptions can be directly tested by inspecting the results of MD sim-
ulations. Indeed, when we inspected the arrangement of alkylammonium ions in
the interlayer space of the vermiculite and the mica, we found that their arrange-
ments were much less rigid and regular than usually assumed. Specifically, mole-
cular dynamics simulations were performed testing the adsorption of alkylammo-
nium ions on a dioctahedral vermiculite, composition (SignAlg)Aly4O120(OH)4y4, with
a tetrahedral charge of —8 balanced by eight alkylammonium ions. The CEC is there-
fore 187 cmol, kg~'. Additional studies were done on a muscovite mica,
(Si4Al5)Al1605,(OH) 16, with a tetrahedral charge of —8 balanced by eight alkyl-
ammonium ions. The CEC is therefore 262 cmol, kg~'.

Detailed analyses of the structural results obtained by the calculations show
(Teppen, 1997) that the disparity between the AAIE method and layer charge de-
terminations by elemental analysis can be explained simply by demonstrating that
the customary estimates of the occupied surface area and interlayer volume are in-
accurate. The MD simulations can be used to derive expressions for the average
surface areas and average interlayer volumes occupied by cations of a given alkyl
chain length. These expressions can in turn be used to calibrate the alkylammonium
ion method. In Fig. 8-3 it is shown that, when the AAIE method is recalibrated in
accordance with the computed results, using improved estimates for occupied av-
erage surface areas and interlayer volumes, the discrepancies between AAIE layer
charges and those determined by elemental analysis are essentially resolved (Tep-
pen, 1997). Basically the calculations show that standard assumptions typically over-
estimate the size of the ammonium head group, underestimate the size of incremental
CH,-groups, and overestimate the rigidity of alkyl chains.

ONGOING RESEARCH

In this section several examples will be presented that are representative of
ongoing research projects. Even though the results are still preliminary, the projects
selected further illustrate the utility of MD simulations in soil chemistry. Topics in-
clude the calculation of free energy changes associated with cation exchange and
the adsorption of proteins on clay mineral surfaces.

Cation Exchange Simulations

Theory

Simulations of K* = Rb* and Rb* = Cs* exchange were performed on an
idealized montmorillonite (X' SiyuALMgO,o(OFh,, CEC 135 cmol kg ') with a
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water content of 150 g kg=! (approximately cquivalent to monolayer coverage). The
overall exchange reaction was treated as the sum ol two component reactions, the
first corresponding to a change in the identity of the ion on the clay surface, and
the second corresponding to a change in the identity of the ion in the bulk aqueous
solution. In this way the overall reaction for the exchange of two ions A* = B*,

Problem (data compiled by Laird, 1994)
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Fig. 8-3. (@) When compared with layer charges determined by elemental analysis for pure clays, the
alkylammonium ion-exchange method systematically underpredicts the charge. (b) When the alky-
lammonium method is recalibrated with expressions derived from MD simulations for the average
surface arcas and average interlayer volumes occupied by cations of a given alkyl chain length, and
the new calibration is applicd to experimental data sets (Laird et al., 1989; Senkayi et al., 1985; Mer-
it cetal, 19D, the systemanie differences between the results of the alkylammoniom method and
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A™=X + Bl = Alag + B'-X AGy, [7]
can be written as the sum of two steps:

+_X = B*X AG oy [8]

B-an) = AJ(raq) AGsoln N [9]

where X represents the clay lattice bearing 1 mole of negative charge. Thus, the
Gibbs free energy change for the exchange reaction can be written as AG,, =
AGciay + AGsoin'

To calculate the free energy terms, we used the free energy perturbation tech-
nique (Bash et al., 1987; Jorgensen & Ravimohan, 1985; Straatsma et al., 1986; MSI,
1997). In this procedure, the Gibbs free energy of a chemical reaction is obtained
by mutating the parameters of the reactants into those of the products. This is done
in a series of steps during which the parameters of the initial system are changed
incrementally into those of the final system. The number of steps, », is determined
by the requirement that energy differences between neighboring steps should be
<2RT (Bash et al., 1987; Jorgensen & Ravimohan, 1985; Straatsma et al., 1986),
i.e., n =(AG,/2RT), where AG,, is the reaction Gibbs free energy. For example, in
the case of the exchange reaction K* = Rb*, 10 steps were required to mutate the
parameters of K* into Rb* and vice versa, in order to calculate AG,y 0r AGy, (Eq.
[8] and [9]).

The total number of steps, #, can be used to define a coupling parameter, A:

OA = t/nand A = i(0A) [10]

where i is the number (i =0, 1,...n) of an individual step. At the ith step of the mu-
tation of A* into B*, the potential energy of the system is calculated with force field
parameters, P;, defined by the equation:

Py =Pp+A(Pg— Py) [11]

where P, and Pg are the potential parameters for A* and B*, respectively.

In order to calculate AG,, or AGy, (Eq. [8] and [9]) with the free energy
perturbation technique, it is necessary to compute and sum the relative free energy
differences between adjacent mutation steps. A procedure that can be used for this
purpose is readily derived from standard statistical thermodynamic formulae.

In an NPT (constant mass, pressure and temperature) ensemble of clay-water
systems the Gibbs free energy, G, is related to the partition function, Q, by the for-

mula:
G =—kT(InQ) [12]

where k is the Boltzmann constant. The difference in Gibbs free energy between
two states { and j is therefore:

AGy =G = Gr==kTTIn (/00| [13]
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In Eq. [13] the ratio of partition functions can be expressed as:

where E is internal energy, the brackets denote expectation value, and the subscripts
identify the states involved in the difference. Combining Eq. [13] and [14] will yield:

-

AGy; = —kT{In [exp(~AE/kT)]) [15]

Thus, the free energy difference between two states, or between two steps in the
free energy perturbation scheme, can be obtained from the ensemble averages of
the internal energy differences.

If the states i and j have approximately the same Kinetic energy, KE, then AE
= AV. For the systems dealt with in this work this is a good approximation, since
kinetic energy differences, AKFE, between adjacent steps can be expected to be close
to zero. Equation [15] can thus be rewritten as:

AGj; = —kT{In [exp(-AV;/kT)]} [16]

The important aspect of Eq. [16] is that [exp(AV;i/kT)] and, hence, AGj;, for two steps
i and j can be determined {rom the MD simulations.

In our current work, expectation values of exp(—AV/kT) are calculated by per-
forming MD simulations (50 ps with a 0.5 fs time step) at individual steps i, de-
fined by A = i(AA). It was determined that in order to establish an ensemble of
clay/water systems at each step, it was sufficient to select several hundred (~400)
instantaneous molecular configurations at random from the second half of each MD
run. The collection of molecular configurations in each ensemble was then used to
compute, according to Eq. [16], AG for each subinterval (A + 6A or A — 1) along
the mutation path.

In all stmulations of clay mineral systems we apply periodic boundary con-
ditions at constant pressure and temperature (constant NPT). This allows the sys-
tem volume to change freely at 100 kPa (1 bar) external pressure and 298 K. Fur-
thermore we employ Ewald summation to compute both electrostatic potentials and
dispersive van der Waals interactions, and the simulations are fully dynamic, using
the Discover module and Insight I graphical user interface of the MSI molecular
modeling suite (MSI, 1997). The free energy perturbation technique is not imple-
mented in this software per se so that many of the aforementioned calculations have
to be performed with spreadsheet software (e.g., Microsoft Excel).

Cation Exchange Free Energy Calculations
Using the formalism described above, we are calculating the free energy
changes for the half reactions (Eq. [8] and [9]) of the exchange reactions
K*-X + Rb*(,q) = K¥(,q) + Rb*™-X [17]
and

Rb' X + ¥y = RhY ) + Cs' X [1R]
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To perform the calculations corresponding to the reaction represented by Eq.
[8], a montmorillonite supercell of composition K;S13,(Al;,Mg4)Og(OH),¢ was cre-
ated. The crystal structure of muscovite mica (Comodi & Zanazzi, 1995; Liang &
Hawthorne, 1996) was modified by converting all tetrahedral cations to Si and sub-
stituting Mg for each of four A1** ions in the octahedral sheet, to create a high-charge
montmorillonite with CEC of 135 cmol, kg~!. The substitution was implemented
in such a way as to avoid charges on adjacent octahedral sites. Subsequently, the
interlayer was expanded and enough water added to the interlayer space to form a
monolayer (equilibrated dyg; was 1.209 + 0.005 for K montmorillonite). To per-
form calculations corresponding to the reaction represented by Eq. [9], one cation,
initially K*, was placed with one CI" into a water box containing 254 water mole-
cules.

Calculations of free energy differences are much more difficult and ambitious
to attempt than simulations of other molecular properties, such as basic features of
molecular structure. This is so because the resulting energy values are small dif-
ferences between large numbers, and the results are acutely sensitive to the partic-
ular values assumed for the force field parameters. Since our force field parame-
ters are still subject to ongoing refinements (see, e.g., Schifer et al., 1999), the cur-
rently available cation exchange results are strictly preliminary. Nevertheless, the
calculations performed so far suggest the following aspects of cation exchange
processes on clay mineral surfaces.

First of all, the calculations suggest that the exchange reactions K* = Rb™,
Rb* = Cs* and K* = Cs* are spontaneous at the clay mineral/aqueous solution in-
terface. That is, the simulations correctly reproduce the well-known (Gast, 1969,
1972; Maes & Cremers, 1978; Sposito, 1984) selectivity sequence Cs* > Rb* > K*
on montmorillonite. In addition, the AG,y values available so far indicate that K*
=> Cs*, Rb" = Cs* and K* = Cs* are nonspontaneous processes on dry clay sur-
faces. That is, the driving force for the overall exchange reactions (Eqg. [17} and [18])
does not lie in the ton-clay interactions but, rather, in the ion-water interactions. It
is the fact that Rb* is more hydrophobic than K*, and Cs * is more hydrophobic than
either Rb* or K*, that causes the selectivity sequence Cs* > Rb* > K* on montmo-
rillonite. This finding is consistent with the Eisenman (1961) model of cation ex-
change as described by McBride (1994).

These conclusions are proposed on the basis of the following numerical re-
sults, which are somewhat tentative due to ongoing developments of our force field
parameters. Transforming Rb* and Cs* into K* (Eq. [9]) in a water box (~250 water
molecules with four cations and four CI7) yielded free energy changes (AG,,,) of
~4.0 kcal mol~! for the Rb* to K* transformation and —9.4 kcal mol~! for the Cs*
to K* transformation. This compares to experimental hydration free energy differ-
ences (Aqvist, 1990) of —5.1 kcal mol™ and —12.8 kcal mol™! for these two trans-
formations, respectively. Combining these values with the free energy changes (AG-
clay) Calculated for the corresponding transformation of ions adsorbed on clay (Eq.
[8]), the calculated free energy changes for the overall exchange reactions (AG.,)
were —1.3 kcal mol™! for K = Rb exchange and -2.7 kcal mol ! for K = Cs ex-
change. These values compare to experimental free encrgies ol exchange (Gast,
1969, 1972; Macs & Cremers, 1978) found on Chambers and Camp Berteau mont-
morillonites (CHC 100 cmol kg Yol =0.6 to =111 kealmol "1or K- s Rbexchange
and 116t Lo6 keal mol ' for K-> Cs exchanpee,
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Some Structural Aspects of Cation Arrangements on Clay Surfaces

Another interesting aspect of the simulation results concerns the location of
the counterions in the interlayer space. The (001) perspective of simulated Cs*-mont-
morillonite (Fig. 8- 4) shows that, at a water content [150 g H,O kg~'] approximately
corresponding to a monolayer, the cations always adopted locations such that they
were aligned with the center of a siloxane ditrigonal cavity on the basal surface of
one clay layer and with the base of an SiO, tetrahedron on the basal surface of the
opposing clay layer. At lower water contents this configuration was not stable, and
the interlayer counterions tended to align themselves with the centers of siloxane
cavities on the basal surfaces of both clay layers.

All surface complexes between counterions and the clay mineral surfaces were
inner sphere due to our use of a monolayer of water. When present, water mole-
cules tended to position themselves in such a way as to be in equatorial association
with the counterions, i.e., they did not interpose themselves between a counterion
and a clay surface. The equilibrium dgyg; spacings between hydrated montmorillonite
layers in these stmulations were reasonable [see, e.g., Brindley (1980) for experi-
mental values], varying from 1.209 £ 0.005 nm (K) to 1.214 + .004 nm (Rb) to
1.223 £ 0.005 nm (Cs).

The Adsorption of Proteins on Clay Mineral Surfaces

It is well known that much of the organic matter in soils occurs not in a free
state, but in intimate association with the surfaces of clay minerals. These or-
ganic/clay complexes are of great interest because of the role that they play in reg-
ulating the movement of anthropogenic organic compounds through the soil. Thus,
in studying the fate of pollutants in soils, it is not sufficient only to investigate their
interactions with clay mineral surfaces, but also with organic matter/clay complexes.

Humic acids are ubiquitous in soils and are among the most important com-
pounds that coat clay mineral surfaces. For this reason, some time ago we started
MD simulations of humic acid/clay mineral complexes. It is a difficulty of such mod-
eling calculations that the structures of humic acids are ill defined and highly vari-
able from one molecule to the next, so that it is difficult to design a humic mole-
cule that is representative of the entire class.

In contrast to humic acids, proteins constitute a class of compounds that are
chemically well defined, prevalent in soils, and able to form complexes with clay
surfaces. Therefore, in order to study the interactions of anthropogenic chemicals
with organic matter/clay complexes, we have started a series of MD simulations
dealing with the adsorption of proteins by phyllosilicate surfaces. These investi-
gations can be extended to humic acid coated clays, because many of the functional
groups in proteins are the same as those in humic acids.

Some of the results of our MD simulations of proteins on clay mineral sur-
faces are summarized in Fig. 8-5. When proteins are placed in the interlayer space
of clay minerals, interactions between the surface and the protein compete with in-
tramolecular protein nonbonded interactions. As a result, a protein molecule can
getstretehed out along the mineral surface, significantly denatured from its native
state, T the case ol vubredoxin adsorbed by pyrophyllite, for example, the mole-
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Fig. 84. (a) Representative snapshots of equilibrated Cs-montmorillonite. The cations and clay were
solvated by a monolayer of water, as shown in the (010) view. (#) The (001) perspective shows that
the aqueous cations adopted locations where they always bridged between asiloxane ditrigonal cav-
ity on onc crystal layer and atetrahedral site on the opposing layer. Dehydrating the system cansed
the cations to align themselves with the ceanters of sitoxane cavities on hoth layers



Fig. 8-5. .Ru!)red()xin on pyrophyllitf;. When proteins are placed into the interlayer space of a 2:1 clay mineral, the interactions of the protein with the mineral surface com-
pete with intraprotein nonbondeq m!eractions. (a) The crystal structure of rubredoxin taken from the Brookhaven Protein Data Bank is shown in the interlayer space of
pyrophyllite, which has been artificially expanded to 5 nm. (b) During the course of NVT molecular dynamics simulation, end groups of the protein begin to interact

with, and migrate along, the mineral surface. (¢) When the system is then subjected to NPT molecular dynamics, the interlayer space collapses, compressing the protein
from a diameter of 3.6 to 2.4 nm.
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cule was found to change its diameter from ~3.6 nm to ~2.4 nm, indicating that sys-
tems of this kind can form strong complexes with clay surfaces. Ongoing MD sim-
ulations are exploring the role of water in this process.

CONCLUSIONS AND SUMMARY

The examples presented above illustrate that empirical molecular modeling
and molecular dynamics techniques have matured to the extent that they may now
be used in a productive manner to examine a variety of phenomena relevant to soil
and environmental chemistry. Ultimately, all physical and chemical processes in
soils are molecular by nature, and it must be possible for them to be modeled in terms
of molecular properties.

At its current stage of development, computer modeling of adsorption phe-
nomena at the clay mineral/aqueous solution interface is perhaps most reliable in
shedding light on questions of structural chemistry. For example, can MB adsorb
flat on a mineral surface? Can it form double layers in addition to single layers?
Do TCE and other anthropogenic pollutants sorb preferentially to mineral surfaces
or do they tend to remain in the aqueous phase? What is the average volume of alky-
lammonium ions in the interlayer space as a function of chain length? Such ques-
tions can be answered, we feel, rather reliably.

At the same time, when experimental problems involve small energy differ-
ences between competing states, the results of empirical molecular modeling cal-
culations must be accepted with some caution because calculated energy differences
are highly dependent on the parameters of a given force field. For this reason, the
free energies of ion exchange described above have been presented as tentative. They
illustrate that while calculations of this kind are technically possible, further de-
velopment of our clay mineral force field parameters is needed in order to make
calculated free energy differences or enthalpies reliable at the level of a few tenths
of a kilocalorie per mole. The current situation of empirical molecular modeling
and dynamics 1s thus very similar to that of molecular quantum mechanics one or
two decades ago (Schiifer, 1983), when it was possible to determine details of mol-
ecular structure with great accuracy, but calculated energy differences were not so
reliable.

It is at this point where molecular modeling procedures can be further im-
proved. We see opportunities for improvement mainly in two areas. First, by en-
hancing the available molecular data base, for example by adding results from high
quality ab initio calculations, it will be possible to further improve the parameter-
ization of existing molecular force fields. Second, the direct application of quan-
tum mechanical procedures to adsorption phenomena on mineral surfaces is be-
coming increasingly facilitated by the availability of faster computers and more ef-
ficient software. The program CASTEP (Payne et al., 1992), for example, allows
energy minimizations of molecular species adsorbed on fully periodic systems.
Quantum molecular dynamics of large systems is currently not possible, but may
very well become possible in the not so distant future.

Thus, in a variety of applications—such as in soil remediation, studies of cat-
alytic processes on clay mineral surfaces, determinations of the strength of ad-
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sorption of pesticides on pristine or humic-coated surfaces, determinations of the
conformational or structural properties of humics and their dependence on pH, stud-
ies of the structure and properties of interfacial water, and many others— it seems
safe to predict that computer modeling with atomic scale resolution will become
an increasingly useful and important tool in the study of soil chemical phenomena.
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