Об утверждении Методики расчета нормативных технических потерь в системах водоснабжения от 30 сентября 2004 года № 405-ОД

Утверждена приказом Председателя Агентства по регулированию естественных монополий от «30» сентября 2004 года № 405 – ОД

Методика расчета нормативных технических потерь в системах водоснабжения

1. Общие положения

- 1. Настоящая Методика расчета нормативных технических потерь в системах водоснабжения (далее – Методика) разработана в соответствии с Программой совершенствования тарифной политики субъектов естественных монополий на 2002-2004 годы, утвержденной постановлением Правительства Республики Казахстан от 15 октября 2002 года № 1126, СНиП РК 4.01-02-2001 «Водоснабжение. Наружные сети сооружения», СНиП 2.04.01-85 «Внутренний водопровод и канализация зданий», Правилами технической эксплуатации систем водоснабжения и водоотведения населенных мест, утвержденными приказом Министерства жилищно-коммунального хозяйства Казахской ССР от 29 декабря 1979 года № 699 (далее – ПТЭ), СНиП 3.05.04-85 «Наружные сети и сооружения водоснабжения и канализации», СанПиН 3.01.068.97 «Зоны санитарной охраны источников водоснабжения водопроводов хозяйственно-питьевого назначения» и иными нормативными актами.
- 2. Методика определяет структуру нормативных потерь, предельные уровни и механизм расчета нормативных потерь воды в системах водоснабжения предприятий, эксплуатирующих водозаборы и станции очистки воды, магистральные и распределительные трубопроводы, учитываемых при расчете тарифов на услуги водоснабжения.
- 3. Методика не применяется в отношении субъектов естественных монополий, оказывающих услуги по транспортировке воды по каналам и (или) эксплуатирующих гидротехнические сооружения в технологических процессах деятельности, не относящейся к услугам водохозяйственных и (или) канализационных систем.

2. Понятия, применяемые в Методике

4. В Методике применяются следующие основные понятия:

нормативные технические потери в системах водоснабжения - совокупность нормативных технических потерь при заборе и подготовке воды и нормативных технических потерь при подаче и распределении воды.

нормативные технические потери при заборе и подготовке воды - объемы воды, необходимые для технологических нужд, а также утечки воды, возникающие вследствие нарушений герметичности в емкостных сооружениях при подготовке и производстве питьевой воды, учитываемые при расчете тарифов на услуги водоснабжения.

нормативные технические потери при подаче и распределении воды - объемы воды, необходимые для технологических нужд, утечки воды, возникающие вследствие аварий и нарушений герметичности, а также предусмотренные требованиями действующих нормативных актов расходы воды в системах подачи и распределения воды, учитываемые при расчете тарифов на услуги водоснабжения.

технологический регламент - нормативный документ по эксплуатации элементов системы водоснабжения, согласованный и утвержденный в установленном порядке.

Иные понятия, используемые в Методике, применяются в соответствии с законодательством Республики Казахстан.

3. Расчет нормативных технических потерь

5. Нормативные технические потери в системах водоснабжения определяются по формуле:

$$W_{\text{H.T.II.}} = W_{_{3.\Pi.B..}} + W_{_{\Pi.p.}}$$
 (m³),

где:

 $W_{_{3,\Pi,B.}}$ - объем нормативных технологических потерь при заборе и подготовке воды;

 $W_{\text{п.р.}}$ - объем нормативных технических потерь при подаче и распределении воды.

- 6. Предельный объем нормативных технических потерь в системах водоснабжения рекомендуется принимать при повторном использовании воды не более 28,66 % от объема забора воды, без повторного использования не более 36,44 % от объема забора воды, при использовании станций умягчения не более 47,70 % от объема забора воды.
- 7. Нормативные технические потери при заборе и подготовке воды определяются по формуле:

$$W_{_{3\Pi B}} = W_{_{\Pi O J. B3..}} + W_{_{pi}}^{Boc} + W_{_{T.H.BOC}} + W_{_{c.c.}} + W_{_{3.c.o.}}^{Boc}$$
 (M³)

где:

W _{под.вз} - объем воды на технологические нужды подземных водозаборов;

 $W_{pi}^{\ \ \ \ \ \ }$ - объем воды на очистку и дезинфекцию резервуаров и баков водонапорных башен, расположенных на площадках водозаборов и очистных сооружениях водопровода;

 $W_{\text{ т.н. вос}}$ - объем воды на технологические нужды водопроводных очистных сооружений;

W _{с.с.} - скрытые утечки из емкостных сооружений;

 $W_{3,c.o.}^{Boc}$ - объем воды, необходимый для содержания зон санитарной охраны водозаборов и водопроводных очистных сооружений согласно требований нормативных документов;

8. Объем воды на технологические нужды подземного водозабора определяется по формуле:

$$W_{\text{под.в3}} = q_1 \cdot \mathbf{n} \cdot \mathbf{t}_1 + q_2 \cdot \mathbf{n} \cdot \mathbf{t}_2 \qquad (\mathbf{M}^3),$$

где:

 q_1 - проектный дебит скважин, $M^3/\text{час}$;

 q_2 - дебит скважины увеличенный на 25%, M^3/V час;

n - количество скважин, шт;

 t_1 - время откачки скважин при проектном дебите, час (СНиП РК 4.01-02-2001, Приложение 3 п.2,3.);

 t_2 - время откачки скважин с дебитом увеличенным на 25%, час (СНиП РК 4.01-02-2001, Приложение 3 п. 2, 3.);

Откачка скважин производится периодичностью 1 раз в год. (ПТЭ п.п. 4.3.6, 4.3.8, 4.3.11).

9. Объемы воды на очистку и дезинфекцию резервуаров и баков водонапорных башен определяются:

для і-го резервуара или бака вместимостью не более 3 \downarrow 00 м формуле:

$$W_{Pi} = 3.6 \cdot q_i \cdot (t_1 + t_2) + Wi \quad (M^3),$$

где:

3,6 - переводной коэффициент;

 q_i - расход воды струи, $q_i=2\mbox{-}3$ л/с;

 t_1 - продолжительность смыва осадка, час, (в соответствии с технологическим регламентом);

 t_2 - продолжительность последующей промывки, час (в соответствии с технологическим регламентом);

Wi - вместимость резервуара, м³.

для і-го резервуара или бака резервуаров и баков вместимостью более $100 \ \mathrm{m}^3$ по формуле:

$$W_{Pi} = 3.6 \text{ n} \cdot q_i \cdot (t_1 + t_2) + 0.5 \cdot \text{Fi} \cdot 10^{-3}$$
 (m³),

где:

3,6 - переводной коэффициент;

10 ⁻³ - переводной коэффициент;

n - число струй, шт. (в соответствии с технологическим регламентом);

 q_i - расход воды струи, q_i =2-3 л/с; (в соответствии с технологическим регламентом);

 \vec{F}_{i} - площадь внутренней поверхности резервуара, м 2 ;

 t_1 - продолжительность смыва осадка, час (в соответствии с технологическим регламентом);

 t_2 - продолжительность последующей промывки, час (в соответствии с технологическим регламентом);

0,5 - объем хлорной воды на орошение 1 м² внутренней поверхности резервуара, π / м π / (ПТЭ. Приложение 2 п. III.20).

Очистка резервуаров и баков водонапорных башен производится периодичностью 1 раз в 2 года (ПТЭ. п. 7.10), при выявлении бактериологических загрязнений и по предписаниям Госсанэпиднадзора.

10. Объем воды на технологические нужды водопроводных очистных сооружений определяется по формуле:

$$W_{\text{T.H.BOC}} = W_{\text{coop.}} + W_{\text{ck},\phi} + W_{\text{6,}\phi} + W_{\text{K,o.}} + W_{\text{K,o.}} + W_{\text{otct.}} + W_{\text{Ja6.}} + W_{\text{K.K.}}$$
 (M³),

где:

 $W_{\text{coop.}}$ - объем воды на промывку емкостных сооружений;

 $W_{c\kappa,\varphi}$ - объем воды на промывку скорых фильтров;

 $W_{\text{б},\varphi}$ - объем воды на промывку сетчатых барабанных фильтров и микрофильтров;

 $W_{\kappa p. \varphi.}$ - объемы воды на промывку крупнозернистых фильтров;

 $W_{\kappa,o}$ - объем воды на промывку контактных осветлителей;

 $W_{\text{отст.}}$ - объем воды при сбросе осадка из отстойника и осветлителя со взвешенным осадком;

 $W_{\text{лаб.}}\,$ - объем воды на технологические нужды лабораторий;

 $W_{\kappa.\kappa.}$ - объем воды при отборе проб из пробоотборных кранов для контроля качества.

11. Объем воды на промывку емкостных сооружений определяется по формуле:

$$W_{\text{coop.}} = \sum_{1}^{n} (W_{\text{cop.}} + W_{\text{пр.}} + W_{\text{дe}_3})$$
 (m³),

где:

 $W_{\text{ сбр.}}$ - объем сбрасываемой воды;

 $W_{\text{пр.}}$ - объем воды на промывку;

 $W_{\rm дез}$ - объем воды на дезинфекцию.

Промывка и дезинфекция сооружений производится аналогично дезинфекции и промывки резервуаров. Результаты расчетов сводятся в таблицу (Приложение 1).

12. Объем воды на промывку скорых фильтров определяется по формуле:

$$W_{c\kappa,\phi} = 3.6 \cdot F\phi \cdot q_{MHT} \cdot n \cdot t \cdot 365$$
 (M³),

где:

 $q_{\text{инт.}}$ - интенсивность промывки, л/с · м ² (СНиП РК 4.0102-2001, п.6.110);

F ф. - площадь фильтров, м²;

n - число промывок в сутки, шт (СНиП РК 4.01-02-2001, п. 6. 97);

t - длительность промывки, час (СНиП РК 4.01-02-2001, п. 6.110);

3,6 - переводной коэффициент;

365 - количество дней в году.

Результаты расчетов сводятся в таблицу (Приложение 2).

13. Объем воды на промывку сетчатых барабанных фильтров и микрофильтров (Wб.ф.) Объем воды на собственные нужды принимается:

для барабанных сеток - 0,5% расчетной производительности; (СНи Π PK 4.01-02-2001, п.6.14);

для микрофильтров - 1,5 % расчетной производительности. (СНиП РК 4.01-02-2001, $\pi.6.14$).

14. Объем воды на промывку крупнозернистых фильтров определяется по формуле:

$$W_{\text{ кр. }\phi.} = 3.6 \cdot F_{\phi} \cdot (q_{1 \text{ инт.}} \cdot t_1 + q_{2 \text{ инт.}} \cdot t_2) \cdot n \cdot 365$$
 (м³),

где:

3,6 - переводной коэффициент;

 F_{ϕ} - площадь фильтров, M^2 ;

n - число промывок фильтров в сутки, шт. (в соответствие с технологическим регламентом);

 $q_{1 \text{ инт}}$, $q_{2 \text{ инт}}$ - интенсивность промывки соответственно при водовоздушной промывке и отмывке водой, $\pi/c \cdot M^2$ (СНиП РК 4.01-02-2001, $\pi.6$. 123);

 $t_{1,}$ t_{2} - продолжительность, соответственно водовоздушной промывки и отмывки водой, час; (СНиП РК 4.01-02-2001, п.6 133);

365 - количество дней в году.

15. Объем воды на промывку контактных осветлителей определяется по формуле:

при водяной промывке:

$$W_{KO} = 3.6 \cdot F \cdot q_{MHT} \cdot n \cdot t \cdot 365 \quad (M^3),$$

где:

3,6 - переводной коэффициент;

 $q_{\text{инт}}$ - интенсивность подачи воды, л/с·м² (СНиП РК 4.01-02-2001, п.6.133);

F - площадь контактных осветлителей, M^2 ;

n - число промывок в год, шт (в соответствие с технологическим регламентом);

длительность промывки, час (СНиП РК 4.01-02-2001, п.6.133);

365 - количество дней в году.

при водовоздушной промывке:

$$W_{\text{k.o.}} = 3.6 \cdot F \cdot (q_{1 \text{ uht.}} \cdot t_1 + q_{2 \text{ uht.}} \cdot t_2) \cdot n \cdot 365$$
 (m³),

где:

3,6 - переводной коэффициент;

F - площадь контактных осветителей, M^2 ;

 $q_{1инт}$, $q_{2инт}$ - интенсивность подачи воды соответственно при водовоздушной и дополнительной промывке водой, л/с · м² (СНиП РК 01-02-2001, п.6.133);

 t_1 , t_2 - продолжительность промывки соответственно при водовоздушной и дополнительной промывке водой, час (СНиП РК 01-02-2001, п.6.133);

n - количество промывок в сутки, шт (в соответствие с технологическим регламентом);

365 - количество дней в году.

16. Объем воды при сбросе осадка из отстойника определяется по формуле:

$$W_{\text{orc.}} = [T_p \cdot q \cdot (C_B - M_{\text{ocb}})/s] \cdot K_p \cdot n \qquad (M^3),$$

гле:

 T_p - период работы отстойника между сбросами осадка, ч (СНиП РК 01-02-2001, п.6.64);

q - фактическая среднечасовая подача воды на отстойники, м³ /час;

 $C_{\mbox{\tiny B-}}$ - концентрация взвешенных веществ в воде, поступающих в отстойник, $\Gamma/\mbox{\tiny M}^3$;

 $M_{\text{осв}}$ - количество взвешенных веществ в исходной воде, г/м 3 ;

s - средняя концентрация твердой фазы осадка, г/м 3 (СНиП РК 01-02-2001, п.6.64);

К_р - коэффициент разбавления (СНиП РК 01-02-2001, п.6 74);

n - количество сброса осадка в год (СНиП РК 01-02-2001, п.6.65).

Для горизонтального отстойника количество сброса осадка в год не более 730 шт.; для вертикальных отстойников и осветлителей со взвешенным осадком количество сброса осадка в год не более 1460 шт. (СНиП РК 4.01-02-2001, п.п. 6.65., 6.70).

17. Объем воды на технологические нужды лаборатории определяется по формуле:

$$W_{\text{na6}} = n \cdot q_{\text{H}} \cdot 365 \quad (M^3),$$

где:

n - количество работающих в лаборатории в сутки, чел;

 ${\rm q_{\, H}}$ - норма расхода на одного работающего в хим. лаборатории, ${\rm q_{\, H}}$ =0,46 м³/сут (СНиП 2.04.01-85, Приложение 3);

365 – количество рабочих дней в году.

18. Объем воды при отборе проб из пробоотборных кранов для контроля качества воды в процессе ее обработки определяется по формуле:

$$W_{K.K.} = q \cdot n \cdot 24 \cdot 365 \quad (M^3),$$

где:

q - норма расхода воды через пробоотборные краны при отборе проб, $m^3/час$ (в соответствии с технологическим регламентом);

n - количество пробоотборных кранов для контроля качества воды в процессе ее обработки, шт. (n = 1 для каждого фильтра);

24 - продолжительность непрерывного отвода воды от пробоотборных кранов в сутки, ч. (ПТЭ п.5.3.9.);

365- количество дней в году.

19. Скрытые утечки из емкостных сооружений определяются по формуле:

$$W_{yr.coop.} = 0.001 \cdot F_{cm} \cdot q_{yr.} \cdot 365$$
 (m³),

где:

0,001 - переводной коэффициент;

365 - количество дней в году;

 $F_{\mbox{\tiny cm}}$ - общая площадь смоченной поверхности емкостных сооружений, м²;

 $q_{\text{ут.}}$ - нормативная утечка воды на 1 м² смоченной поверхности,

 $q_{yT} = 3 \pi / M^2 B$ сутки (СНи $\Pi 3.05.04-85 \pi .7.33$).

20. Объем воды необходимый для содержания зон санитарной охраны первого пояса водозаборов и водопроводных очистных сооружений определяется по формуле:

$$W_{3,c,o}^{BOC} = q \cdot F \cdot n \quad (M^3),$$

где:

 $q\,$ - удельная норма расхода воды из расчета одной поливки, ${\rm M}^3/{\rm M}^2$ (СНиП РК 01-02-2001, Таблица 3);

F - поливаемая площадь, M^2 ;

n - количество поливок в год, принимается в зависимости от климатических условий, шт. (СНиП РК 4.01-02-2001, Таблица 3);

21. Нормативные технические потери при подаче и распределении воды определяются по формуле:

$$W_{\text{п.р.в.}} = W_{\text{пр.кр}} + W_{\text{пдо}} + W_{\text{пдо}}^{\text{прв.}} + W_{\text{внс}} + W_{\text{гидр.}} + W_{\text{н.у}} + W_{\text{общ.ав.}} + W_{\text{скр.ут.сет.}} + W_{\text{рі}}^{\text{прв}}$$
 (м³),

где:

 $W_{\text{пр.кр.}}$ - объем воды при отборе проб из пробоотборных кранов при контроле качества воды в водопроводной сети;

 $W_{\text{пдо}}$ - объем воды на промывку, дезинфекцию трубопроводов в порядке планово-профилактического ремонта, утвержденного и согласованного в установленном порядке;

W^{прв}_{3.С.О.}- объем воды необходимый для содержания зон санитарной охраны первого пояса объектов системы подачи и распределения воды;

 $W_{\text{внс}}$ - объем воды на технологические нужды водопроводных насосных станций;

 $W_{\text{гидр.}}$ - объем воды на проверку работоспособности пожарных гидрантов определяется по формуле;

 $W_{\text{н.у}}$ - объем воды, не зарегистрированный средствами измерений;

W _{общ. ав}. - объем воды на непредвиденные потери вследствие аварий;

 $W_{\text{скр.ут.сет.}}$ - скрытые утечки воды из водопроводной сети;

 W_{pi}^{npb} - объем воды на очистку и дезинфекцию резервуаров и баков водонапорных башен, расположенных на площадках элементов системы подачи и распределения воды.

22. Объем воды при отборе проб из пробоотборных кранов при контроле качества воды в водопроводной сети определяется по формуле:

$$W_{\text{пр.кр.}} = q \cdot n \cdot t \quad (M^3),$$

где:

q - норма расхода воды через пробоотборные краны при отборе проб,

 $q = 0.36 \text{ м}^3/\text{час}$, (СНиП 2.04.01-85, Приложение 2);

t - время спуска воды перед отбором пробы, t=0.167 ч (МУК 4.2.671-97 Методы санитарно-микробиологического анализа питьевой воды);

n - количество взятых проб за год (график отбора проб, утвержденный СЭС), шт.

23. Объем воды на промывку, дезинфекцию трубопроводов в порядке планово-профилактического ремонта, утвержденного и согласованного в установленном порядке, определяется по формуле:

$$W_{\text{пдо}} = W_{\text{пром.пр.}} + W_{\text{оп.}} + W_{\text{дез.i.}}$$
 (м³),

где:

 $W_{\text{пром.пр.}}$ - объем воды на промывку участков трубопроводов;

 ${
m W}_{
m on.}$ - объем воды на опорожнение участков трубопроводов;

 ${
m W}_{{
m дез.i}}$ - объем воды, расходуемых при дезинфекции трубопроводов.

24. Объем воды на промывку п участков трубопроводов определяется по формуле:

$$W_{\text{пром.}} = 2800 \cdot \sum_{i} d_{i}^{2} \cdot v_{i} \cdot t_{i} \quad (\text{m}^{3}),$$

где:

2800 - переводной коэффициент;

d_i - диаметр промываемого трубопровода, м;

v_i - скорость движения воды, м/сек, (ПТЭ, Приложение 2 п.III.20);

 t_i - продолжительность промывки, t_i = 4 часа, (ПТЭ. Приложение 2 п. III. 20).

Объем и секундный расход воды на промывку і-го участка трубопровода зависят от способа промывки, промываемого диаметра трубопровода и скорости движения воды, при этом при водяной промывке скорость движения воды принимается равной от 1 до 1,5 м/с, (ПТЭ, Приложение 2), при гидропневматической и гидромеханической - в зависимости от вида отложений - от 1,5 м/с до 3 м/с.

25. Объем воды на опорожнение заданных участков трубопровода определяется по формуле:

$$W_{on.} = 0.785 \cdot \sum_{i=1}^{n} d_{i}^{2} \cdot L_{i}$$
 (m³),

где:

0,785 - переводной коэффициент;

 L_{i} - длина опорожняемого участка, м.;

d - диаметр опорожняемого участка, м .

26. Объем воды, расходуемый при дезинфекции і-го участка трубопровода протяженностью L, м определяется по формуле:

$$W_{\text{nes.i.}} = 0.785 \cdot d_i^2 \cdot L_i \cdot (K_1 + K_2)$$
 (m³),

где:

0,785 - переводной коэффициент;

L_i - длина опорожняемого участка, м.;

d - диаметр опорожняемого участка, м.

 K_1 и K_2 - коэффициенты, учитывающие необходимое увеличение объема воды на дезинфекцию и промывку для достижения концентраций хлорной воды в наиболее удаленной точке участка трубопровода, составляющих не менее 0,3 г/м³ остаточного хлора в промывной воде. Коэффициенты зависят от загрязнения трубопроводов и принимаются по опыту эксплуатации. Рекомендуемые коэффициенты 1,2 - 3,5 (в соответствие с технологическим регламентом).

Результаты расчетов сводятся в таблицу (Приложение 4).

27. Объем воды необходимый для содержания зон санитарной охраны первого пояса объектов системы подачи и распределения воды определяется по формуле:

$$W^{\text{прв}}_{3.\text{c.o.}} = q \cdot F \cdot n \quad (M^3),$$

где:

q - удельная норма расхода воды из расчета одной поливки, m^3/m^2 (СНиП 2.04.01-85, Приложение 3);

F - поливаемая площадь, M^2 ;

- n количество поливок в год, принимается в зависимости от климатических условий, шт. (СНиП РК 4.01- 02-2001, Таблица 3)
- 28. Объем воды на технологические нужды водопроводных насосных станций определяется по формуле:

$$W_{BHC} = q \cdot n \cdot t \quad (M^3),$$

где:

- ${
 m q}$ норма расхода воды на охлаждение подшипников одного электронасосного агрегата, ${
 m m}^3/{
 m vac}$ (в соответствии с технологическим регламентом);
- t количество отработанных часов электронасосных агрегатов в году, ч;
- n количество работающих электронасосных агрегатов, шт.
- 29. Объем воды на проверку работоспособности пожарных гидрантов определяется по формуле:

$$W_{\text{гидр.}}=3600 \cdot q \cdot n \cdot t \cdot 2$$
 (м³),

где:

3600 - переводной коэффициент;

q - расход воды при испытании одного гидранта, $q=2.66 \cdot F \cdot \sqrt{H}$, м $^{3}/c$;

F - площадь сечения пожарного стендера F=0,00196 M^2 ;

Н - напор воды у пожарного гидранта, м;

n - количество гидрантов, шт;

t - время испытания пожарного гидранта t=0,05ч;

- 2 количество испытаний в год. (ПТЭ п. 8.2.8).
- 30. Объем воды, не зарегистрированный средствами измерений, определяется по формуле:

$$\mathbf{W}_{\text{H.y.}} = \sum_{i=1}^{m} \mathbf{q}_{i} \cdot \mathbf{n}_{i} \cdot \mathbf{t}_{i} \cdot \mathbf{T} \quad (\mathbf{M}^{3}),$$

где:

 ${\bf q}_{-i}$ - порог чувствительности средств измерения, м $^{3}\!/{\bf q};$

 ${\bf n}_{\ i}$ - число средств измерения данного калибра;

 ${\rm t}_{i}$ - число часов работы средства измерения с расходами ниже порога чувствительности, ч;

m - число калибров средств измерения, шт;

Т - количество дней работы средств измерений в год, дней.

Результаты расчетов сводятся в таблицу (Приложение 5).

При недостаточном количестве данных по средствам измерений, неучтённые объемы воды, незарегистрированные средствами измерений принимаются в размере 4 - 6 % от объёма поданной воды в водопроводную сеть.

31. Объем воды на непредвиденные потери воды вследствие аварий определяется по формуле:

$$W_{\text{общ.ав.}} = W_{\text{ав}} + W_{\text{пром.ав.}} + W_{\text{опорж.,}} + W_{\text{дез.,}}$$
 (м³),

где:

W_{ав} - объем потерь воды вследствие аварий на сетях;

 $W_{\text{пром.ав.}}$ - объем воды на промывку после устранения аварий;

W_{опорж.} - объем воды на опорожнение аварийных участков трубопровода;

 $W_{{\rm дез.},}$ - объем воды, расходуемый при дезинфекции i-го участка трубопровода после устранения аварии.

32. Объем потерь воды вследствие аварий на сетях определяется по формуле:

$$W_{aB} = W_{aB.apm.} + W_{aB.Tp.} + W_{aB.pasp.}$$
 (M³),

где:

 $W_{\text{ав.арм.}}$ - объем воды, вытекающий при повреждениях стенок трубопроводов, нарушениях стыковых соединений трубопроводов, поломках запорной арматуры, обратных клапанов, фланцев;

 $W_{\text{ав.тр.}}$ - объем воды, вытекающий при трещинах в трубопроводах;

 $W_{{\scriptsize ab.pa3p}}$ - объем воды, вытекающий при разрывах трубопроводов.

33. Объем воды, вытекающий из i-го отверстия в трубах или арматуре, при аварии или повреждении определяется по формуле:

W_{aB}=
$$3600 \cdot \mu \cdot w \cdot t \cdot \sqrt{2} g H$$
 (3),

где:

3600 - переводной коэффициент;

 μ - коэффициент расхода μ =0,6;

w - площадь излива, M^2 ;

t - продолжительность утечки, час;

g - ускорение силы тяжести $g = 9.81 \text{ м/c}^2$;

Н - средний напор воды в трубопроводе на поврежденном участке, м.

34. Объем воды, вытекающий при повреждениях стенок трубопроводов, нарушениях стыковых соединений трубопроводов, поломках запорной арматуры, обратных клапанов, фланцев определяется по формуле:

$$W_{aB} = 1.92 \cdot t \cdot n \cdot \sqrt{H} \quad (M^3),$$

где:

- t средняя продолжительность утечки, рекомендуется принимать не более 18 часов;
- Н средний напор воды в трубопроводе на поврежденном участке, м;
- n среднегодовое число повреждений, шт.
- 35. Объем воды, вытекающей при трещинах в трубопроводах определяется по формуле:

$$W_{aB} = 383 \cdot d^2 \cdot t \cdot n \cdot \sqrt{H} \quad (M^3),$$

где:

- d диаметр аварийного трубопровода, м;
- t средняя продолжительность утечки, рекомендуется принимать не более 18 часов;
- Н средний напор воды в трубопроводе на поврежденном участке, м;
- n среднегодовое число повреждений, шт.
- 36. Объем воды, вытекающей при разрывах трубопроводов, определяется по формуле:

$$W_{aB.} = 5358 \cdot d^2 \cdot t \cdot n \cdot \sqrt{H}$$
 (M³),

где:

- d диаметр аварийного трубопровода, м;
- $t\,$ средняя продолжительность утечки, рекомендуется принимать $t=3\,$ часа;
- Н средний напор воды в трубопроводе на поврежденном участке, м;
- n среднегодовое число повреждений.

Результаты расчетов сводятся в таблицу (Приложение 6).

37. Объем расхода воды на промывку после устранения аварий определяется по формуле:

$$\mathbf{W}_{\text{пром.ав.}} = 2800 \sum_{1}^{n} \mathbf{d}_{i} \cdot \mathbf{v}_{i} \cdot \mathbf{t}_{i} \quad (\mathbf{M}^{3}),$$

где:

2800 - переводной коэффициент;

 $d_{\it i}$ - диаметр трубопровода, м;

 v_i - скорость движения воды, $v_i = 1$ м/сек, (ПТЭ, Приложение 2 п.Ш.20);

t - продолжительность промывки, t=4 часа, (ПТЭ, Приложение 2 п. Ш. 20).

Результаты расчетов сводятся в таблицу (Приложение 7).

38. Объем воды на опорожнение аварийных участков трубопровода определяется по формуле:

$$W_{\text{on.}} = 0.785 \cdot \sum_{i=1}^{n} d_{i}^{2} \cdot L_{i}$$
 (m³),

где:

0,785 - переводной коэффициент;

 L_{i} - длина опорожняемого участка, м.;

d - диаметр опорожняемого участка, м.

Результаты расчетов сводятся в таблицу (Приложение 7).

39. Объем воды, расходуемый при дезинфекции і-го участка трубопровода после устранения аварии определяется по формуле:

$$W_{\text{дез.i.}} = 0.785 \cdot d_i^2 \cdot L_i \cdot (K_1 + K_2)$$
 (M^3),

где:

0,785 - переводной коэффициент;

 d_1 - диаметр поврежденного трубопровода, м;

L_i - длина отключаемого участка поврежденного трубопровода, м;

 K_1 и K_2 - коэффициенты, учитывающие необходимое увеличение объема воды на дезинфекцию для достижения концентраций хлорной воды в наиболее удаленной точке участка трубопровода, составляющих не менее 0,3 г/м³ остаточного хлора. Коэффициенты зависят от загрязнения трубопровода и принимаются по опыту эксплуатации. Рекомендуемые коэффициенты 1,2 - 3,5

Результаты расчетов сводятся в таблицу (Приложение 7).

- 40. При эксплуатации трубопроводов более 20 лет в процентном отношении к общей протяженности водопроводной сети скрытые утечки принимаются:
- более 70 % трубопроводов до 9,2% от объёма поданной воды в водопроводную сеть за расчетный период;
- более 50 % трубопроводов до 8,3% от объёма поданной воды в водопроводную сеть за расчетный период;
- менее 50 % трубопроводов до 7,75% от объёма поданной воды в водопроводную сеть за расчетный период.

При эксплуатации трубопроводов менее 20 лет скрытые утечки принимаются в пределах 5,75% от объема поданной воды за расчетный период.

41. Объемы воды на очистку и дезинфекцию резервуаров и баков водонапорных башен, расположенных на площадках элементов системы подачи и распределения воды определяются:

для і-го резервуара или бака вместимостью не более 3 ,100 м формуле:

$$W_{pi}^{\Pi pB} = 3.6 \cdot q_i \cdot (t_1 + t_2) + Wi \quad (M^3),$$

где:

3,6 - переводной коэффициент;

 q_i - расход воды струи, $q_i = 2-3$ л/с;

 t_1 - продолжительность смыва осадка, час, (в соответствии с технологическим регламентом);

 t_2 - продолжительность последующей промывки, час (в соответствии с технологическим регламентом);

Wi - вместимость резервуара, м³.

для і-го резервуара или бака резервуаров и баков вместимостью более 100 м³ по формуле:

$$W_{pi}^{\text{прв}} = 3.6 \text{ n} \cdot q_i \cdot (t_1 + t_2) + 0.5 \cdot \text{Fi} \cdot 10^{-3}$$
 (m³),

где:

3,6 - переводной коэффициент;

10 -3 - переводной коэффициент;

n - число струй, шт. (в соответствии с технологическим регламентом);

 q_i - расход воды струи, q_i =2-3 л/с; (в соответствии с технологическим регламентом);

 \overline{F}_{i} - площадь внутренней поверхности резервуара, м 2 ;

 t_1 - продолжительность смыва осадка, час (в соответствии с технологическим регламентом);

 t_2 - продолжительность последующей промывки, час (в соответствии с технологическим регламентом);

0,5 - объем хлорной воды на орошение 1 м² внутренней поверхности резервуара, π / м π / (ПТЭ. Приложение 2 π . III.20).

Очистка резервуаров и баков водонапорных башен производится периодичностью 1 раз в 2 года (ПТЭ. п. 7.10), при выявлении бактериологических загрязнений и по предписаниям Госсанэпиднадзора.

Приложение 1 к Методике расчета нормативных технических потерь в системах водоснабжения

Расчет объема воды на промывку емкостных сооружений

			Объем воды	Объем воды,	Объем воды,
	Количество	Объем	на	израсходованной	израсходованной
Наименование	, ед.	coopy-	промывку,	при опорожнении,	при
сооружений	, сд.	жений,	$\mathbf{W}_{\text{пром,}}$	$\mathbf{W}_{ ext{onopж.},,}$	дезинфекции,
		M^3	м³/год	м³/год	$\mathbf{W}_{дe3.,}$
					м³/год
Смесители					
Камера реакции					
Отстойники					
Осветлители					
Итого:				_	

Приложение 2 к Методике расчета нормативных технических потерь в системах водоснабжения

Расчет объема воды на промывку скорых фильтров

Назначение Фильтра	Тип (марка) Фильтра	Количеств о	Площадь фильтров м ²	Количест во промыво к в сутки, шт	Длительн ость промывк и, час.	Интенсив ность промывки фильтров, л/сек · м ²	Объем воды на промывку скорых фильтров, W ск. ф., м³/ год
Очистка воды от взвешенных веществ							

Примечание.

При загрузке керамзитом или цеолитом интенсивность промывки следует принимать 12-15 л/с· м 2 (СНиП РК 4.01-02-2001, п.6.110).

Приложение 3 к Методике расчета нормативных технических потерь в системах водоснабжения

Объем воды на промывку сетчатых барабанных фильтров и микрофильтров

Назначение фильтра	Тип Фильт ра	Диаметр барабана, м	Кол-во работаю щих фильтров , ед.	Продолжит ельн. работы фильтров, Ті суток в	Удельный расход воды на промывку фильтров, Р1 в %	Средняя производит ельность станции, Qi	Общий объем воды на промывку фильтров, м3/год
Очистка воды от планктона							

Приложение 4 к Методике расчета нормативных технических потерь в системах водоснабжения

Объем воды на промывку, опорожнение и дезинфекцию водопроводных сетей

Диаметр D, мм	Длина трубопровода, м	Количество промываемых участков трубопровода, шт.	Объем воды на промывку, W _{пром,} м ³ /год	Объем воды, израсходованной при опорожнении, $W_{\text{опорж.,,}}$ м ³ /год	Объем воды, израсходованной при дезинфекции, $W_{\text{дез.,}}$ м ³ /год
40					
50					
и т.д.					

Приложение 5 к Методике расчета нормативных технических потерь в системах водоснабжения

Неучтенные расходы воды незарегистрированные средствами измерений

Диаметр условного прохода, мм	Порог чувствительности по стандарту, q _і м ³ /ч	Число средств измерения в работе, n _i ,	Число часов в сутки работы средств измерения с расходом ниже q , $t_{\rm I}$, q /сут	Неучтенный объем воды, w _{н.уч.} м ³ /год

Приложение 6 к Методике расчета нормативных технических потерь в системах водоснабжения

Потери воды при авариях и повреждениях трубопроводов

Показатели Dy, мм	Количество аварий	Площадь живого сечения трубы, м ²	Напор воды в трубопро- воде, м	Средняя продолжительнос ть утечки, час	Объем вытекшей воды, м ³ /год
40					
50					
ит. д.					

Приложение 7 к Методике расчета нормативных технических потерь в системах водоснабжения

Объем воды на промывку, опорожнение и дезинфекцию водопроводных сетей после устранения аварий

Диаметр, D, мм	Длина трубопровода, м	Количество промываемых участков трубопровода шт	Объем воды на промывку, W _{пром,} м ³ /год	Объем воды, израсходованной при опорожнении, $W_{\text{опорж.,}}$ м ³ /год	Объем воды, израсходованно й при дезинфекции, $W_{\text{дез.,}}$ м 3 /год
40					
50					
и т.д.					